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Immittance Data Validation by Kramers-Kronig Relations –
Derivation and Implications
T. Malkow*[a]

Explicitly based on causality, linearity (superposition) and

stability (time invariance) and implicit on continuity (consis-

tency), finiteness (convergence) and uniqueness (single valued-

ness) in the time domain, Kramers-Kronig (KK) integral transform

(KKT) relations for immittances are derived as pure mathemat-

ical constructs in the complex frequency domain using the two-

sided (bilateral) Laplace integral transform (LT) reduced to the

Fourier domain for sufficiently rapid exponential decaying,

bounded immittances.

Novel anti KK relations are also derived to distinguish LTI (linear,

time invariant) systems from non-linear, unstable and acausal

systems. All relations can be used to test KK transformability on

the LTI principles of linearity, stability and causality of measured

and model data by Fourier transform (FT) in immittance

spectroscopy (IS).

Also, integral transform relations are provided to estimate

(conjugate) immittances at zero and infinite frequency partic-

ularly useful to normalise data and compare data. Also,

important implications for IS are presented and suggestions for

consistent data analysis are made which generally apply

likewise to complex valued quantities in many fields of

engineering and natural sciences.

Immittance spectroscopy (IS) is a powerful tool nowadays

readily available for the in-situ characterization of materials,

interfaces and devices (systems) whether of conductive or

dielectric nature in many branches particularly of physics,

chemistry, biology and engineering.[1–5]

Note, the term immittance is due to Hendrik Wade Bode

who combined the words impedance and admittance.[6] We

mean by immittance apart from impedance and admittance

commonly denoted by respectively Z and Y also complex

capacitance and inductance denoted by respectively C and L

whether in the real respectively imaginary time domain, t 2 R

and jt, complex frequency domain (Laplace space),

s ¼ s þ jw; s;w 2 R; ð�jÞ2 ¼ �1 or the real respectively imag-

inary frequency domain (Fourier space), w and jw. More

generally, immittance could also include dielectric quantities

such as complex permittivity (dielectric constant), e, suscepti-

bility, c and modulus, M as well as transfer functions based on

stimuli (excitation) other than electrical.[1–3]

But prior to a meaningful analysis of conventional immit-

tance measurements and likewise of similar complex valued

quantities (absorptance, transmittance, reflectance, complex

compliance, relaxation modulus) in many other fields of natural

sciences and engineering,[7–17] the acquired data have to con-

form to the very principles of linear, time invariant (LTI) systems:

linearity, stability, boundedness, continuity (consistency),

uniqueness and causality.[1–5] This may either be checked

experimentally or numerically, for example, using fast Fourier

transformation (FFT)[18–21] on Kramers-Kronig (KK) relations[22–24]

in the positive frequency domain (w�0) or the Hilbert integral

transform (HT)[7,25–28] in the whole domain (jw j �0), the subject

herein.

Likewise, models explaining or supplementing measured

data should always be checked for self-consistency. Estimating

immittances (or transfer functions) at zero and infinite

frequencies virtually inaccessible by measurements to allow for

normalisation to compare data obtained at different frequency

ranges or when data are rejected, for example, as too noisy or

upon numerical KK (HT) validation may prove useful in

subsequent analysis. Populating the bandwidth more densely

or extend it numerically beyond the measured data may be

needed in some cases before numerical models are applied.

Immittance is determined by applying uncorrelated time

varying arbitrary (AC) perturbations of small, non-zero ampli-

tude (input), x(t,t’) = x(t�t’) onto a steady state (DC). The

measured response (output), y(t)~x(t + t0) relates to the input

shifted by 0 < t0 2 R. Applying the bilateral Laplace integral

transforms (LT, forward, L),[29,30]

(1)

having corresponding inverse (backward, L�1) transforms,

(2)
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with their region of convergence (ROC), s1 < <efsg < s0, to

the bounded input-bounded output (BIBO),

(3)

provides from past, t2]�1,0�] to present, t for the complex

valued immittance,

(4)

where 0 < <efsg is not smaller than the real part of all isolated

immittance singularities (poles), <efpjg � <efsg;8j 2 N.

Note, the existence of the improper integral (1) requires I(t)

to be absolutely convergent, j I(t)est j!0 as t!1 that is, I(t)

needs to decay (exponentially) faster than est grows which

means, I(t) must be of exponential order,[7]

finite (bounded) and continuous whether uniformly (nowhere

singular in the entire domain) or piecewise (sectionally). The

latter means that I(t) is nowhere singular in the neighbourhood

of t0 formed by t� t0 (Hölder continuity),[7,8]

to probe a non-essential singularity (discontinuity), j I(t!t0) j!
1 near t0 for its eventual exclusion from the domain of I(t) and

hence from the range of the integrand of (1); otherwise, this

improper integral only exists in a principal value sense as is the

case for an essential (non-removable) singularity.[31]

Similarly, the existence of the Bromwich integral (2) requires

I(s) to be of exponential order, finite and continuous that is at

least Hölder continuous meaning I(s) is nowhere singular in the

neighbourhood of s0 formed by s� s0,

to probe a non-essential singularity, j I(s!s0) j!1 near s0 for its

exclusion from the domain of I(s) and hence from the range of

the integrand of (2).

Given all these conditions met, the convergence,

(5)

follows from the initial value theorem (IVT) of the bilateral

LT,[32–34]

(6)

applied to the LT pairs (1) & (2).

Note, Hölder continuity is implicitly used in subtracted HT

(KK) relations[16,17,35] to isolate poles or to enhance the

convergence of the transformed quantities.

Further, the LT pairs (1) & (2), given reality, I(t) = I*(t), 8t 2 R,

imply

(7)

for the conjugate immittance, I*ðs*Þ 2 C of conjugate fre-

quency, s* =s�jw with magnitude (modulus), jsj �
ffiffiffiffiffiffiffi

ss*
p

.

However, immittances whether of dynamical systems with

I(t = 0) = I(t = 0+)�I(t = 0�)¼6 0 or systems at rest with I(t = 0) = 0

which conform to LTI theory need both to obey all of the

following fundamental principles:[1–5]

1. Linearity (superposition) that is

(8)

to yield (4) in the s domain by the linearity property

(theorem).[29,30]

2. Stability (time invariance by dilation, translation &
rotation) that is

(9)

with t multiplied (dilated) by ja j >1 (expansion) or ja j <1

(contraction), shifted (translated) by t0 2 R and/or rotated by

Arg a ¼ � p

2 to also yield (4) in the s domain by the similarity

and shifting theorems.[29,30]

3. Primitive causality where an effect (output) cannot

precede its cause (input), that is

(10)

to yield vanishing (4) in the s domain. Naively, in (flat) spacetime,

relativistic causality requires t�tc< t’ for (10) to hold in a

homogeneous medium of thickness l traversed in time tc =l/c by

an information bearing signal at speed c; then, the relations

derived herein need multiplication by es� tc in Laplace space and by

e�jwtc in Fourier space.

As already noted, finite, continuous and convergent

immittance are prerequisite for (8) & (9) to hold that is, their

integrands are not divergent. Also, (10) means the lower

integration limits in (3), (8) and (9) can be set to t = 0�; then,

initial data are consequences solely of the past, t�0�.

Experimentally, linearity is usually preserved when using

small stimuli of sufficient amplitude to measure a response with

reasonably low levels of noise. It is readily verified by taking a
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multiple (fraction) of the stimulus to produce a response of

same multiple (fraction) in amplitude. The output of a stable

system is bounded for bounded input or decays sufficiently

rapid for an impulse input with the system returning to its

original state when the input is removed. This can be verified

by applying repetitively the same input to measure each time,

within experimental error, the same output or by sweeping

frequencies back and forth to only notice an insignificant

hysteresis in the response. Immittances of real systems which

exhibit losses by storage (capacitive and/or inductive) and

dissipation (resistance), are generally bounded at the discrete

frequencies selected in the measurement and thus, singularities

are unfortunately in most cases not directly detectable

experimentally. Also, finiteness (5) is inaccessible by experiment

given the finite range of frequencies in any IS measurement.

When a perturbation frequency is at or close where the

measured system resonates, the system response is amplified

to eventually saturate the input of the measurement device

reading it with the result of the onset of an unbounded

immittance. Thus, applying a decaying time varying stimulus,

e�s0 txðtÞ; 0 < s0 2 R and the response of the resonating system

is damped to result in a bounded immittance when s0 is

chosen sufficiently large that the input of the measurement

device is no longer saturated by the response read.

Most important, we use below in (11), (12) and (13) which

respectively represent time domain linearity, stability and

causality, the fact that (7)–(10) remain invariant under time

reversal (reflection), t!�t (time rotation by �p) and in

imaginary time, � jt (time rotation by � p

2).

Generally, (8), (9) & (10) are appropriate for time domain use

along with (3) & (4) but they are inappropriate to derive HT

relations in the s domain; instead,

(11)

(12)

and

(13)

are respectively used with the right continuous (Heaviside) unit

step function, h(t) = 0.5(1 + sgn(t))[36] and signum function,

sgnðt 6¼0Þ ¼ t
jtj and sgn(t = 0) = 0.[36]

Advantageously, (11)–(13) are independent of actual initial

data, I(t = 0) thus past immittances, I(t<0). The special case,

Iðt ¼ 0þÞ � Iðt ¼ 0�Þ ¼ 0 demands for inertial systems an

impulse input, x(t = 0) =d(t = 0) where d(t) = 0, 8t 6¼0 is the Dirac

delta distribution with translation property,

(14)

where P signifies the principal value taken at j t�t’ j = 0 and

any pole of I(t).

Applying forward LT to the relations (11)–(13) and using its

linearity, scaling and convolution properties (theorems) yields

(15)

in the closed upper half complex s plane (UHP),

Cþ :¼ fs 2 C : 0 � =mfsgg considering vanishing I(s =s+ j1)

due to finiteness (5) with

the HT (forward, HþC and backward, H�C) with

w ¼ gþ jn;g; n 2 R.

Further, obedience to (11)–(13) may also be verified

proving,

(16)

(17)

and

(18)

the anti relations corresponding to (11)–(13) which by applying

the forward LT read in the UHP respectively

(19)

(20)

and

(21)

for a non-linear, stable & causal system, a linear, unstable &
causal system and a linear, stable & acausal system. Relation

(15) and the anti relations (19)–(21) may readily be derived for

conjugate immittance using parity (7).

Remark, all these (anti) relations are useful to verify the

consistency of IS data modelled in the complex frequency

domain but are inconvenient for IS data measured at real

frequencies constituting the w domain.

Then, under the assumption that the immittance in the w

domain is at least Hölder continuous and also bounded, j I(t) j <
1 to comply with the pendant of convergence (5) at js j!0,

(22)
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when these limits exist and the ROC encloses the imaginary

axis, s1<0< s0, we derive HT relations and anti relations for the

immittance in the w domain using the Sochocki-Plemelj

formulæ.[8,37–40] At �js, js*!w, they relate when existent the

non-tangential boundary values of I(s) and HCfIðsÞgðwÞ from

the UHP interior, Cþ (from above the clockwise by p

2 rotated

complex s plane) and its exterior, CnCþ (from below the

clockwise by p

2 rotated complex s plane) to their w domain

pendants, I(w) and HRfIðwÞgðnÞ by

(23)

Applied to the left hand side (LHS) and the right hand side

(RHS) of (15) taking s,w!�js, �jw & s*, w*!js*, jw* and s, g!
0+ in unison, it yields

(24)

when I(s) is analytic (infinitely complex differentiable) on Cþ

excluding poles and thus, for (Hölder) continuous and finite

(convergent) I(s).

(25)

is the standard form HT on the real line, R and

(26)

is the KK integral transform (KKT)[22–24] on the half line,

Rþ :¼ fx 2 R : x � 0g readily derived from (25) using parity

(27)

which is obtained when applying the jump condition, the first

of the two formulae (23) and its conjugate to respectively the

LHS and RHS of (7).

Moreover, using the well known complex identities,[31]

(28)

and (24) simplifies to the linear dispersion relations,[1–5]

(29)

Here, I(w) = j I(w) jejargI(w) with modulus,

jIðwÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

<e2IðwÞ þ =m2IðwÞ
p

and phase (argument),

qðwÞ ¼arg IðwÞ ¼tan�1 =m
<e fIðwÞg
� �

; �p�Arg I(w)<p, ar-

g I(w) = Arg I(w) + 2pk, k 2 Z, is continuous, irreducible and

rational,

with gain, K¼6 0. Unless zero pole cancellation occurs, zi = pj

(counting multiplicities), finite ln I(w) = Ln j I(w) j + jarg I(w) re-

quires all zeros, zi not to lie in the open UHP,

as such zero imply non-minimum

phase (NMP).[41] Also, bounded Ln j I(w) j requires all poles to lie

in the closed left half of the complex s plane (LHP),

pj 2 Cþ :¼ fs 2 C : <efsg � 0g as any open right half plane

(RHP) pole, pj 2 C� :¼ fs 2 C : 0 < <efsgg or multiple poles

on the imaginary axis, pj 2 C0 :¼ fs 2 C : <efsg ¼ 0g yield j
I(w!1) j!1 by the residue theorem.[31,42]

Since constants vanish under HT (KK) transformation, the

number of all zeros, Nz and poles, Np with the winding number,

k = jNz�Np j by the Principle Argument theorem,[31,42] must be

known to uniquely establish phase from modulus and vice versa

using (29) with Ln j I(w) j and q(w) in place of respectively

<efIðwÞg and =mfIðwÞg.
Note, jk j is at maximum unity for minimum phase (MP)

systems, (2k�1)p�2qMP(w)< (k + 1)p. For NMP systems either

maximum phase, (2k�1)p�qNMP(w)< (k + 1)p (e. g. transmission

line, w varying lump elements) or all-pass, jINMPðwÞj ¼ 1;8w,

all UHP zeros must be known a priori to uniquely establish the

said two quantities using in addition IMP(w) = B(w)INMP(w)[35,41]

with finite Blaschke product,[43,44]

BðwÞ ¼ lPðw� ziÞð1� z�i wÞ�1; jzij6¼0; 8zi 2 Cþ where jl j = 1

and jBðwÞj ¼ 1; 8w.

In the HT relations (24), we take the static (low frequency)

limits, w!0� for the immittance, jwI(w) and the instantaneous

(high frequency) limits, jw j!�1 for the immittance, I(w) to

find using parity (27) and the complex conjugation property

(theorem) of HT[7] along with wdðwÞ ¼ 0;8w and (14),

(30)

where respectively symmetry, Iðw ¼ 0�Þ � Iðw ¼ 0�Þ ¼ 0 and

anti-symmetry, Iðw ¼ 0�Þ þ Iðw ¼ 0�Þ ¼ 0 are implied by a

vanishing difference and sum.

Using (23) separately on the LHS and RHS of the inequalities

(19)–(21) while taking s,g!0+ in unison and use (26) & (28), we

find the KK anti relations,

(31)

(32)
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and

(33)

Then, the implications drawn from these anti relations

when compared to the KK relations (29) for linear, stable and

causal systems to become non-linear, unstable or acausal are as

follows: Non-linearity in IS data is exhibited by the real part of

the immittance to become imaginary and the imaginary part to

become real and negated. Instability in such data is exhibited

by the real part to become imaginary and negated and the

imaginary part to become real. Anti-causality in IS data is

exhibited by the real and imaginary parts to become negated.

Obviously, it implies no change to the magnitude of the

immittance but its phase and loss (dissipation) factor (LF). First,

the phase changes by �p (counterclockwise) when a causal

system becomes acausal while the LF does not change. Second,

the loss factor changes from tan q(w) for a linear and stable

system to �cot q(w) when the system becomes nonlinear or

unstable.

In a companion communication,[45] we use the convolution

property (theorem) of Fourier transform (FT)[30] to numerically

HT (KKT) validate within computed fast FT (FFT) errors

exemplary exact and experimental IS data using these

implications on magnitude, phase and LF.

Another implication is that the RHS of (24) & (29) are

recovered from their respective LHS (and vice versa) using for

single valued (unique) I(w) the inverse HT (KK) transform[7]

showing the intimacy and complementarity of the immittance

and its conjugate in contrast to (31)–(33) and demonstrating

the interdependence of the real and imaginary parts vis-á-vis

their conjugates.

Although the HT (KKT) relations are pure mathematical

constructs, they cumulatively reflect the underlying LTI princi-

ples and the transform properties (theorems).[7,30,36]

They also reveal that the information of the entire positive

spectrum, jw j2[0,1[ is already contained in a single frequency

measurement and that data at additional frequencies may

principally be predicted numerically, for example, to compen-

sate within numerical error for non-uniform spread in measure-

ment bandwidth or modelled data but also when data are

rejected failing KK (HT) validation in violation of one or another

LTI principle[1–5] or to more densely populate the frequency

spectrum and extending it beyond the measured range. In turn,

measured spectra are finite by nature and thus inevitably

approximate the true immittance.

In summary, we derived from first principles of LTI theory

based on the (imaginary) time domain equalities (11)–(13) and

(analytic) integral transform properties (theorems)[7,30,36] linear

HT (24) and KK relations (29)[22–24] in Fourier space as pure

mathematical constructs. For an inertial LTI system, they are

applicable to any complex valued quantity measured in not too

noisy environment and when represented by rational nomina-

tor and denominator functions. These relations display the

interdependence of the real and imaginary immittance parts

and their conjugates of finite, linear, stable and causal systems

whether dynamical or at rest to allow for IS data validation by

FFT[18,20,21] supplemented where necessary by the constrains

(30).

Suggestively, the latter may also viably regularise parameter

identification and estimation for LTI systems including deter-

mining the distribution of their relaxation (retardation) times

and energies.[1–5]

Also, we present anti-relations (31)–(33) able to reveal non-

linear, unstable and acausal frequency data. All these relations

apply likewise under rotation of (complex) frequency by
p

2 � 2pk;k 2 Z (dilation by expðj½p2 � 2pk	Þ) or �w, �n(� s,

�w)!� jw, � jn(� js, � jw).

Besides IS of finite energy systems excited by uncorrelated

inputs, the derived relations applicable to rational immittances

real valued in the (imaginary) time domain with all poles in the

RHP, may find use to check for self-consistent data and to

constrain models in other applications too:[7–17] perhaps not

anywhere near the Planck scales or not close to the boundary of

(flat) spacetime?

Further, caution is to be taken in using these relations to

validate magnitude and phase rather than real and imaginary

parts especially on IS data of active systems with energy inputs

and outputs to ensure uniqueness.[35,41] Similar caution is

advised for immittance compositions involving non-integer

powers.

Remark, in non-electrical IS, the time domain may be

replaced by the domain of wavelength to obtain dispersion

relations in terms of wave number. Similar arguments hold for

space variables, momentum and energy while relativistically,

locality considerations are necessary too besides the Lorentz

transformations.

Finally, we would not without further study be ready to

assume that the self-coherent derivation of the HT (KK) relations

made herein may straightforwardly be extended to, for

example, higher dimensions and hypercomplex domains, (non-

integer) immittance differentiation & integration and large

signal, non-linear IS.
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