
© 2011 Gkisioti and Mentzelopoulos, publisher and licensee Dove Medical Press Ltd. This is an Open Access 
article which permits unrestricted noncommercial use, provided the original work is properly cited.

Open Access Emergency Medicine 2011:3 1–6

Open Access Emergency Medicine Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
1

R E v i E w

open access to scientific and medical research

Open Access Full Text Article

DOI: 10.2147/OAEM.S10388

vasogenic shock physiology

Sotiria Gkisioti
Spyros D Mentzelopoulos
Department of intensive Care 
Medicine, University of Athens 
Medical School, Evaggelismos General 
Hospital, Athens, Greece

Correspondence: Sotiria Gkisioti  
Spyros D Mentzelopoulos 
Department of intensive Care Medicine, 
University of Athens Medical School, 
Evaggelismos General Hospital, ipsilandou 
45-47, GR 10675, Athens, Greece 
Tel +30697 746 5832 
Fax +30210 321 8493 
Email sogiria@yahoo.gr

Abstract: Shock means inadequate tissue perfusion by oxygen-carrying blood. In vasogenic 

shock, this circulatory failure results from vasodilation and/or vasoplegia. There is vascular 

hyporeactivity with reduced vascular smooth muscle contraction in response to α1 adrenergic 

agonists. Considering vasogenic shock, one can understand its utmost importance, not only 

because of its association with sepsis but also because it can be the common final pathway 

for long-lasting, severe shock of any cause, even postresuscitation states. The effective man-

agement of any patient in shock requires the understanding of its underlying physiology and 

pathophysiology. Recent studies have provided new insights into vascular physiology by revealing 

the interaction of rather complicated and multifactorial mechanisms, which have not been fully 

elucidated yet. Some of these mechanisms, such as the induction of nitric oxide synthases, the 

activation of adenosine triphosphate-sensitive potassium channels, and vasopressin deficiency, 

have gained general acceptance and are considered to play an important role in the pathogenesis 

of vasodilatory shock. The purpose of this review is to provide an update on the pathogenesis 

of vasogenic shock.
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Introduction
In 1971, Weil and Shubin reclassified four states of shock: hypovolemic, cardiogenic, 

obstructive, and distributive shock.1 In the first three states, tissue hypoperfusion is 

a result of decreased cardiac output. In distributive shock, however, hypoperfusion 

results from circulatory dysfunction, leading to an abnormal distribution of a normal 

or even increased cardiac output.1 Vasodilatory shock, which could be considered a 

form of distributive shock, is characterized by two major factors: hypotension, due to 

failure of the vascular smooth muscle to constrict, and poor response to vasopressor 

therapy, due to hyporeactivity to catecholamines.

Sepsis is the most frequent cause of vasodilatory shock. Other causes include 

inadequate tissue oxygenation (eg, hypoxic lactic acidosis, carbon monoxide 

intoxication) and prolonged and severe hypotension (eg, postresuscitation states, 

late-phase hemorrhagic or cardiogenic shock, and vasoplegia after cardiopulmonary 

bypass). Also, shock states with probable vasodilation include glucocorticoid defi-

ciency, anaphylaxis, liver failure, and cyanide poisoning. Nevertheless, vasogenic shock 

can be the final common pathway for long-lasting, severe shock from any cause.2

Despite recent intense research, the mechanisms of vasogenic shock have not been 

elucidated yet. This is probably due to the pathophysiology involved. However, some 

mechanisms have gained general acceptance and are considered to play an important 
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role in the pathogenesis of vasodilatory shock. Thus, the goal 

of this review is to analyze these mechanisms.

Most of the research has been conducted in septic shock. 

Similar mechanisms are likely involved in the pathophysiology 

of vasogenic shock due to other causes, although generaliza-

tions should be made with caution.

Sepsis is a major cause of vasodilatory shock. The 

fact that purified endotoxin derived from Gram-negative 

organisms can cause vascular collapse when injected was first 

noticed in 1899.3 However, it is also widely accepted that the 

outcome of sepsis is determined mainly by the host response 

to infection, rather than by the insulting microorganism 

itself.4 As soon as the endotoxin is recognized by host 

immune cells, a highly complex inflammatory cascade is 

triggered, which involves many pro- and anti-inflammatory 

mediators and cytokines. This causes a release of powerful 

secondary mediators that further amplify the process.

Role of nitric oxide  
in vasogenic shock
Nitric oxide (NO) is a mediator that is causally involved 

in vasogenic shock. NO was originally described as an 

endothelium-derived relaxing factor of vascular smooth 

muscle.5 Since then, NO has been widely recognized as a 

vasodilator during sepsis.6

The enzymes responsible for NO production are the nitric 

oxide synthases (NOS). The endothelial isoform (eNOS) is 

responsible for basal NO production, which can increase for 

a short time, producing small amounts of NO. During sepsis, 

the role of eNOS is not yet fully clarified. It seems that its 

activity increases and then decreases in a later phase.7 The 

inducible form (iNOS), on the other hand, is expressed when 

triggered by proinflammatory agents such as endotoxin, 

tumor necrosis factor alpha (TNF-α), interferon gamma 

(IFN-γ), and interleukin (IL)-1, IL-2, and IL-6, and produces 

much larger amounts of NO, provided that L-arginine is 

available.8 L-arginine is the substrate for NO biosynthesis, 

and its availability can be increased directly by cytokines 

and endotoxin, leading to a different pathway of increas-

ing NO synthesis during sepsis.7 Recent studies show the 

importance of neuronal NOS (nNOS) in the regulation of 

the circulatory system. nNOS is located in sympathetic and 

parasympathetic nerve endings but also in cardiac myocytes 

modulating calcium influx and, perhaps, inflammatory 

signaling and microcirculatory responses during sepsis.9 

Table 1 summarizes the action of NOS isoforms.

From a macrocirculatory point of view, NO plays a 

very important role in blood pressure and organ blood 

flow regulation, mainly by reducing intracellular calcium, 

thus causing relaxation of vascular smooth muscle and 

vasodilation.10 Excess NO production due to induction of 

NOS, and especially iNOS, may be the cause of vasodila-

tion and vasoplegia during sepsis and in the late phase 

of hemorrhagic shock.2,11 Elevated concentrations of NO 

breakdown products were found in septic animals and 

patients, and in many studies, inhibitors of NOS increased 

arterial pressure and vascular resistance in septic animals 

and humans.9,12 Similar results were presented by study-

ing patients with decompensated hemorrhagic shock.13 

However, the use of nonspecific NOS inhibitors did not 

improve mortality in septic patients, although hypotension 

was effectively managed,14 which might imply a “loose” 

relationship between macro- and microcirculation;15 in 

addition, resuscitation of the mean blood pressure or cardiac 

output alone is inadequate in sepsis, although this could be 

considered only as one interpretation of the trial results. 

Recent studies suggest that nNOS and eNOS may have a 

protective role in sepsis and that selective iNOS inhibition 

might be beneficial.9

Furthermore, the role of NO in vascular hyporesponsive-

ness during vasogenic shock seems to be of great importance. 

This hyporeactivity involves not only adrenergic stimulation 

but also other vasoactive agents, eg, angiotensin II and his-

tamine.11 One possible mechanism of this action is probably 

the direct activation by NO of potassium channels that are 

sensitive to cytosolic calcium.2 However, a recent animal 

study suggests another mechanism that does not involve 

calcium mobilization or entry.16

NO overproduction during sepsis may also be the cause 

of direct myocardial depression.17

Table 1 Production of NO in health and vasogenic shock

No production  
pathway

Normal states Vasogenic shock

Endothelial NOS Basal production of  
NO (small amounts)

NO production  
increases at shock onset 
and then decreasesa

inducible NOS Activity triggered by  
proinflammatory agents.  
Produces large amounts  
of NO during sepsis

Neuronal NOSb May contribute to the  
regulation of vascular  
smooth muscle tone.

May modulate calcium  
influx and participate  
in the circulatory  
responses during sepsis

Notes: aThis pathway probably plays a minor role in the associated pathophysiology. 
bThis NOS isoform is located in sympathetic and parasympathetic nerve fiber 
endings and in cardiac myocytes.
Abbreviations: NO, nitric oxide; NOS, nitric oxide synthase.
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Despite NO’s detrimental effects on the systemic 

circulation, it is important to mention that NO plays a very 

important role in the preservation of microcirculation. 

Microcirculation includes the arterioles, terminal arterioles, 

capillaries, and post-capillary and collecting venules but 

can be functionally divided into resistance, exchange, and 

capacitance vessels.18 Under normal states, NO is responsible 

for the maintenance of microcirculatory homeostasis. During 

an insult, it seems to preserve microcirculatory patency and 

function.19 Microcirculatory heterogeneity, often due to NO 

production, is evident in various organs and within any organ 

itself, matching the oxygen supply with the organs’ metabolic 

demands.20 During sepsis, the systemic NO overproduc-

tion is also unevenly distributed to different microvascular 

beds, leading to vulnerable microcirculatory units, with NO 

deficiency.19 Oxygen-carrying blood is shunted through 

these units during distributive shock, resulting in an oxygen 

demand–supply imbalance, which differs in various organ 

beds for different shock states.21 Shunting of oxygen transport 

is an important pathogenic feature of distributive shock.22 

As a result, NO overproduction might even play a protective 

role in the disturbed microvascular perfusion by improving 

the mismatch of oxygen supply and demand.11,19

During vasoplegic syndrome after cardiopulmonary 

bypass, NO seems to play an important role by causing 

vasodilation and vascular hyporesponsiveness,23 although a 

non-NO-dependent mechanism seems to also be crucial.24

Vasogenic shock and ATP-sensitive 
potassium channels (KATP channels)
The most interesting feature concerning adenosine 

 triphosphate-sensitive potassium (K
ATP

) channels is that they 

are being blocked by micromolar intracellular concentra-

tions of ATP, thus remaining mostly inactive under normal 

conditions. A fall in ATP level, due to compromised oxygen 

supply, as can happen during several shock states, leads to 

channel opening. Other substances, such as kinases, phos-

phatases, G-proteins, phospholipids, intracellular calcium, 

vasoactive hormones, eg, calcitonin gene-related peptide 

(CGRP), adenosine, atrial natriuretic peptide, prostacyclin, 

vasopressin, endothelin, and angiotensin II, can regulate 

channel opening or closure as well.25 During sepsis, activa-

tion of K
ATP

 channels may be due to NO overproduction, 

a rise in CGRP, disruption of actin cytoskeleton, or tissue 

dysoxia.25 Activation of K
ATP

 channels was also described 

in moderate hemorrhagic and cardiogenic shock, probably 

due to tissue disoxya, although a neurohormonal mechanism 

may also play a role.2

The significance of K
ATP

 channels in the modulation of 

arterial smooth muscle tone in septic conditions was first 

recognized in 1989.26 Since then, numerous animal in vivo 

and organ bath studies have pointed to K
ATP

 channels for both 

hypotension and vascular hyporeactivity during sepsis.11,25

Another interesting observation is that dexamethasone 

improved vascular hyporeactivity to catecholamines in rats 

treated with lipopolysaccharide (LPS), probably due to K
ATP

 

activity inhibition by the steroid.27 This observation might 

imply a possible mechanism of glucocorticoids’ beneficial 

effects when used during sepsis or other vasodilatory con-

ditions, besides their anti-inflammatory properties. Hydro-

cortisone treatment is known to improve the response to 

adrenergic agonist infusion and to facilitate shock reversal,28 

which is also the reason for being recommended by the 

Surviving Sepsis Campaign for septic patients with poor 

response to fluid resuscitation and vasopressor therapy.29

However, a recent placebo-controlled study seems to 

question the role of K
ATP

 channels in sepsis-associated 

vascular hyporeactivity,30 whereas another study on septic 

mice treated with LPS implies an even more beneficial role 

of K
ATP

 channel activation.31

Another noteworthy issue is vasorelaxation caused by 

hydrogen sulfide (H
2
S). H

2
S has been a well known toxic 

pollutant for the past 300 years. However, recent studies dem-

onstrate that it is also synthesized by mammalian tissues from 

L-cysteine metabolism.32 During the last decade, H
2
S established  

a role as the third endogenous gaseous transmitter, together with 

NO and CO (carbon monoxide).33,34 In humans, it is produced 

mainly in the cardiovascular system, brain, liver, and kidney.35 

In the cardiovascular system, L-cysteine is metabolized mainly 

by the enzyme CSE (cystathionine γ-lyase), resulting in H
2
S 

 production.36 In earlier studies, the vasorelaxant effect of H
2
S 

was already recognized. These early studies demonstrated that 

H
2
S relaxed rat aortic tissues in vitro.37 This action seemed to 

be only partly endothelium dependent and completely indepen-

dent of the activation of the circular guanosine monophosphate 

(cGMP) pathway, unlike NO. In isolated vascular smooth muscle 

cells, H
2
S directly increased K

ATP
 channel activity.36,38

Current data suggest that H
2
S exerts its actions through a 

variety of interrelated mechanisms.39 Regarding its vasodila-

tory effect, numerous studies have demonstrated that its most 

important mechanism of action is through direct activation 

of K
ATP

 channels. An endothelium-dependent mechanism 

seems to also be important and may comprise direct inhibi-

tion of the angiotensin-converting enzyme, inhibition of 

oxidative phosphorylation, or augmentation of NO vasodi-

latory action34 (Table 2). However, the interaction between 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Open Access Emergency Medicine 2011:3submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

4

Gkisioti and Mentzelopoulos

H
2
S and NO seems to be more complicated. Recent studies 

suggest that low doses of H
2
S may induce vasoconstriction 

by scavenging endothelial NO.40,41 It may be noteworthy that 

NO and CO also activate K
ATP

 channels, but this effect is 

indirect and cGMP mediated.42 H
2
S K

ATP
 channel activation 

is direct and non-cGMP dependent. This property makes it 

unique among vasodilatory gases.

The involvement of H
2
S in the pathophysiology of 

vasodilatory shock was noticed in several animal models 

of hemorrhagic shock, sepsis, and endotoxic shock.43–46 

Another recent study in LPS-injected rats suggested that 

inhibition of H
2
S had a protective effect that was independent 

of hemodynamics.47

Excessive activation of K
ATP

 channels is clearly implicated 

in vasodilatory shock states, although there is no doubt that 

further investigation is needed to clarify several issues con-

cerning their physiologic and pathophysiologic role.

Role of vasopressin  
in vasodilatory shock
Arginine vasopressin is a nonapeptide that is synthesized by 

the magnocellular neurons of the hypothalamus and mediates 

vasoconstriction via activation of V1-receptors of vascular 

smooth muscle and antidiuresis via activation of V2-receptors 

in the renal collecting ducts.48 The most potent regulators 

of vasopressin release are increased plasma osmolality and 

severe hypovolemia and hypotension. Other stimulators may 

be pain, nausea, hypoxia, hormones, and mediators such as 

acetylcholine, histamine, nicotine, dopamine, prostaglandins, 

angiotensin II, and other catecholamines.49

In health, vasopressin has little effect on regulation of 

blood pressure. During shock states, however, vasopressin 

seems to play a crucial role, showing a biphasic response. 

In early shock, 20–200-fold increases in vasopressin levels 

are noticed, whereas prolonged shock states are associated 

with a fall in vasopressin levels.48 Late-phase vasopressin 

depletion was confirmed in vasodilatory septic shock, late-

phase hemorrhagic or cardiogenic shock, unresponsiveness 

to volume replacement and catecholamine administration, 

vasoplegic syndrome after cardiopulmonary bypass, and 

hemodynamically unstable organ donors50 (Table 3). The 

exact mechanism underlying this deficiency remains to 

be determined. Potential mechanisms include depletion 

of neurohypophyseal stores, autonomic dysfunction, and 

increased release of NO within the posterior pituitary, which 

may downregulate vasopressin production.50

Another interesting feature is the remarkable response 

of patients with vasodilatory shock to exogenous vaso-

pressin administration, even in shock states resistant to 

other vasoconstrictors. The mechanisms for this exquisite 

sensitivity are also multifactorial. Some of these factors 

may include: 1) low plasma concentration of the endog-

enous hormone, leaving vascular receptors available 

for occupation by exogenous vasopressin; 2) increased 

vasoconstricting potency of vasopressin, under condi-

tions of sympathetic denervation; 3) vasopressin-induced 

augmentation of norepinephrine-induced  vasoconstriction;  

4) direct activation of K
ATP

 channels; and 5) the vasopres-

sin-induced inhibition of NO and atrial natriuretic peptide 

action.2

The relative deficiency of vasopressin in septic shock and 

the restoration of plasma vasopressin to an appropriate level 

after low-dose vasopressin infusion was once more confirmed 

by a recent multicenter, randomized, double-blind trial of 

vasopressin versus norepinephrine in septic shock (VASST 

[Vasopressin and Septic Shock Trial]).51 In that study’s prospec-

tively defined stratum of less severe septic shock, mortality was 

lower (by 9.2%, P = 0.05) in the vasopressin-treated group. In 

addition, the combination of vasopressin and corticosteroids 

seems to also decrease mortality in septic shock, relative to 

norepinephrine and corticosteroids.52 Similar results were 

also shown by a study of our own, when treating patients with 

postresuscitation shock.53 These results may introduce a new 

role for vasopressin in vasodilatory conditions.

Other mechanisms  
of vasogenic shock
Induction of NOS, activation of K

ATP
 channels, and vasopres-

sin deficiency are the most studied mechanisms contributing 

to vasogenic shock pathophysiology. Intense research on 

Table 3 Shock states associated with vasopressin depletion

1. vasodilatory septic shock
2. Late-phase hemorrhagic shock
3. Late-phase cardiogenic shock
4. vasoplegic syndrome after CABG
5. Hemodynamic instability in organ donors
Abbreviation: CABG, coronary artery bypass graft.

Table 2 Possible vasodilatory mechanisms of H2S

Nonendothelium dependent
Direct activation of of KATP channels
Endothelium dependent
Direct inhibition of the angiotensin-converting enzyme
inhibition of oxidative phosphorylation
Augmentation of NO vasodilatory action
Abbreviations: H2S, hydrogen sulfide; KATP, adenosine triphosphate-sensitive 
potassium; NO, nitric oxide.
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this important and rather complicated issue has led to the 

recognition of other mechanisms, with still unclear contribu-

tion and significance, necessitating further investigation.

Atrial and brain natriuretic peptide are well known 

vasodilators. Their plasma levels were found to be signifi-

cantly increased in recent clinical studies of septic shock.54,55 

However, the exact mechanism of this overproduction is not 

fully determined, and nor are their role and value.10

Other investigators suggest that severe sepsis should 

be considered as a neuroendocrine disorder.56 In particular, 

the autonomic nervous system might play an important role 

in vasodilatory shock, as the depletion of the sources of 

endogenous catecholamines also contributes to circulatory 

failure.57 Neurohormonal activators of K
ATP

 channels may 

also be involved in some forms of vasodilatory shock.2

Lastly, high levels of arachidonic acid metabolites, like 

prostaglandins, leukotrienes, and thromboxane, are found 

in increased plasma concentrations in septic patients. These 

mediators cause vasodilation, leucocyte activation, and 

damage to vascular endothelial cells, although their role in 

vasodilatory shock seems to be less important.8

Concluding remarks
It is clear that the pathogenesis of vasodilatory shock warrants 

further study.

In consideration of the role of NO, its detrimental effects 

on macrocirculation are recognized and accepted, but recent 

advances in research reveal an important and possibly protec-

tive role of NO in the preservation of the microcirculation. 

This new perspective needs further investigation, especially 

since it has become clear that optimizing global hemody-

namic parameters in patients in shock does not necessarily 

resuscitate the microcirculation, which could be far more 

important.

The principal role of K
ATP

 channel activation in the patho-

genesis of vasodilatory shock has been questioned by recent 

research. However, the recognition of the vasodilatory activity 

of H
2
S has led to new perspectives regarding the importance 

of the interaction among H
2
S, K

ATP
 channels and NO.

More research is needed to clarify the role of vasopressin 

in vasodilatory conditions. Although its importance is rec-

ognized, many questions need to be answered with respect 

to its mechanisms of action.

In conclusion, our understanding of the physiology and 

pathophysiology of vasodilatory shock has improved during 

the last decade, but many questions still remain unresolved. 

The complexity and variety of the mechanisms involved 

make this task difficult and time consuming. However, new 

research results may well lead to the development of a new 

generation of specific and more effective treatments.
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