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Abstract
Early and accurate mild cognitive impairment (MCI) detection within a heterogeneous, nonclini-

cal population is needed to improve care for persons at risk of developing dementia. Magnetic

resonance imaging (MRI)-based classification may aid early diagnosis of MCI, but has only been

applied within clinical cohorts. We aimed to determine the generalizability of MRI-based classifi-

cation probability scores to detect MCI on an individual basis within a general population.

To determine classification probability scores, an AD, mild-AD, and moderate-AD detection

model were created with anatomical and diffusion MRI measures calculated from a clinical

Alzheimer's Disease (AD) cohort and subsequently applied to a population-based cohort with

48 MCI and 617 normal aging subjects. Each model's ability to detect MCI was quantified using

area under the receiver operating characteristic curve (AUC) and compared with an MCI detec-

tion model trained and applied to the population-based cohort. The AD-model and mild-AD

identified MCI from controls better than chance level (AUC = 0.600, p = 0.025; AUC = 0.619,

p = 0.008). In contrast, the moderate-AD-model was not able to separate MCI from normal

aging (AUC = 0.567, p = 0.147). The MCI-model was able to separate MCI from controls better

than chance (p = 0.014) with mean AUC values comparable with the AD-model (AUC = 0.611,

p = 1.0). Within our population-based cohort, classification models detected MCI better than

chance. Nevertheless, classification performance rates were moderate and may be insufficient

to facilitate robust MRI-based MCI detection on an individual basis. Our data indicate that multi-

parametric MRI-based classification algorithms, that are effective in clinical cohorts, may not

straightforwardly translate to applications in a general population.
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1 | INTRODUCTION

Alzheimer's disease (AD) is a progressive neurodegenerative disorder

with a substantial personal and increasing societal impact (Alzheimer's

Association, 2018; Hurd, Martorell, Delavande, Mullen, & Langa, 2013).

Early and accurate diagnosis of AD is imperative for adequate patient

management, improved personalized care, and continued development

of effective disease-modifying therapies (Alzheimer's Association, 2018;

Bachurin, Gavrilova, Samsonova, Barreto, & Aliev, 2018; Petersen,

2011). Mild cognitive impairment (MCI) is a transitional stage where

cognitive impairments are in between normal aging and very early

dementia (Petersen, 2016). Individuals with MCI are more likely to con-

vert to dementia with an annual rate of 5–10% compared with 1–2%

within the general population (Petersen, 2011). Identifying individuals

with MCI offers unique opportunities to facilitate and improve interven-

tions that are more likely to be effective (Alzheimer's Association, 2018;

Bachurin et al., 2018). Yet, reliable MCI diagnoses are often difficult to

achieve. Cognitive manifestations are subtle, heterogeneous, and regu-

larly remain unnoticed, especially in high functioning individuals that are

capable of maintaining normal levels of functioning despite demonstrat-

ing overt cognitive impairment (Petersen, 2011, 2016).

Complementary to cognitive determinants, magnetic resonance

imaging (MRI) has shown in defined clinical populations to provide

valuable insights that corroborate MCI diagnosis (Buckner, 2004; Fan,

Batmanghelich, Clark, & Davatzikos, 2008; Petersen, 2016) and aid in

the prediction of subsequent progression to dementia (McEvoy et al.,

2011; Misra, Fan, & Davatzikos, 2009; Tapiola et al., 2008). MRI has

revealed specific structural differences that include the extent and

location of gray matter (GM) atrophy (Tapiola et al., 2008; Wang et al.,

2017) and variations in diffusion tensor imaging (DTI) measures within

the white matter (WM) (De Bruijn et al., 2014; Wang et al., 2017;

Zhuang et al., 2010). These GM atrophy and WM DTI measure values

are in between those of controls and dementia and may even precede

cognitive deficits (Buckner, 2004; Fan et al., 2008).

In order to contribute to diagnostic standards, MRI-derived bio-

markers should be able to reliably identify MCI subjects on an individual

level. To this end, imaging-derived markers have been used in the

development of MRI-based classification algorithms. These algorithms

integrate various MRI measures within a single, quantitative probabilis-

tic score in order to, on an individual basis, differentiate patients from

cognitively normal controls (Bouts et al., 2018; Cuingnet et al., 2011;

de Vos et al., 2016; Dyrba et al., 2015; Misra et al., 2009; Rathore,

Habes, Iftikhar, Shacklett, & Davatzikos, 2017; Schouten et al., 2016;

Schouten et al., 2017; Wee et al., 2011) and identify those MCI subjects

most likely to progress to dementia (Eskildsen et al., 2013; Misra et al.,

2009). This probabilistic score may also serve as a surrogate measure of

disease severity on a continuum from cognitively normal to dementia,

with MCI being represented by intermediate scores (Adaszewski,

Dukart, Kherif, Frackowiak, & Draganski, 2013; Eskildsen et al., 2013).

Nevertheless, these algorithms are mostly evaluated on relatively small,

carefully selected, clinical cohorts. It remains to be elucidated how well

these detection models translate to general populations where disease

induced manifestations are likely to be less conspicuous and heteroge-

neous across subjects (Dukart, Schroeter, & Mueller, 2011; Misra et al.,

2009; Murray et al., 2011; Rathore et al., 2017), disease (sub)types

(Adaszewski et al., 2013; Dong et al., 2017; Eskildsen et al., 2013),

and time to conversion (Adaszewski et al., 2013; Dong et al., 2017;

Eskildsen et al., 2013). Detection within these nonclinical populations

should also be reliable in order to improve patient diagnostic standards,

improve patient selection for clinical trials, and facilitate tailored early

stage intervention.

In this study we aimed to determine the generalizability of MRI-

based classification probability scores to detect MCI on an individual

basis within a general population. To determine classification probability

scores, we used a clinically defined AD cohort to train an AD-, a mild-

AD, and a moderate-AD classification model and subsequently applied

these models to a community-dwelling cohort to determine each

model's ability to detect MCI from normal aging. Each model's classifica-

tion performance was subsequently compared with an MCI classifica-

tion model trained and applied to the community-dwelling cohort.

2 | MATERIALS AND METHODS

This study involved a retrospective analysis of previously published

data (De Bruijn et al., 2014; Schouten et al., 2016) acquired at two dif-

ferent centers. All data were collected in accordance with regional

research regulations, were approved by the local ethics committees,

and conformed to the Declaration of Helsinki.

2.1 | Design

To determine the ability to detect MCI from normal aging within a

community-dwelling cohort, we employed four MRI-based probabilis-

tic classification models. This first model was recently introduced and

validated in two separate clinical cohorts (Bouts et al., 2018; Schouten

et al., 2016). We trained this model with AD patients and control sub-

jects of a separate clinical AD cohort. This model, hereafter referenced

as AD-model, included subjects of a wider AD spectrum (mild and

moderate AD patients) and was used to determine whether probabil-

ity scores of a model trained for AD classification are able to identify

MCI from normal aging subjects in a nonclinical cohort. The second

and third model were trained using sub-populations of the clinical AD

cohort. These models were created to further disentangle classifica-

tion performance of the AD-model in relation to symptom severity.

One model was trained with subjects with relatively mild AD symp-

toms (i.e., mini-mental state examination score [MMSE] > 20;

Schouten et al., 2016). This model, hereafter referenced as mild-AD-

model, was used to determine the influence of less pronounced AD

signatures on MCI detection performance in the community-dwelling

cohort. The other model was trained with more moderate AD subjects

(MMSE ≤ 20) to determine the influence of more advanced AD signa-

tures on MCI detection performance in the community-dwelling

cohort. Finally, a fourth model was trained with MCI and control sub-

jects of the community-dwelling cohort. This model, hereafter

referred to as MCI-model, was created to contextualize the classifica-

tion performance results obtained with the previous models. All

MRI-processing, feature selection, and classification procedures were

identical for all models.
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2.2 | Participants

Subjects of the Rotterdam study were used to create the community-

dwelling cohort (hereafter: RS cohort). The Rotterdam study is a pro-

spective population-based cohort study in which inhabitants of the

well-defined Ommoord district in Rotterdam, the Netherlands, partici-

pate upon invitation. Study details can be found elsewhere (Ikram et al.,

2015; Ikram et al., 2017). For the present analysis we selected 682 sub-

jects that were older than 60 years of age, underwent MRI in the period

2002–2005, did not have MRI-defined cortical infarcts, and had data

available for MCI diagnosis (De Bruijn et al., 2014). Subjects were diag-

nosed as MCI according to criteria previously derived for the Rotterdam

study (Adams et al., 2015; De Bruijn et al., 2014). In brief, participants

were considered MCI when the following criteria were met: (a) presence

of subjective cognitive complaints, (b) presence of objective cognitive

impairment, and (c) absence of dementia. Subjective memory complaints

were evaluated per interview. At least one affirmative answer to ques-

tions on memory or daily functioning resulted in a subject complaint

positive status. Objective cognitive impairment was determined using a

cognitive test battery that comprised of letter-digit substitution task,

Stroop test, verbal fluency test, and 15-word verbal learning test based

on Rey's recall of words (De Bruijn et al., 2014). Scores were summa-

rized by compound scores for various cognitive domains including mem-

ory function, information-processing speed, and executive function

(De Bruijn et al., 2014). Subjects were classified as objectively cogni-

tively impaired when they scored 1.5 standard deviation (SD) lower than

the age and education adjusted means of the study population. Individ-

uals with MCI who had impaired test scores on memory function

(irrespective of other domains) were defined as amnestic MCI. MCI

subjects having normal memory function, but impaired test scores on

executive function or information-processing speed were defined as

nonamnestic MCI.

The AD-, mild-AD, and moderate-AD-model were trained using

data from a separate clinical AD cohort which was previously

described in more detail (Schouten et al., 2016). In brief, this cohort

was acquired at the Medical University of Graz and included AD

patients taken from the baseline data of the prospective registry on

dementia (PRODEM; Seiler et al., 2012). Patients were diagnosed as

AD according to DSM-IV criteria (American Psychiatric Association,

2000) and NINCDS-ADRDA criteria for AD diagnosis (McKhann et al.,

1984). Control subjects were taken from the Austrian Stroke Preven-

tion Study. These control subjects were scanned under similar settings

as the AD patients, including the same MRI acquisition protocol, MRI

scanner, and time period. For our analysis, we included 77 AD

patients—39 AD patients had mild AD (MMSE>20), 38 AD patients

with moderate AD (MMSE<=20; Perneczky et al., 2006) (Supporting

Information Table S1)—who were between 47 and 83 in age, and

173 healthy, age-matched controls (Table 1).

2.3 | MRI processing

MRI protocols and MRI preprocessing procedures are described in more

detail in the Supporting Information. All 682 RS subjects were scanned

on a 1.5 T MRI scanner (GE Healthcare) with an 8-channel head coil.

The 250 subjects of the AD cohort were scanned on a 3 T MRI scanner

(TrioTim, Siemens) with a 12-channel head coil. Both protocols included

a 3D isotropic T1-weighted image and a diffusion MRI dataset with a

maximum b-value of 1,000 s/mm2. Preprocessing procedures of the

3DT1w images and diffusion MRI were similar for both cohorts and fol-

lowed those previously described (Bouts et al., 2018). The processed

maps were subsequently used for feature extraction. From the 3DT1w

data, 96 cortical GM density (GMD), 14 deep GM volume (DGMV), and

20 average WM density (WMD) values were extracted per subject.

Mean cortical values were calculated by weighting the regions of the

cortical Harvard–Oxford (HO) probabilistic anatomical brain atlas by

the regional probabilistic GM tissue segmentation. Feature values of

the deep GM structures were calculated by normalizing volumes of the

bilateral thalamus, caudate nucleus, putamen, globus pallidus, nucleus

accumbens, amygdala, and hippocampi by the intracranial volume. The

20 tracts of probabilistic Johns-Hopkins-University (JHU) white-matter

tractography atlas were weighted by the tract-specific probabilistic

WM segmentation values to obtain values of WM density (WMD).

These 20 JHU-tracts were also used to extract tract-weighted mean

fractional anisotropy (FA) and mean diffusivity (MD) values from the

DTI data after voxel-wise projecting each value onto the standard

FMRIB58_FA skeleton (Smith et al., 2007).

To compensate for nonbiological differences between cohorts that

included MRI acquisition settings, head-coil, and field strength discrep-

ancies, we determined linear correction factors by repeatedly, randomly

selecting a balanced set of 68 unique control subjects of the AD and RS

cohorts to estimate a correction factor that was subsequently applied

to those subjects not used in correction factor estimation (Adaszewski

et al., 2013; Dukart et al., 2011). This process was repeated five times

to make sure that all subjects' feature vectors were corrected.

2.4 | Classification

The above described structural and diffusion features were subse-

quently used for classification analysis. For classification analysis we

used elastic net regression, a previously successfully employed classifier

for detection of AD (Bouts et al., 2018; de Vos et al., 2016; de Vos

et al., 2017; Schouten et al., 2016; Schouten et al., 2017; Teipel et al.,

2017), (presymptomatic) FTD (Bouts et al., 2018; Feis et al., 2018), or

TABLE 1 Demographics of the AD and RS cohort

AD cohort RS cohort

Control AD Control MCI

N 173 77 617 48

Age
(mean ± SD)

66.1 ± 8.7 68.6 ± 8.6 67.3 ± 5.2 68.8 ± 6.6#

Female
gender (%)

99 (57.2) 46 (59.7) 319 (51.7) 23 (47.9)

Disease
duration
(months)

26.4 ± 24.6

MMSE
(mean ± SD)

27.5 ± 1.8 20.4 ± 4.5** 28.1 ± 2.0 26.9 ± 1.8**,##

AD: Alzheimer's disease, MCI: mild cognitive impairment, MMSE: mini-
mental state examination, SD: standard deviation.
**Versus control subjects, p < 0.01.; #Versus AD cohort, p < 0.05.
##Versus AD cohort, p < 0.001.
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differentiation between these dementia-types (Bouts et al., 2018). An

elastic net regression model effectively selects only those features rele-

vant for classification by estimating a sparse regression model that

selects a subset of all provided features using feature selection and fea-

ture weight penalties during regression. Consequently, this provides a

means to address the imbalance between the limited number of training

subjects and the large number of training features (Zou & Hastie, 2005).

2.5 | Cross-validation

Model training and optimization procedures were in accordance with

those detailed previously (Bouts et al., 2018; Schouten et al., 2016). In

brief, after each feature was standardized to zero mean and unit vari-

ance, either single or all MRI measures (i.e., GMD, DGMV, WMD, FA, or

MD) derived from the training data were alternately used to train a clas-

sification model using nested 10-fold cross-validation. Cross-validation

aids in determining the optimal set of operational parameters and over-

all classification performance without introducing bias by using the

same subject for training and testing (Kriegeskorte, Simmons, Bellgo-

wan, & Baker, 2009; Varma & Simon, 2006). The data is iteratively

subdivided in separate test and training sets and used in two, nested

cross-validation loops. The outer loop was used to determine the overall

classification performance, the inner loop further subdivided the training

data to determine the best operational parameters for the penalty terms

without overestimating classification performance (Varma & Simon,

2006; Varoquaux et al., 2017). This process was repeated 10 times to

ascertain that each subject was part of the test set of the outer loop

exactly once. The entire cross-validation procedure was repeated

100 times to reduce variance resulting from random partitioning in

training and test folds, and to report the range of observed outcomes

under different train and test conditions. Age and gender were included

into all models without any penalty to ensure that estimated feature

regression coefficients were conditional on subject age and gender.

2.6 | AD-model

Training of the AD-model followed a specific procedure to assure that

the most appropriate model was used for MCI detection comparison.

First, repeated 10-fold cross-validation was used to determine whether

an individual MRI measure or the combined set of measures attained

highest classification performance within the AD cohort. The feature set

that attained highest classification performance was then used to train

the AD-model using all AD patients and control subjects of the AD

cohort. This AD-model was then applied to the feature vector of each

participant in the RS cohort to obtain an AD probability score ranging

between 0 and 1, where 0 represented control and 1 AD subject. Trans-

lated to the RS cohort, this score indicated how similar a participant was

to an AD patient. The procedure of calculating the center correction fac-

tor, training using AD cohort data, and testing on the RS cohort data was

repeated 100 times to be consistent with the cross-validation procedure.

2.7 | Mild-AD-model

The mild-AD-model followed the same procedure as the AD model.

However, for this model we considered only the mild-AD patients and all

controls of the AD cohort for training. Repeated 10-fold cross validation

determined whether a single MRI measure or combination of MRI mea-

sures attained highest classification performance for detecting mild-AD

symptoms within the AD cohort. The set of features that attained high-

est classification performance was subsequently used to train a mild-AD

model with all the mild-AD patients and controls of the AD cohort. This

mild-AD-model was then applied to the feature vector of each partici-

pant of the RS cohort to obtain an AD probability score ranging between

0 and 1. For this model, 0 represented a cognitively normal (i.e., control)

subject whereas 1 represented a mild-AD patient. Translated to the RS

cohort, this score indicated how similar a participant was to an AD

patient with relatively mild-AD symptoms (i.e., MMSE>20). Again, the

calculation of center correction factors, training using AD cohort data,

and testing on the RS cohort data were repeated 100 times to be consis-

tent with the cross-validation procedure.

2.8 | Moderate-AD-model

The moderate-AD-model followed the same procedure as the mild-

AD model. However, we only considered moderate-AD patients and

all controls of the AD cohort for training. Repeated 10-fold cross vali-

dation determined whether a single MRI measure or combination of

MRI measures attained highest classification performance for detect-

ing moderate-AD symptoms within the AD cohort. The set of features

that attained highest classification performance was subsequently

used to train a moderate-AD model with all the moderate-AD patients

and controls of the AD cohort. This moderate-AD-model was then

applied to the feature vector of each participant of the RS cohort to

obtain an AD probability score ranging between 0 and 1. For this

model, 0 represented a cognitively normal (i.e., control) subject

whereas 1 represented a moderate-AD patient. Translated to the RS

cohort, this score indicated how similar a participant was to an AD

patient with moderate-AD symptoms (i.e., MMSE ≤ 20). The calcula-

tion of center correction factors, training using AD cohort data, and

testing on the RS cohort data were repeated 100 times to be consis-

tent with the cross-validation procedure.

2.9 | MCI-model

For the MCI-model, the model-development procedure was limited to

cross-validation within the RS cohort. One-hundred times repeated

10-fold cross validation determined whether a single MRI measure or

combination of MRI measures attained highest classification perfor-

mance for detecting MCI within the RS cohort. The set of features

that attained highest classification performance was used for MCI

probability score calculation. MCI probability scores for each partici-

pant were calculated from feature vectors in the test sample of the

outer loop of each cross-validation fold. Here, an MCI probability

score of 0 represented a normal aging (i.e., control) subject, while

1 represented a subject diagnosed as MCI.

2.10 | Classification performance

In order to establish each model's ability to detect MCI within the RS

cohort, predictions of each classification model were quantitatively
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compared using receiver-operating characteristic (ROC) statistics.

Predictions (values between 0 and 1) were compared with the actual

diagnosis (0 = control, 1 = AD/MCI) at increasing probability thresh-

olds. The area under the ROC curve (AUC) was calculated as a

threshold-independent measure of classification performance insensi-

tive to the distribution of each patient group (Fawcett, 2006). The

optimal operating point on the ROC curve (highest balanced accuracy)

was used to calculate measures of accuracy, sensitivity, and specificity

under equal class distribution, and equal false positive and false nega-

tive prediction penalty assumptions.

2.11 | Statistical analysis

Demographic group differences between age, MMSE, and cognitive

test scores were assessed using two-tailed Wilcoxon-rank sum tests.

Gender and center distributions were assessed with χ2 tests. To deter-

mine whether classification models performed differently for MCI

detection, ROC curves were compared using a bootstrap percentile

method for paired AUCs (Hanley & McNeil, 1983; Robin et al., 2011;

two-tailed, N = 5,000; single measure vs. multiparametric combina-

tion: one-tailed). To determine whether a model performed better

than chance, AUC values of each model were compared against

chance level using permutation tests with maximum statistic method

for family-wise error correction (Winkler, Ridgway, Douaud, Nichols, &

Smith, 2016). The calculated probability scores of each model were

compared for MCI-control contrasts using two-tailed Wilcoxon-rank

sum tests, after being offset corrected by subtracting for each model

the global minimal probability score from the calculated probability

score. To determine whether overlap in probability scores differed for

the evaluated classification models, calculated scores were compared

using permutation tests and subsequently adjusted for multiple com-

parisons using Bonferroni correction (N = 5,000, one-tailed). Statisti-

cal difference was considered at p < 0.05 for all tests.

All statistical analyses were implemented in R (R version: 3.2.3, R

Core Team, 2014) using the glmnet (R version: 2.05), ROCR (R version:

1.0-7), pROC (R version: 1.9.1), and caret (R version: 6-0-70) packages.

3 | RESULTS

3.1 | Demographics

For this study, 665 subjects of the RS cohort were included. Seven-

teen subjects were excluded from our analysis due to diffusion MRI

acquisition artifacts that included large motion or eddy-current

induced artifacts (N = 4) or due to unresolvable postprocessing-

related artifacts (N = 13). Cognitive assessment scoring and MRI were

on average conducted within 1.02 ± 0.46 years. Cognitive assess-

ments diagnosed 48 subjects as mild cognitively impaired and 617 as

cognitively normal (Table 1). Twenty-three MCI subjects had substan-

tial deficiencies in memory performance and were hence diagnosed as

amnestic MCI. The remaining 25 MCI subjects were considered

nonamnestic MCI (Table 2). The AD-model, mild-AD-model, and

moderate-AD-model were trained using feature vectors of the AD-

cohort. Compared with the RS cohort, subjects of the AD cohort were

older and MMSE scores of AD patients (MMSE = 20 ± 5 [mean ±

standard deviation]) were lower than MCI subjects of the RS cohort

(MMSE = 26 ± 2, p < 0.001; Table 1).

3.2 | AD-model

Optimization using single measure cross-validation within the AD

cohort revealed highest AUC values for single measure models either

based on GMD- (0.925 [0.913–0.933] (mean AUC [min-max]) or MD-

derived features (0.859 [0.838–0.872]). Yet, a classification model that

included all MRI measures (AUC = 0.962 [0.948–0.974])) outper-

formed all single measure models (Supporting Information Table S2).

TABLE 2 Demographics of amnestic MCI, nonamnestic MCI, and control subjects of the RS cohort

RS cohort

Amnestic MCI Nonamnestic MCI Control

N 23 25 617

Age (mean ± SD) 69.9 ± 7.6 67.8 ± 5.4 67.3 ± 5.2

Female gender (%) 8 (34.8) 15 (60.0) 298 (51.7)

MMSE 27 [25–28]** 28 [26–29]* 28 [27–29]

Memory

(median [iqr]) WLT im 7 [6–8]** 12 [10–15]§ 14 [11–17]

WLT delay 3 [2–4]** 6 [5–9]§ 7 [6–9]

Information processing speed

(median [iqr]) Stroop I 18.9 [16.9–20.7] 23.1 [19.4–29.7]**§ 16.8 [15.0–18.3]

Stroop II 24.8 [23.0–27.1]* 27.8 [25.5–31.0]** 22.4 [20.2–24.9]

LDST 28 [22–30]* 23 [19–27]** 30 [26–35]

Executive functioning

(median [iqr]) VFT 18 [16–21]** 16 [14–22]** 22 [19–26]

Stroop III 62.6 [49.0–89.2]** 67.6 [55.7–97.0]** 46.2 [39.2–54.2]

delay: delayed recall; im: immediate recall; iqr: inter-quartile range; LDST: letter digit substitution task; MCI: mild cognitive impairment; MMSE: mini-mental
state examination; SD: standard deviation; Stroop I: Stroop reading subtask; Stroop II: Stroop color-naming subtask; Stroop III: Stroop interference subtask;
VFT: verbal fluency test; WLT: 15-word verbal learning test.
*Versus control subjects p < 0.05.; **Versus control subjects, p < 0.001.; §Versus amnestic MCI subjects, p < 0.001.
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This AD-model was subsequently applied to the RS cohort for MCI

detection. ROC analysis of the AD-model resulted in mean AUC of

0.600, which was significantly higher than chance level (p = 0.025;

Figure 1, Table 3). Overall, AD probability scores of MCI subjects

(0.019 [0.004–0.13] (median [inter-quartile range])) were comparable

with control subjects (0.008 [0.002–0.036], p = 0.14) and overlapped

more than the cross-validated predictions within the AD cohort

(p = 0.002, Figure 2a,e). AD probability scores of amnestic and non-

amnestic MCI subjects were not different (p = 1.0).

3.3 | Mild-AD-model

Optimization of the mild-AD-model using cross-validation in the AD

cohort revealed highest AUC values of a classification model that

included all MRI measures (mean AUC = 0.944 [0.913–0.959]). This

multiparametric mild-AD model outperformed all single MRI measure

models, except GMD (0.896 [0.872–0.914], p = 0.07; Supporting

Information Table S3). This mild-AD-model was subsequently applied

to the RS cohort. AUC values of the mild-AD-model outperformed

random chance classification (mean AUC = 0.619, p = 0.008) and

were similar to AUC values of the AD-model (p = 1.0; Figure 1,

Table 3). The individual mild-AD probability scores of MCI subjects

(0.028 [0.005–0.12]) were higher than control subjects (0.009

[0.004–0.030], p = 0.047; Figure 2b), but did not differ between

amnestic and nonamnestic MCI subjects (p = 1.0).

3.4 | Moderate-AD-model

In agreement with the AD-model and mild-AD model, optimization of

the moderate-AD-model using cross-validation in the AD cohort,

revealed highest AUC values for a classification model that included

all features (mean AUC = 0.914 [0.884–0.935]; Supporting Informa-

tion Table S4). This multiparametric moderate-AD model outper-

formed single MRI measure models that included either DGMV (0.821

[0.788–0.835], p = 0.004), WMD (0.829 [0.811–0.844], p = 0.02), or

FA (0.793 [0.763–0.817], p = 0.006) features only. This moderate-

AD-model was subsequently applied to the RS cohort. AUC values of

the moderate-AD-model (mean AUC = 0.567 [0.549–0.591]) were

comparable to the AD-model (p = 0.44; Figure 1, Table 3) or mild-AD-

model (p = 0.26), but were not better than random chance classifica-

tions (p = 0.15). The individual moderate-AD probability scores of

MCI subjects (0.025 [0.008–0.079]) were similar to control subjects

(0.018 [0.008–0.042], p = 0.87; Figure 2c) and did not differ between

amnestic and nonamnestic MCI subjects (p = 1.0).

3.5 | MCI-model

Cross-validation within RS cohort revealed highest classification per-

formance rates for a model that included all MRI measures (mean

AUC = 0.611 [0.577–0.644]; Supporting Information Table S5). This

model outperformed random chance classifications (p = 0.014;

Figure 1, Table 3) and was more accurate than classifications using

WMD (p = 0.011) measures only (Supporting Information Table S5).

Classification performance values were however not different from

those of the AD-model (p = 1.0), mild-AD-model (p = 1.0), or the

moderate-AD-model (p = 1.0). On a group-level, MCI probability

scores of MCI subjects (0.040 [0.026–0.059]) were slightly higher

than control subjects (0.030 [0.020–0.047], p = 0.060; Figure 3), but

overlapped more than the AD probability scores of cross-validated

predictions within the AD cohort (p = 0.002, Figures 2d and 3). MCI

probability scores between amnestic and nonamnestic MCI subjects

were furthermore not different (p = 0.78).

4 | DISCUSSION

In this study, we determined the generalizability of MRI-based classifi-

cation probability scores as an auxiliary tool for single subject detec-

tion of MCI in a population-based cohort. We compared the

classification performance of AD classification models, trained using a

separate clinical AD cohort, with an MCI-model, cross-validated

directly on the population-based cohort, to detect MCI within a

population-based cohort. We found that performance rates were

comparable between AD- and MCI-models for the detection of MCI.

AD-, mild-AD-, and MCI-models outperformed random chance classi-

fication. However, only probability scores of MCI subjects calculated

with the mild-AD-model were significantly higher than cognitively

FIGURE 1 Receiver-operating curves of MCI versus control

classifications within the RS cohort. Classifications were obtained by
training an AD versus control classification model using the AD cohort
and subsequently applying it within the RS cohort (AD-model). Mild-
AD-model and moderate-AD-model classifications were calculated
similarly to the AD-model but respectively included mild-AD patients
(MMSE > 20) or moderate-AD patients (MMSE ≤ 20) only. Finally,
MCI versus control classifications were obtained through 10-fold
nested cross-validation within the RS cohort (MCI-model). Mean AUC
values of classifications within the RS cohort were comparable (AD-
model: 0.600, mild-AD-model: 0.619; moderate-AD-model: 0.567;
MCI-model: 0.611 [Table 3]). Only classifications with the AD-model
(p = 0.025), mild-AD-model (p = 0.008), and the MCI-model
(p = 0.014) were significantly better than chance level. The diagonal
line represents random classification performance [Color figure can be
viewed at wileyonlinelibrary.com]
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normal subjects. Furthermore, classification rates were unequivocally

low and classification probability scores overlapped significantly more

than classification probability scores calculated in the clinical cohort.

Previous MRI-based classification methods have been heralded as

promising tools for accurate classification of AD (Bouts et al., 2018;

Bron et al., 2016; Schouten et al., 2016), MCI (Cui et al., 2012;

TABLE 3 Classification performance values of the AD, mild-AD, moderate-AD, and MCI classification models within the RS cohort

Model Measure AUC Min–max Sensitivity Specificity Accuracy

AD Multiparametric 0.600* 0.572–0.631 0.556 0.647 0.641

Mild-AD Multiparametric 0.619* 0.587–0.651 0.594 0.658 0.653

Moderate-AD Multiparametric 0.567 0.549–0.591 0.533 0.621 0.615

MCI Multiparametric 0.611* 0.577–0.644 0.628 0.615 0.616

Mean, minimum, and maximum area under the ROC curve (AUC) after 100 classification repetitions. Classifications with the AD-, mild-AD-, and moderate-
AD-models resulted from 100 times repeated training on the AD cohort and applying it to the RS cohort. The MCI-model resulted from 100 times
repeated, 10-fold nested cross-validations using RS cohort data. Mean sensitivity, specificity, and accuracy were calculated at the optimal operating point
on the ROC curve. DGMV: deep gray matter volumes; FA: fractional anisotropy; GMD: gray matter density; MD: mean diffusivity; Multiparametric: classifi-
cation model including GMD, DGMV, WMD, FA, and MD; WMD: white matter density.
*Significantly higher than random classification, p < 0.05.

FIGURE 2 Box- and scatter plots of AD probability scores—ranging from control (0.0) to AD patient (1.0)—of each RS cohort subject as

calculated with the AD-model (a), mild-AD-model (b), or moderate-AD-model (c). AD probability scores calculated with the AD-model (a) resulted
from training an AD versus control classification model with all AD cohort subjects and subsequently applying it to subjects of the RS cohort. AD
probability scores obtained with the mild-AD-model (b) were similarly calculated, but were trained with MRI measures of mild-AD patients
(MMSE > 20) and control subjects only, whereas AD probability scores of the moderate-AD-model (c) were calculated with MRI measures of
moderate-AD patients (MMSE ≤ 20) and control subjects only. AD-model-based probability scores from each subject in the AD cohort were
added for reference (d). Within the RS cohort, mean AD probability scores for MCI subjects were higher than control subjects for classifications
with the mild-AD-model (b, p = 0.047), but not for classifications with the AD-model (a, p = 0.140) or moderate-AD-model (c, p = 0.870).
Compared with scores within the AD cohort (d), AD probability scores within the RS cohort were lower and overlapped more between MCI and
control subjects for the AD-model (a, p = 0.002), mild-AD model (b, p = 0.002), and moderate-AD model (c, p = 0.002). For visual purposes, AD
probability scores were offset adjusted by for each model subtracting each model's calculated minimal score from each subject's individual score
[Color figure can be viewed at wileyonlinelibrary.com]
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Eskildsen et al., 2013), or to differentiate between MCI subjects likely

to develop dementia due to AD or those that do not progress

(Adaszewski et al., 2013; Arbabshirani, Plis, Sui, & Calhoun, 2016;

Eskildsen et al., 2013; Misra et al., 2009; Rathore et al., 2017). These

studies generally aimed to maximize classification performance by

using sparse, carefully selected clinical samples. Despite obvious merit

in maximizing classification accuracy by creating time-homogenized

models (Eskildsen et al., 2013), or subject-homogenized groups for

training (Mendelson, Zuluaga, Lorenzi, Hutton, & Ourselin, 2017;

Rathore et al., 2017), a priori selecting the proper model for a specific

subject is difficult to achieve in practice and consequently may result

in distorted estimations of disease severity (Mendelson et al., 2017).

In this study, we used previously formulated multiparametric AD

detection models (Bouts et al., 2018; Schouten et al., 2016) trained

with a carefully assembled AD cohort to determine whether such a

model can be used to accurately detect MCI individuals within a het-

erogenous, nonclinical population. Similar to this study, these models

showed high classification performance in different clinical cohorts

with AUC of around 0.94 (Bouts et al., 2018; Schouten et al., 2016).

However, when translated to our population-based cohort, we did not

find that these models were effective in accurately detecting MCI.

The AD-model performed better than random chance in differentiat-

ing MCI from normal aging subjects, but classification performance

rates were substantially lower than those observed in smaller (clinical)

cohorts (Arbabshirani et al., 2016; Cui et al., 2012; Rathore et al.,

2017). This is in line with previous work that used structural MRI data

from a clinical cohort to determine diagnostic accuracies of a general

AD classifier at different times prior to AD conversion (Adaszewski

et al., 2013). While MCI converters were detected above chance level

as early as 4 years prior to disease onset, accuracies were neverthe-

less low. Furthermore, we observed that MCI detection with the

moderate-AD-model were below chance-level performance and prob-

ability scores of MCI subjects were only significantly higher than nor-

mal aging subjects when calculated with the mild-AD-model. This

agrees with perceptions that brain regions involved in early stage AD

detection may better match those of MCI subjects than those regions

considered relevant for the detection of more progressed AD patients

(Adaszewski et al., 2013) and may allude to the fact that patient

heterogeneity may have a strong influence on classification perfor-

mance (Adaszewski et al., 2013; Eskildsen et al., 2013; Rathore

et al., 2017).

Remarkably, classification performance of the dedicated MCI-

model did not improve over those of the AD-models. Classification

performance rates of the MCI-model may have been biased by using

the imbalanced RS cohort for both training and testing. While the

other models used a separate clinical cohort for training. Nevertheless,

it was previously observed that MCI detection models that used DTI-

derived measures (Dyrba et al., 2015) or combinations with measures

of GM atrophy were best for the detection of MCI (Cui et al., 2012;

Fan et al., 2008) or AD (Bron et al., 2016; Rathore et al., 2017; Schou-

ten et al., 2016). We also found that only those models that either

used DTI-derived measures of impaired WM integrity or combined

these with measures of GM atrophy were better than chance for MCI

detection within the RS cohort. Nevertheless, all models resulted in

similarly moderate classification performance values that were far

from set criteria for acceptable detection (Bachurin et al., 2018; Thies,

Truschke, Morrison-Bogorad, & Hodes, 1998). Despite previously elu-

cidated group-wise differences (De Bruijn et al., 2014; Wang et al.,

2017), it may therefore be that structural MRI- and DTI-derived mea-

sures are not sufficiently sensitive for reliable MRI-based single sub-

ject MCI detection.

In our study, we used a modified, data-driven MCI diagnosis that

was based on existing clinical criteria (Jack et al., 2018; Petersen et al.,

1999) and was previously established and employed within a larger

part of the Rotterdam study (Adams et al., 2015; De Bruijn et al.,

2014). These criteria identified 7% of the included participants as

MCI, which agrees well with MCI prevalence estimates of around

5–22% within the general population (Hanninen, Hallikainen, Tuomai-

nen, Vanhanen, & Soininen, 2002; Lopez et al., 2003). Nevertheless,

although this diagnosis may have facilitated early detection and

exposed group-wise differences (De Bruijn et al., 2014), it may have

challenged detection on an individual level. Cognitive abnormalities

and MRI-detectable differences between MCI and normal aging are

likely more heterogeneous (Haller et al., 2013) and less conspicuous

than observed in clinical MCI cohorts (Adaszewski et al., 2013;

De Bruijn et al., 2014). It could also suggest that our MCI subjects

were still far from disease onset or may not progress to dementia at

all (Roberts et al., 2014). While our multidisciplinary, multicenter team

carefully followed contemporary guidelines for AD (McKhann et al.,

1984) and MCI (De Bruijn et al., 2014; Jack et al., 2018; Petersen

et al., 1999) diagnosis, diagnosis remains provisional. Postmortem

pathological data to confirm AD diagnosis were unavailable and MCI

represents an intermediate stage for which outcome remains uncer-

tain (Petersen, 2011; Roberts et al., 2014; Visser, Kester, Jolles, &

Verhey, 2006). We combined amnestic MCI and nonamnestic MCI

subjects to maximize our MCI sample. We did not observe differences

in probability scores of amnestic or nonamnestic MCI subjects. Never-

theless, heterogeneity in the underlying etiology of amnestic and non-

amnestic MCI may have further mitigated classification performance

(Guan et al., 2017). Especially at longer follow-up times, amnestic MCI

patients are more likely to develop AD-like atrophy patterns and are

more likely to convert to AD (Roberts et al., 2014; Visser et al., 2006).

FIGURE 3 Box- and scatter plots of MCI probability score—ranging

from control (0.0) to MCI (1.0) subject—of each RS cohort subject as
calculated with the MCI-model. Mean MCI probability scores for MCI
subjects were slightly higher than control subjects (p = 0.060), but
scores were lower and overlapped more than AD probability scores in
the AD cohort (p = 0.002, Figure 2d). For visual purposes, MCI
probability scores were offset adjusted by subtracting the MCI
model's minimal score from each subject's individual score [Color
figure can be viewed at wileyonlinelibrary.com]
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To establish disease trajectories, longer follow-up times are needed

which were unavailable for this study (Roberts et al., 2014).

In our analysis, we took several steps to reduce center related dis-

crepancies, reduce classification bias, and maximize the generalizabil-

ity of our results. First, MRI related differences such as field-strength

(1.5 T vs. 3 T), head-coil, and MRI sequence settings were addressed

prior to model training by estimating linear correction factors using

alternating subgroups of control subjects. Control subjects were used

to make sure that possible subject and scanner interactions were prin-

cipally related to normal aging rather than disease induced patterns

(Abdulkadir et al., 2011; Dukart et al., 2011). Second, for classification

analysis we used a previously introduced AD-model that was vali-

dated on the same cohort with similar results (Schouten et al., 2016).

This model was based on regularized regression to construct stable

classification probability estimates and to accommodate selection of

relevant features despite high dimensionality and collinearity of our

data. Classifications were repeated to reduce variance in classification

performance evaluations. Nested cross-validations were used to

furthermore ensure unbiased regression parameter optimization

(Mendelson et al., 2017; Varma & Simon, 2006; Varoquaux, 2018).

Thirdly, although of great interest, we refrained from biological inter-

pretation of the model's parameters and weights. The trained models

rely heavily on both random and nonrandom class differences and

consequently cannot reliably differentiate between true or random

class differences (Varoquaux et al., 2017). Additionally, nonzero

weights of the selected features are mutually dependent and may

originate from sources statistically independent of disease-related

brain regions (Haufe et al., 2014).

In our work, we focused on establishing whether a previously out-

lined multiparametric MRI-based AD detection approach (Bouts et al.,

2018; Schouten et al., 2016) could be applied as an additional tool for

robust MCI detection. We found that this translation may not be

straightforward. Other works did, however, show promise in identify-

ing those subjects more likely to convert to dementia using amnestic

MCI subjects and dedicated models for training (Cui et al., 2012;

Wang et al., 2017). It may therefore suggest that more tailored

approaches that focus on MCI-specific biomarkers are necessary to

fully capture the subtle complexities of neurodegenerative processes

underlying early stage MCI or dementia. It is however questionable

whether MRI-based algorithms that only incorporate structural or dif-

fusion MRI-derived measures can fully capture this complexity (Jack

et al., 2018). Classification performance rates of the MCI-model did

not improve over those of the AD-model or mild-AD-model. The

incorporation of additional prior, biological knowledge (Rathore et al.,

2017), or other information derived from imaging- and nonimaging

biomarkers such as cerebrovascular status (De Bruijn et al., 2014), the

load (De Bruijn et al., 2014; Dong et al., 2017; Fan et al., 2008), or

location of white matter hyperintensities (McAleese et al., 2017), cere-

bral blood flow (Bron et al., 2016), resting-state functional MRI

(de Vos et al., 2017; Schouten et al., 2016), PET-derived biomarkers

(Dukart et al., 2013; Li et al., 2014), or additional cognitive assessment

scores including measures of cognitive reserve (Allegri et al., 2010;

Moradi et al., 2015; Vieira, Pinaya, & Mechelli, 2017; Wang et al.,

2017) may further augment classification accuracy without increasing

diagnostic complexity. While cognitive assessment scores would most

likely provide a valuable contribution to the detection of MCI (Moradi

et al., 2015; Wang et al., 2017), we did not consider these for this

study. Cognitive assessment scores were used to establish our MCI

diagnosis and would most likely bias classification performance results

and provide a skewed perception of the contribution of each modality

to the classification result. Other machine learning methods that do

not need a priori feature generation and selection such as deep

learning-based methods (Bowles, Gunn, & Hammers, 2018; Vieira

et al., 2017), or methods that exploit longitudinal (McEvoy et al.,

2011), or augmented data (Bowles et al., 2018; Li et al., 2014) may

furthermore provide adept means to improve detection.

5 | CONCLUSION

We investigated multiparametric MRI-based classifiers, that were

trained to identify AD-like patterns, in their ability to detect MCI

within a community-dwelling cohort. We did not find that multipara-

metric MRI-based classification probability scores were suitable as an

auxiliary tool for accurate MCI detection in a general population. Our

findings suggest that MRI-based algorithms that are effective in clini-

cal cohorts may not straightforwardly translate to MCI detection in a

population-based cohort. More tailored solutions, that integrate multi-

ple MCI-specific imaging and nonimaging biomarkers, may be war-

ranted for robust MCI detection within the general population.
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