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Abstract

Increased intake of dietary saturated fatty acids has been linked to obesity and the develop-

ment of Osteoarthritis (OA). However, the mechanism by which these fats promote cartilage

degradation and the development of OA is not clearly understood. Here, we report the

effects of consumption of common dietary saturated and unsaturated fatty acids, palmitate

and oleate, respectively, on body weight, metabolic factors, and knee articular cartilage in a

mouse model of diet-induced obesity. Mice fed on a diet rich in saturated or unsaturated

fatty acid gained an equal amount of weight; however, mice fed a palmitate diet, but not a

control or oleate diet, exhibited more cartilage lesions and increased expression of 1)

unfolded protein response (UPR)/endoplasmic reticulum (ER) stress markers including BIP,

P-IRE1α, XBP1, ATF4, and CHOP; 2) apoptosis markers CC3 and C-PARP; and 3) nega-

tive cell survival regulators Nupr1 and TRB3, in knee articular cartilage. Palmitate-induced

apoptosis was confirmed by TUNEL staining. Likewise, dietary palmitate was also increased

the circulatory levels of classic proinflammatory cytokines, including IL-6 and TNF-α. Taken

together, our results demonstrate that increased weight gain is not sufficient for the develop-

ment of obesity-linked OA and suggest that dietary palmitate promotes UPR/ER stress and

cartilage lesions in mouse knee joints. This study validates our previous in vitro findings and

suggests that ER stress could be the critical metabolic factor contributing to the develop-

ment of diet/obesity induced OA.

Introduction

Osteoarthritis (OA) is the most common degenerative disease of joints, affecting nearly 27 mil-

lion people in the United States; the prevalence of OA is expected to double by 2030 [1, 2]. OA

is a disease of the entire joint, with the involvement of articular cartilage, subchondral bone,

meniscus, and soft tissues (ligaments and tendons) during the progression of the disease [3].
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Obesity is one of the most prevalent diseases globally [4] and is a major risk factor for developing

OA, particularly in the knee joint [5]. Traditionally, the increased mechanical load on the joints

alone, due to excess body weight, was accepted as the explanation for obesity-associated OA [6].

However, since obesity also increases the OA risk for non-weight bearing joints (e.g., hand) [5],

increased weight alone is not sufficient to explain the relationship between OA and obesity.

Emerging evidence suggests that chronic inflammation associated with obesity plays a sig-

nificant role in the pathogenesis of obesity-linked OA [7, 8]. Under obesity-associated

mechanical stress, adipose and joint components such as chondrocytes and the infrapatellar

fat pad are capable of producing multiple proinflammatory cytokines, including interleukin-1

(IL-1), IL-6, IL-10, IL-17, and tumor necrosis factor-α (TNF-α), to induce low-grade inflam-

mation and promote cartilage matrix degradation leading to OA development [8, 9]. However,

the relative contributions to OA of increased mechanical load and local and systemic inflam-

mation occurring with obesity or its associated factors remain unclear.

Increased intake of a diet rich in fat is associated with increased plasma levels of circulating

free fatty acids (FAs) [10]. Free FAs are divided into saturated and unsaturated FAs based on

the presence or absence of a double bond in their molecular structure that confers their biolog-

ical activity [11]. Saturated FAs are the dominant form of lipids in plasma and usually are

found in mammalian animal fats, including lard. Besides providing energy, membrane fluidity,

and lipid storage in tissues, saturated FAs also activate proinflammatory pathways and play a

significant role in several human pathologies, including type 2 diabetes, metabolic syndrome,

and obesity [12, 13]. Unsaturated FAs can be further classified into monounsaturated and

polyunsaturated FAs depending on the number of double bonds that they possess [11]. Inter-

estingly, substituting saturated FAs with monounsaturated FAs in controlled and isoenergetic

diets significantly enhanced insulin sensitivity in healthy humans [14], suggesting that a

change in dietary fat quality alone could have significant impacts on obesity-linked diseases.

Increased levels of free FAs are associated with increased severity of cartilage lesions in OA

[15]. Accumulation of palmitate and oleate, the most abundant saturated and monounsatu-

rated FAs in human tissues, respectively, have been found in OA cartilage [15]. Interestingly,

palmitate, but not oleate, induces chronic inflammation, and cell death in vitro [16]. Recently,

we also demonstrated that palmitate, rather than oleate, induces endoplasmic reticulum (ER)

stress and promotes apoptosis in both cultured chondrocytes and meniscus cells [17, 18].

These studies suggest that palmitate might be a key component in dietary fat that triggers

inflammation and ER stress for obesity-linked OA.

It has been reported that ER stress is a link between obesity and the development of type 2

diabetes [19]. Obesity-induced ER stress also causes chronic inflammation in murine adipose

tissue [20]. Moreover, ER stress appears to inhibit the function of insulin-like growth factor-1

for cartilage matrix biosynthesis in obese mice [21]. However, the role of ER stress in OA path-

ogenesis is not clearly established.

ER stress triggers unfolded protein response (UPR) pathways mediated by three axes of

stress sensors: activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1),

and protein kinase R-like ER kinase (PERK) [22, 23]. During unstressed conditions, these pro-

teins are inactive and are bound to the ER chaperone, binding immunoglobulin protein (BIP,

also called GRP78). Under stress conditions (e.g., accumulation of unfolded proteins), BIP

releases itself from the sensors to bind unfolded proteins, thus activating the individual UPR

pathways. When ER stress is severe and irrecoverable, all three axes of UPR pathways could

induce C/EBP homologous protein (CHOP), a proapoptotic molecule, to eventually activate

caspase-mediated apoptosis [24].

In the present study, we investigated the mechanism by which dietary palmitate promotes

the development of OA. Mice fed with a novel iso-caloric diet that is supplemented with
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palmitate or oleate gained similar body weights during the length of the diet regimen and

allowed us to precisely evaluate the role of a metabolic factor/component (e.g., palmitate) in

cartilage degradation and development of OA while excluding the influence of increased

mechanical burden on joints due to excess gain in body weight. We found that dietary palmi-

tate, but not oleate, induced ER stress and chondrocyte apoptosis and promoted cartilage deg-

radation and OA. To the best of our knowledge, this is the first report to demonstrate the

mechanistic role of palmitate in the initiation of OA in vivo.

Materials and methods

Animal studies

Ten-week-old male C57Bl/6J mice (n = 45) were housed in the Wake Forest School of Medi-

cine Vivarium under a 12-h dark/light cycle and were provided standard chow diet and water

ad libitum. At 12 weeks of age, mice were divided into 3 groups (n = 15 per diet group) and

were provided a special diet for 20 weeks. Group 1 mice were maintained on a control diet

(corn oil; 20% calories from oil/fat). Mice in Groups 2 and 3 were maintained either a high-

palmitate (20% calories from oil/fat) diet (palmitate) or a diet containing 20% calories from

oleate (oleate). The special diets are made in the diet kitchen in the Department of Pathology

at Wake Forest School of Medicine, as described previously [25]. The quality and quantity of

lipids in the diet were analyzed before the start of treatment and at the end of treatment by the

Wake Forest University Botanical Center Lipid core lab as previously described [26, 27]. All

experiments were approved by the Wake Forest School of Medicine Animal Care and Use

Committee. Each mouse was weighed at weeks 0, 10, and 20, respectively. At the end of the

study, mice were sacrificed by CO2 asphyxiation followed by cervical dislocation, and knee

joints were routinely fixed in 10% formalin, decalcified in 10% EDTA, processed, and embed-

ded in paraffin, and serially sectioned in a midcoronal plane at a thickness of 4 μm. Sections

from each joint were blinded for histological and immunohistochemical analyses.

Histology

A single mid-coronal section from one knee per mouse was stained with hematoxylin and

eosin (H&E) for histological assessment. Mouse joint measurements were made using the

OsteoMeasure histomorphometry system (OsteoMetrics) as previously described [28], includ-

ing articular cartilage area and thickness, number of viable chondrocytes, and articular carti-

lage structure score (ACS, grade 0–12). The ACS system scored the integrity of the articular

cartilage on a scale of 0–12, where 0 represents normal healthy cartilage, and 12 represents

full-thickness loss of articular cartilage across more than two-thirds of the surface scored.

Synovial hyperplasia was also scored on a scale of 0–3, as described previously [29]. Briefly, a

grade of 0 = 1–3 cell layers of synoviocytes, 1 = 4–6 cell layers of synoviocytes, 2 = 7–9 cell lay-

ers of synoviocytes, and 3 = 10 or more cell layers of synoviocytes.

Immunohistochemistry

Paraffin-embedded sections were deparaffinized in a xylene substitute, Clear Advantage (Poly-

sciences), rehydrated through a series of decreasing concentrations of ethanol, and washed

with Tris-buffered saline (TBS). Antigen retrieval was achieved with proteinase K treatment

for 5 min. Sections were washed with TBS, treated with 3% hydrogen peroxide for 15 min,

washed with TBS, blocked with Vectastain1 normal goat serum for 15 min at room tempera-

ture, and incubated with primary antibody [1:50 dilution for CHOP; 1:100 dilutions for phos-

phorylated IRE1 alpha (P-IRE1α), activating transcription factor 4 (ATF4), and cleaved poly
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(ADP-ribose) polymerase (C-PARP); 1:200 dilutions for spliced X-box binding protein-1

(XBP1), nuclear protein 1 (Nupr1) and tribbles related protein-3 (TRB3); 1:500 dilution for

BIP and cleaved caspase 3 (CC3)] in blocking serum overnight at 4˚C. After washing with

TBS, sections were incubated with biotinylated anti-rabbit secondary antibody for 30 min at

room temperature, washed with TBS, and then incubated with Vectastain1 Elite ABC reagent

for 30 min at room temperature. Sections were again washed with TBS, incubated with

ImmPACTTM NovaREDTM peroxidase substrate (Vector Laboratories) for 5–30 min, washed

with TBS, dehydrated and mounted. The following antibodies were used: rabbit polyclonal

anti-BIP (ab21685), rabbit polyclonal anti-ATF4 (ab105383), rabbit monoclonal anti-CHOP

(ab179823), and rabbit monoclonal anti-C-PARP (ab32064), all from Abcam; rabbit polyclonal

anti-P-IRE1α (PA1-16927 from Thermo Fisher Scientific), rabbit polyclonal anti-XBP1

(AP07389PU-N from OriGene Technologies); rabbit monoclonal anti-CC3 (9664 from Cell

Signaling Technology), rabbit polyclonal anti-Nupr1 (bs-7106R from Bioss), and rabbit poly-

clonal anti-TRB3 (13300-1-AP from Proteintech). At least three immunohistochemical

images/regions containing 40–60 chondrocytes in the mouse knee cartilage were quantified

using Adobe Photoshop CS6 (version 13.0) with correction for cell numbers. Briefly, an image

was first converted to a black & white image and then inverted into a white & black image. The

threshold value for cell staining intensity was determined in the images of a control group to

avoid light from the background, and the same value was then applied to images in the palmi-

tate and oleate groups. Multiple regions containing 40–60 chondrocytes were selected and

their total pixel numbers were measured and then divided by the cell numbers in the same

region. As a negative control, immunohistochemical staining with only secondary antibody by

replacing a primary antibody with the blocking serum essentially showed no staining for any

of the groups.

TUNEL staining

Chondrocyte apoptosis was further confirmed by TUNEL assay [30]. Paraffin-embedded sec-

tions were TUNEL stained according to manufacturer (Abcam) protocol and then visualized

using an Echo revolve fluorescence microscope. We used a single section from the right knee/

mouse (n = 3) to perform the TUNEL assay. The TUNEL staining data were also quantified, as

described above.

Cirasoft analysis

Mice were fed a control, palmitate, or oleate diet for 20 weeks. Blood was collected from each

mouse and centrifuged to obtain serum samples. The serum samples within each diet group

were then pooled (5 mice/pool) due to limited volume. The pooled samples were assayed to

evaluate the expression of cytokines, including IL-6, IL-10, TNF-α, IFN-γ, IL-1β, IL-12p70,

and IL-17, according to Multiplex Planar Array Kit Cytokine Panel 1. Using a 96-well plate

spotted with target analysts of interest, pooled serum samples were diluted with assay diluent

to achieve 1:1 and 1:10 dilutions and incubated with Biotinylated labeled antibodies for immu-

nocomplex detection. A chemiluminescent substrate was then added just prior to ultra-sensi-

tive camera imaging to measure the signal intensity produced by each analyst. The obtained

data were analyzed by Quanterix1 SP-XTM Imaging and Analysis System using Aushon Cira-

soft Analyst Software.

Statistical analysis

Data are expressed as mean ± standard deviation. Statistical analysis of data was performed

using GraphPad Prism 8 (version 8.2.0) as follows: non-parametric Mann-Whitney test with
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exact P values for ACS and synovial hyperplasia scores, and two-tailed unpaired t-test with

exact P values for chondrocyte counts per cartilage area, proinflammatory cytokine levels, and

quantifications of immunohistochemical and TUNEL data. The results were considered statis-

tically significant at a value of P� 0.05. For multiple comparisons, the significance level was

adjusted by Bonferroni correction using the following formula: P� 0.05/number of

comparisons.

Results

Dietary palmitate induces cartilage lesions and synovial hyperplasia in a

mouse OA model

Increased body weight due to obesity is thought to play a major role in the development of

obesity-linked OA. To address this issue, we fed male C57Bl/6J mice with a control diet and

diet rich in palmitate or oleate diet for 20 weeks and measured the mouse body weights in each

diet group throughout the study. With our special iso-caloric diets, mice in all diet groups

exhibited a similar weight gain (about 50% total increase) throughout the diet regimen. The

palmitate and oleate diet groups maintained nearly identical average body weights during the

entire experiment (Fig 1A).

High- fat diet has been shown to induce cartilage lesions in mouse OA models [31–33]. To

determine if the composition of dietary fatty acids contributed to OA development in vivo, the

knee joints from mice on the control, palmitate, and oleate diets were analyzed for OA severity.

Histological evaluation of hematoxylin and eosin (H&E) sections revealed statistically signifi-

cant increases in articular cartilage structure (ACS) scores in the joints of the mice on the pal-

mitate diet (mean severity of 3.2±2.0 out of 12, n = 14), but not on the oleate diet (mean

severity of 2.0±1.3 out of 12, n = 15), compared to mice on the control diet (mean severity of

1.3±0.7 out of 12, n = 14; Fig 1B and 1E) [28], suggesting that dietary palmitate, but not oleate,

Fig 1. Dietary palmitate induces cartilage lesion and synovial hyperplasia in a mouse OA model. Mice were fed

with a control, palmitate, or oleate diet (n = 15 per diet group) for 20 weeks. (A) Body weights of mice were measured

at weeks 0, 10, and 20, respectively. Values are mean ± standard deviation. Mouse knee joints were then collected,

processed and sectioned (one section from one knee per mouse) for histological analyses including (B) ACS score on

medial tibial plateau, (C) viable chondrocyte counts per cartilage area, and (D) synovial hyperplasia score, with (E)

hematoxylin and eosin (H&E) staining of mouse knee joint sections showing viable chondrocytes with blue-stained

nuclei. Black arrow represents fibrillation of the articular cartilage. Scale bar, 50 μm.

https://doi.org/10.1371/journal.pone.0247237.g001
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induces articular cartilage lesion in mouse knee joints without excess increases in body weight

as compared to controls. Moreover, mice on the palmitate diet showed lower viable chondro-

cyte counts per cartilage area compared to mice on the control diet (Fig 1C). Furthermore,

mice on a palmitate diet also showed higher synovial hyperplasia scores compared to mice on

the control diet (Fig 1D), suggestive of palmitate-induced synovial reaction. These results col-

lectively suggest that dietary palmitate promotes chondrocyte cell death, mild OA, and syno-

vial hyperplasia in this mouse model.

Dietary palmitate induces UPR signaling / ER stress in mouse knee

cartilage

Our in vitro studies have shown that treatment of chondrocytes or meniscus cells with palmi-

tate induced ER stress and activated UPR signaling in vitro [17, 18, 21]. To test if dietary palmi-

tate induces ER stress in mouse knee cartilage, paraffin-embedded knee joint sections of mice

fed a palmitate diet were prepared and evaluated immunohistochemically for multiple ER

stress protein markers. Our data showed statistically significant increased expression of ER

stress markers and UPR signaling molecules, including BIP, phosphorylated IRE1 alpha

(P-IRE1α), spliced X-box binding protein-1 (XBP1), activating transcription factor 4 (ATF4)

and CHOP, in the joints of the mice fed a palmitate diet compared to mice fed a control or ole-

ate diet (Fig 2), demonstrating that dietary palmitate rather than oleate induces ER stress in

mouse knee joints, confirming our previous observations in cell culture models.

Dietary palmitate induces chondrocyte apoptosis in mouse knee cartilage

Chronic and sustained ER stress has been reported to induce caspase-mediated apoptosis [22,

34]. As was recently demonstrated by our work and that of other researchers, palmitate

induces caspase-mediated apoptosis in cultured chondrocytes or meniscus cells [16–18], lead-

ing us to investigate whether palmitate also activates caspase-mediated apoptosis in vivo.

Immunohistochemical analyses of knee joint sections showed statistically significant increased

Fig 2. Dietary palmitate induces ER stress in mouse knee cartilage. Mice were fed with a control, palmitate, or oleate

diet (n = 15 per diet group) for 20 weeks. Joints were collected, processed and sectioned (one section knee/mouse) for

immunohistochemical staining. Coronal sections of mouse knee joints were analyzed for ER stress markers including

BIP, P-IRE1α, XBP1, ATF4, and CHOP. Images on left panels in each pair of columns are of low magnification (Scale

bars: 100 μm), and the tibia is in the lower half of images. The areas inside the small rectangles were magnified and

displayed in right panels (scale bars: 20 μm). All immunohistochemical data were quantified with correction for cell

numbers and statistically analyzed. The bars were obtained from the analysis of 3 mice per group (n = 3), and the data

are expressed as the average pixel numbers (×103) per cell ± standard deviation.

https://doi.org/10.1371/journal.pone.0247237.g002
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expression of two apoptosis markers, cleaved caspase 3 (CC3) and cleaved poly(ADP-ribose)

polymerase (C-PARP), in knee cartilage from mice fed a palmitate diet compared to mice fed a

control or oleate diet (Fig 3A). The palmitate-induced apoptosis was confirmed by TUNEL

staining as a functional assay to assess apoptosis-linked DNA fragmentation [30] (Fig 3B), con-

sistent with previous in vitro findings [17, 18].

Dietary palmitate induces increased expression of Nupr1 and TRB3 in

mouse knee cartilage

Palmitate also induces the expression of nuclear protein 1 (Nupr1) and tribbles related pro-

tein-3 (TRB3) in vitro that are known to play a critical role in cell survival and apoptosis [17,

35, 36]. Since elevated expression of both proteins has been found in human osteoarthritic car-

tilage [37, 38], we determined whether dietary palmitate induces increased expression of

Nupr1 and TRB3 in mouse knee cartilage. Compared to mice on control or oleate diets, mice

in the palmitate diet group showed increased expression of both Nupr1 and TRB3 in knee car-

tilage (Fig 4), demonstrating that dietary palmitate induces protein expression of Nupr1 and

TRB3 in mouse knee joints, confirming observations from our recent in vitro study [17].

Dietary palmitate induces proinflammatory cytokines in mice

Since palmitate also induces proinflammatory cytokine expression in cultured human articular

chondrocytes and cartilage explants in vitro [16], we examined whether dietary palmitate

induces proinflammatory cytokines in vivo. Cirasoft analysis of serum from mice fed a palmi-

tate diet showed elevated expression of cytokines IL-6, IL-10, and TNF-α compared to their

pre-diet levels (Fig 5A–5C). However, there was no difference in the expression of IFN-γ, IL-

1β, IL-12p70, and IL-17 (Fig 5D–5G).

Fig 3. Dietary palmitate induces chondrocyte apoptosis in mouse knee cartilage. Mice were fed a control, palmitate,

or oleate diet (n = 15 per diet group) for 20 weeks. Joints were collected, processed, and sectioned. We used a single

section from the right knee/mouse (n = 3) for immunohistochemical and TUNEL staining. (A) Coronal sections of

mouse knee joints were analyzed immunohistochemically for apoptosis markers CC3 and C-PARP. Images on left

panels in each pair of columns are of low magnification (Scale bars: 100 μm), and the tibia is in the lower half of

images. The areas inside the small rectangles were magnified and displayed in right panels (scale bars: 20 μm). (B)

Coronal sections of mouse knee joints were evaluated by TUNEL staining. Scale bar, 100 μm. All

immunohistochemical and TUNEL data were quantified with correction for cell numbers and statistically analyzed.

The bars were obtained from the analysis of 3 mice per group (n = 3), and the data are expressed as the average pixel

numbers (×103) per cell ± standard deviation.

https://doi.org/10.1371/journal.pone.0247237.g003
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Discussion

Traditionally, development of obesity-linked OA is attributed to bio-mechanical factors (bio-

mechanical stress on joints due to increased body weight) [6]. However, increasing evidence

suggests multiple metabolic factors associated with high-fat diet/obesity play an important role

in the development of OA that go beyond the direct biomechanical stress due to increased

body weight [32, 33, 39]. However, delineating these two factors has been a challenge. In this

study, we found that mice fed a novel iso-caloric diet supplemented with palmitate or oleate

gained similar body weight; however, mice on dietary palmitate developed more cartilage

lesions in the knee joints compared to control (placebo) or oleate diet. Interestingly, palmitate

diet increased the expression of ER stress and apoptotic markers in the articular cartilage of

mouse knee joints. Furthermore, the palmitate diet also increased the serum proinflammatory

markers, including IL-6 and TNFα. TUNEL staining of mouse knee joints confirmed chon-

drocyte death. Chondrocyte death has been associated with the severity of cartilage lesions and

the development of OA [40]. Taken together, our data suggest UPR signaling/ER stress could

be a key metabolic factor that could play a role in obesity-linked OA (Fig 6). Our findings also

Fig 4. Dietary palmitate induces increased expression of Nupr1 and TRB3 in mouse knee cartilage. Mice were fed

a control, palmitate, or oleate diet (n = 15 per diet group) for 20 weeks. Joints were collected, processed and sectioned

(one section knee/mouse) for immunohistochemical staining. Coronal sections of mouse knee joints were analyzed for

Nupr1 and TRB3. Images on left panels in each pair of columns are of low magnification (Scale bars: 100 μm), and the

tibia is in the lower half of images. The areas inside the small rectangles were magnified and displayed in right panels

(scale bars: 20 μm). All immunohistochemical data were quantified with correction for cell numbers and statistically

analyzed. The bars were obtained from the analysis of 3 mice per group (n = 3), and the data are expressed as the

average pixel numbers (×103) per cell ± standard deviation.

https://doi.org/10.1371/journal.pone.0247237.g004

Fig 5. Dietary palmitate induces proinflammatory cytokines in mice. Mice were fed a control, palmitate, or oleate

diet (n = 15 per diet group) for 20 weeks. Blood was collected from each mouse and pooled (5 mice/pool) due to

limited volume. Cirasoft analysis of the pooled serum samples was then performed to measure the level of cytokines

including (A) IL-6, (B) IL-10, (C) TNF-α, (D) IFN-γ, (E) IL-1β, (F) IL-12p70, and (G) IL-17. Data are expressed in pg/

ml.

https://doi.org/10.1371/journal.pone.0247237.g005
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suggest that the biomechanical factors due to increased body weight were not sufficient to

induce cartilage lesions and the development of obesity-linked OA. However, a cumulative

effect of inflammation and increased mechanical factors could still play a role in obesity-linked

OA.

We and others have shown that palmitate induces apoptosis and proinflammatory markers,

including IL-6 in chondrocytes and meniscus in vitro studies [16–18, 41]. We also reported

that palmitate inhibits proteoglycan synthesis in chondrocytes [21]. Rats fed a high–fat diet

rich in saturated FAs have been shown to develop OA-like cartilage lesions [42], and mice on a

diet rich in omega-6 FA also showed increased OA-like cartilage lesions [43]; however, the

molecular mechanism involved was not determined.

Here, we identified ER stress and UPR pathway as a potential mechanism for palmitate

mediated chondrocyte apoptosis based on our findings and those of others [17, 22–24]. Feed-

ing mice a diet supplemented with palmitate causes lipid toxicity in joint tissues and triggers

ER stress. Under severe ER stress, BIP is released from IRE1 and PERK to activate the individ-

ual UPR signaling axes. The release of BIP from IRE1 results in homodimerization and activa-

tion of IRE1 via autophosphorylation (P-IRE1), which further activates the expression of

spliced XBP1. Likewise, disassociation of BIP from PERK leads to activation of PERK by

autophosphorylation (P-PERK), thereby inducing expression of the protein ATF4. Under

chronic and severe ER stress, both XBP1 and ATF4 could induce the proapoptotic molecule

CHOP [23, 44]. Elevated CHOP expression further induces the expression of Nupr1 to activate

CC3-mediated chondrocyte apoptosis [17]. Both CHOP and Nupr1 could also induce the

expression of TRB3 to further inhibit chondrocyte survival [17, 45–47]. Taken together, die-

tary palmitate may play a role in inducing ER stress, chondrocyte apoptosis, and development

of cartilage lesions in mouse knee joints. It is worth mentioning that the third axis of UPR sig-

naling mediated by ATF6 is not shown in this model merely because we could not differentiate

the full-length inactive ATF6 from its active form of truncated ATF6 using an ATF6 antibody

for immunohistochemistry [22].

Our results demonstrate that dietary palmitate appears to induce two crucial metabolic fac-

tors, inflammation and UPR signaling/ER stress, both contributing to obesity-associated OA.

The nature of the relationship between inflammation and ER stress in the development of OA

needs further research to be fully understood. Palmitate has been recently found to induce

inflammation through toll-like receptor 4-dependent priming and altered cellular metabolism,

eventually activating c-Jun N-terminal kinase (JNK) [48], which is actually one of the impor-

tant downstream targets of P-IRE1 in ER stress/UPR pathways [23, 34]. Furthermore, ER-

stress-induced TRB3 is capable of promoting β-cell apoptosis via the NF-κB pathway [47],

which plays an essential role in the regulation of obesity-linked inflammation. Therefore, both

inflammation and ER stress may contribute at least in part through shared pathways to the

development of obesity-linked OA.

Fig 6. Model of palmitate-induced ER stress and chondrocyte apoptosis in mouse knee joints. Dietary palmitate

induces ER stress in mouse knee joints. Under ER stress, BIP is released from IRE1 to trigger activation of IRE1 via

autophosphorylation (P-IRE1) which further activates the expression of XBP1. Similarly, PERK is autophosphorylated

(P-PERK) following the release of BIP thus inducing the ATF4 expression. Both XBP1 and ATF4 induce CHOP

expression which further induces the expression of Nupr1 to elicit CC3-mediated chondrocyte apoptosis. Both CHOP

and Nupr1 could induce TRB3 expression to inhibit chondrocyte survival.!, single-step stimulation;, putative single-

step stimulation;!!, multistep stimulations;??, multistep inhibitions.

https://doi.org/10.1371/journal.pone.0247237.g006
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Dietary palmitate also induced increased circulatory levels of IL6, TNF-α, and IL-10 in

mice compared to pre-diet levels. However, no significant differences were observed between

dietary groups after 20 weeks, although a clear uptrend (higher mean values) was observed for

these cytokines (IL-6, TNF-α, and IL-10) with dietary palmitate compared to dietary oleate or

control diet. It is possible that extending the diet regimen and/or increased sample size could

have made our data more statistically significant. Interestingly, dietary palmitate increased cir-

culatory IL-10 levels. IL-10 is usually considered to be an inhibitory cytokine that antagonizes

the effects of proinflammatory cytokines such as IL-1, IL-6, and TNF-α [9, 49]. However, since

IL-10 expression has also been found to be elevated in human osteoarthritic cartilage and both

IL-10 and the IL-10 receptor are highly expressed in human fetal cartilage [50], it is possible

that IL-10 might play another role in the regulation of chondrocyte metabolism beyond its

immunological activity.

In conclusion, we have shown that dietary palmitate-induced UPR signaling/ ER stress,

chondrocyte apoptosis, and cartilage lesions in a mouse model, validating our previous in vitro

findings [17, 18]. We acknowledge that we have not provided evidence showing that pharma-

cological mitigation of ER stress reduces the palmitate-induced cartilage lesions and the devel-

opment of OA, which is a limitation of this study. However, we recently showed that the

administration of the general ER stress inhibitor 4-phenyl butyric acid (PBA) reduced high-fat

diet-induced ER stress and chondrocyte apoptosis in mouse knee joints [51], supporting our

hypothesis that palmitate-induced ER stress might be a key metabolic factor that promotes car-

tilage damage and could be targeted for obesity/diet-linked OA therapy.
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