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Abstract 

Background:  Acute kidney injury (AKI) is a life-threatening complication characterized by rapid decline in renal func‑
tion, which frequently occurs after transplantation surgery. However, the molecular mechanism underlying the devel‑
opment of post-transplant (post-Tx) AKI still remains unknown. An increasing number of studies have demonstrated 
that certain microRNAs (miRNAs) exert crucial functions in AKI. The present study sought to elucidate the molecular 
mechanisms in post-Tx AKI by constructing a regulatory miRNA–mRNA network.

Results:  Based on two datasets (GSE53771 and GSE53769), three key modules, which contained 55 mRNAs, 76 
mRNAs, and 151 miRNAs, were identified by performing weighted gene co-expression network analysis (WGCNA). 
The miRDIP v4.1 was applied to predict the interactions of key module mRNAs and miRNAs, and the miRNA–mRNA 
pairs with confidence of more than 0.2 were selected to construct a regulatory miRNA–mRNA network by Cytoscape. 
The miRNA–mRNA network consisted of 82 nodes (48 mRNAs and 34 miRNAs) and 125 edges. Two miRNAs (miR-
203a-3p and miR-205-5p) and ERBB4 with higher node degrees compared with other nodes might play a central role 
in post-Tx AKI. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis indicated that this network was mainly involved in kidney-/renal-related functions and PI3K–Akt/HIF-1/Ras/
MAPK signaling pathways.

Conclusion:  We constructed a regulatory miRNA–mRNA network to provide novel insights into post-Tx AKI develop‑
ment, which might help discover new biomarkers or therapeutic drugs for enhancing the ability for early prediction 
and intervention and decreasing mortality rate of AKI after transplantation.
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Background
As a type of clinical critical illness with rapid loss of 
renal function and high mortality, acute kidney injury 
(AKI) commonly occurs in transplant recipients, which 
might result in transplant failure and death [1]. Timely 
diagnosis and treatment are crucial in improving prog-
nosis of patients with AKI but are currently impeded 
by the lack of specific indicators for early prediction, 
graded evaluation, and monitoring of curative effect. 
Since AKI is the most common critical illness in multi-
disciplinary fields, a mounting number of studies about 
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AKI were reported in past decades [2–4]. However, the 
pathogenesis of AKI is still unclear.

A microRNA (miRNA) is a kind of small non-coding 
RNA containing approximately 22 nucleotides, which 
can bind to the 3′-UTR of the target mRNAs at the 
post-transcriptional level to exert various important 
physiological and pathophysiological functions in cells 
[5]. It was reported that miRNAs are capable of regulat-
ing a variety of mammalian mRNAs [6], while a single 
mRNA could be targeted by a large group of miRNAs, 
demonstrating that the roles of miRNA in gene regu-
lation should be interpreted by complex networks [7]. 
In recent years, studies for mRNA–miRNA network 
have increased exponentially, as it is believed to help 
uncover the molecular mechanism of various diseases, 
which included neuroblastoma [8], type 2 diabetes [9], 
and spontaneous intracerebral hemorrhage [10]. Recent 
studies have found that the changes in the expression 
of mRNA and miRNA would affect proliferation and 
apoptosis of renal cells, which are related to the occur-
rence and development of AKI [11, 12]. Nevertheless, 
there are few data published on the potential network 
of mRNA and miRNA in AKI following transplantation.

In the era of precision medicine, high-throughput 
sequencing data combined with effective bioinformat-
ics analysis can identify potential target genes and 
mechanisms that contribute to the progress of AKI. 
The weighted gene co-expression network analysis 
(WGCNA) is a method widely used to find the core 
regulators of diseases, as it has the capacity of cluster-
ing genes with similar expression patterns into modules 
(wherein core regulators are commonly found) and ana-
lyzing the relationship between modules and specific 
traits or phenotypes [13]. In a newly published study of 
cervical intraepithelial neoplasia (CIN), WGCNA was 
performed to identify six disease-associated modules, 
from which 31 candidate hub genes for CIN treatment 
were screened [14]. Bioinformatics analysis not only 
improves the efficiency of research on biological func-
tions, but also provides reliable information for explor-
ing molecular mechanisms [15, 16]. Based on the large 
datasets of both mRNA and miRNA expression profiles 
in the same patient, exploring the regulatory miRNA–
mRNA network could help elucidate the molecular 
mechanisms of the diseases [17, 18].

In this study, the GSE53769 (mRNA) and GSE53771 
(miRNA) expression datasets were, respectively, sub-
jected to WGCNA to identify key modules associated 
with post-Tx AKI. Next, a regulatory miRNA–mRNA 
network was constructed to clarify the epigenetic 
mechanisms underlying the progression of post-Tx 
AKI, thereby providing a possible direction for future 
clinical research.

Results
Identification of key modules related to post‑Tx AKI based 
on GSE53769 dataset
According to Pearson’s correlation and average linkage 
algorithms, 36 samples were clustered and the sample 
dendrogram and trait heatmap are depicted in Fig.  1a; 
we found that GSM1300317 (which belongs to post-Tx 
PBx group) was clustered alone and might be a poten-
tial outlier. Therefore, a t-SNE (t-distributed stochastic 
neighbor embedding) plot was used to make sure that 
this sample will not affect the subsequent analyses. As 
shown in Additional file 2: Figure S2, there was no obvi-
ous outlier after the dimension reduction, and therefore, 
we proceeded with the WGCNA. As shown in Fig.  1b, 
the soft-threshold power β of 9 was selected to guarantee 
the scale-free character of gene co-expression network 
(Fig.  1b). The histogram of network connectivity and 
the corresponding log–log plot are shown in Additional 
file  3: Figure S3A-B; the R2 was 0.89, indicating that an 
approximate scale-free topology was satisfied. Detailed 
information of soft threshold fit indices including k, R2, 
and fitted R2 is provided in Additional file 10: Table S1. 
Then, through the average linkage hierarchical clustering, 
genes with similar expression patterns were divided into 
modules (Fig. 1c). To better distinguish modules with dif-
ferent expression patterns, each module was allocated 
different colors. As shown in Fig.  1d, a module cluster-
ing dendrogram was constructed which generated a total 
of 18 modules. The gray module contained the genes 
that cannot be assigned to other 17 modules. A heat-
map describing the correlation between clinical traits 
and modules is shown in Fig. 1e. Among these modules, 
the black module displayed the highest positive correla-
tion with post-Tx AKI (P = 0.002, R = 0.5), while the tan 
module displayed the strongest negative correlation with 
post-Tx AKI (P = 4e − 05, R =  − 0.63). Thus, these two 
modules were selected as key modules. Assignments of 
mRNAs in black and tan modules  are provided in Addi-
tional file 11: Table S2.

Gene–gene network and functional enrichment analysis 
in the black and tan modules
As shown in Fig. 2a, the correlation coefficient of mod-
ule membership (MM) vs. gene significance (GS) in the 
black module was 0.57 with P = 5.5e − 38. A total of 14 
hub genes were identified in the black module, which 
included CLIC5, PCOLCE2, NDNF, ESRP1, ENPEP, 
RASAL2, SLIT2, PSAT1, NOX4, GDA, CNTN3, 
CFAPP221, CA2, and ZNF311 (Fig.  2b). Then, the GO 
and KEGG pathway enrichment analysis was performed 
on the genes in the black module. As shown in Fig.  2c, 
we found the most enriched GO terms in the category of 
biological process (GO-BP) were kidney development, 
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renal system development, and regulation of ERK1/2 cas-
cade. The most enriched GO terms in the other catego-
ries (GO-CC and GO-MF) were the apical part of cell and 
cell adhesion molecule binding (Fig.  2d, e). For KEGG 
pathway analysis, these genes were mainly enriched in 
MAPK signaling and Raq1 signaling pathways (Fig. 2f ).

The genes of the tan module underwent the same anal-
ysis. The scatter plots of MM versus GS in the tan mod-
ule (cor = 0.6, P = 4.2e − 18) are shown in Fig.  3a. The 
gene–gene network centered on hub genes in this mod-
ule is depicted in Fig. 3b. As we can see, the tan module 
contained 12 hub genes including DMXL1, MAF, GPHN, 

Fig. 1  Weighted gene co-expression network analysis (WGCNA) based on GSE53769 dataset. a Sample clustering and trait heatmap in GSE53769. 
b Determination of soft-thresholding power (β) by analyzing (left) scale-free fit index and (right) mean connectivity. The β was set as 9 for 
constructing a scale-free co-expression network. c Dendrogram of consensus module eigengenes. d Hierarchical clustering dendrogram and a 
heatmap of the adjacencies in the eigengene network. e Heatmap of the correlation between module eigengenes and different clinical traits
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MYOF, CDK14, and QDPR. The functional annotation of 
genes in the tan module is depicted in Fig. 3c–f, indicat-
ing that the black module genes were primarily enriched 

in functions of coenzyme metabolic process, extrinsic 
component of plasma membrane, and coenzyme binding, 
as well as pathways of folate (FA) biosynthesis. Detailed 

Fig. 2  Analysis of the black module positively associated with post-Tx AKI. a Scatter plot of mRNAs in the black module. b The connectional 
network of the black module mRNAs and 12 hub mRNAs was identified as red. Functional annotation of the black module mRNAs, which included 
the analysis of c GO-BP, d GO-CC, e GO-MF, and f KEGG pathway. GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular 
function; and KEGG, Kyoto Encyclopedia of Genes and Genomes.
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information of differentially expressed genes (defined 
by log2 fold change > 0.1 and p-value < 0.05 when com-
paring their expression in post-Tx AKI group to that in 

zero-hour AKI group) in black module and tan module 
is provided in Additional file 4: Figure S4 and Additional 
file 5: Figure S5, respectively.

Fig. 3  Analysis of the tan module negatively associated with post-Tx AKI. a Scatter plot of mRNAs in the tan module. b The connectional network 
of the tan module mRNAs and 12 hub mRNAs was identified as red. Functional annotation of the tan module mRNAs, which contained analysis of 
c GO-BP, d GO-CC, e GO-MF, and f KEGG pathway. GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function and 
KEGG, Kyoto Encyclopedia of Genes and Genomes
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Identification of key modules related to post‑Tx AKI based 
on GSE53771 dataset
In order to explore the roles of miRNA in post-Tx AKI, 
we also conducted WGCNA for miRNAs based on 
GSE53771 dataset. The construction steps of co-expres-
sion network for miRNAs were similar to those for 
mRNAs. The sample dendrogram and trait heatmap are 
shown in Fig. 4a. To ensure a scale-free network, the soft-
threshold power β was set as 6 (Fig. 4b). The histogram 
of network connectivity and the corresponding log–log 
plot are shown in Additional file 3: Figure S3C-D; the R2 
was 0.98, indicating that an approximate scale-free topol-
ogy was satisfied. Detailed information of soft-thresh-
old fit indices including k, R2, and fitted R2 is provided 
in Additional file  10: Table  S1. A total of three miRNA 
modules were identified, which were independent from 
each other (Fig.  4c, d). Then, the correlation of miRNA 
modules with clinical traits was analyzed, and the result 
showed that the blue miRNA module was the only mod-
ule significantly correlated with post-Tx AKI (P = 0.003, 
R =  − 0.36)  (Fig. 4e). Therefore, the blue miRNA module 

which consisted of 76 miRNAs was chosen as the key 
miRNA module for subsequent analysis. Detailed infor-
mation of these miRNAs is provided in Additional file 11: 
Table S2.

MiRNA–miRNA network and functional enrichment 
analysis in the blue miRNA module
As shown in Fig.  5a, the correlation coefficient of MM 
versus GS in the blue miRNA module was 0.32 with 
P = 5.8e − 5. The interaction network of module miRNAs 
showed that 17 hub miRNAs were identified in the blue 
miRNA module (Fig. 5b). To further explore the biologi-
cal roles of miRNAs in this module, the target genes of 
these miRNAs were used to perform functional enrich-
ment analysis. Results of function annotation are shown 
in Fig. 5c–e, suggesting that the miRNAs of blue miRNA 
module were significantly associated with the GO terms 
of small GTPase mediated transduction, gland develop-
ment, transcription coregulator activity, and adherens 
junction, as well as the KEGG items of MAPK signaling 
pathway and human T-cell leukemia virus 1 infections. 

Fig. 4  Weighted gene co-expression network analysis (WGCNA) based on GSE53771 dataset. a Sample clustering and trait heatmap in GSE53771. 
b Determination of soft-thresholding power (β) by analyzing (left) scale-free fit index and (right) mean connectivity. The β was set as 6 for 
constructing a scale-free co-expression network. c Dendrogram of consensus module eigengenes. d Hierarchical clustering dendrogram and a 
heatmap of the adjacencies in the eigengene network. e Heatmap of the correlation between module eigengenes and different clinical traits
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Detailed information of differentially expressed miRNAs 
(defined by log2 fold change > 0.1 and p-value < 0.05 when 
comparing their expression in post-Tx AKI group to that 
in zero-hour AKI group) in blue module is provided in 
Additional file 6: Figure S6.

Construction of regulatory miRNA–mRNA network 
in post‑Tx AKI
The genes and miRNAs that, respectively, formed the key 
modules and key miRNA module were used to generate 

the regulatory miRNA–mRNA network. A total of 1048 
predicted miRNA–mRNA pairs in high confidence class 
were obtained from miRDIP v4.1 and used to construct 
a network by Cytoscape (Additional file  7: Figure S7). 
The functional annotation of mRNAs in this network is 
depicted in Additional file  8: Figure S8, which indicates 
that these mRNAs were mainly involved in cell–sub-
strate adhesion, urogenital system development, hepa-
rin binding, collagen binding, AGE–RAGE signaling 
pathway in diabetic complications, as well as PI3K–Akt 

Fig. 5  Analysis of the blue miRNA module which negatively associated with post-Tx AKI. a Scatter plot of miRNAs in the blue miRNA module. b The 
connectional network of the blue module miRNAs and 17 hub miRNAs was identified as red. Functional annotation of the targets of blue module 
miRNAs, which contained analysis of c GO-BP, d GO-CC, e GO-MF, and f KEGG pathway. The targets of blue module miRNAs were predicted by 
“miRNAtap” and “multiMiR” R packages. GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function; and KEGG, Kyoto 
Encyclopedia of Genes and Genomes
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signaling pathway. Afterward, to obtain the network that 
may exert key roles in the pathogenesis of post-Tx AKI, 
we selected the miRNA–mRNA pairs with confidence of 
more than 0.2 to generate a regulatory miRNA–mRNA 
network (Fig.  6). The regulatory miRNA–mRNA net-
work was comprised of 82 nodes (48 mRNAs and 34 
miRNAs) and 125 edges. After analyzing the network, 
we found miR-203a-3p, miR-205-5p, and ERBB4 with 
higher node degrees compared with other nodes, and the 
quantification details are provided in Additional file  12: 
Table  S3. Then, functional analysis revealed that the 

total of 48 mRNAs were mainly enriched in GO terms 
of epithelial tube morphogenesis, nephron development, 
urogenital system development, and transmembrane 
receptor protein kinase (Fig.  7a–c). There were no sig-
nificantly enriched KEGG pathways since their p-values 
were greater than 0.05 (Fig. 7d). For cross-validation, we 
compared our current results retrieved from miRDIP 
database to that from miRNet database. In total, 75,699 
miRNA–mRNA pairs were identified by miRNet, and 
there was an intersection of 117 miRNA–mRNA pairs 
between the results of miRNet database and miRDIP 

Fig. 6  The regulatory miRNA–mRNA network associated with post-Tx AKI (interaction confidence ≥ 0.2). There are 48 mRNAs nodes, 34 miRNAs 
nodes, and 125 edges in the network. Red ellipses represent mRNAs; yellow round rectangles represent miRNAs. The thickness of edge indicates the 
strength of correlation between mRNA and miRNA
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database; the corresponding regulatory network is visu-
alized in Additional file  9: Figure S9B. The enrichment 
analyses of the 117 miRNA–mRNA pairs showed that 
they were predominantly involved in negative regulation 
of cellular component organization, response to organic 
substance in GO-BP category; eukaryotic translation ini-
tiation factor 4F complex, and nuclear body in GO-CC 
category; SNAP receptor activity, protein complex bind-
ing, protein tyrosine phosphatase activity under GO-MF 
category, as well as KEGG pathways associated with renal 
cell carcinoma signaling, prolactin signaling and NFR2-
mediated oxidative stress response. Since the above func-
tional enrichment results were based on miRNA–mRNA 
pairs predicted by both miRNet and miRDIP databases, 
they might be more representative for the epigenetic 
mechanisms underlying the post-Tx AKI.

Discussion
Post-Tx AKI is a common complication after transplan-
tation surgery, which is characterized by rapid decline 
in renal function and high mortality [19]. Grasping the 
best time for early diagnosis and intervention of post-Tx 
AKI is challenging due to the lack of specific indicators 
for early prediction, grading assessment, and monitor-
ing of efficacy. To overcome such issues, exploring the 
pathomechanisms and potential biomarkers of post-Tx 

AKI is crucial. In 2014, Wilflingseder et  al. conducted 
miRNA and mRNA microarray analysis based on renal 
transplant biopsy specimen with AKI and further iden-
tified an AKI-specific molecular signature using differ-
ential gene expression analysis (DEA) [20]. However, 
DEA can easily exclude some important genes whose 
expression level changes little, but play a crucial role in 
the diseases. Besides, it is difficult to confirm whether 
the differentially expressed mRNAs and miRNA in the 
post-Tx biopsy between control and AKI were related to 
post-Tx AKI due to the fact that Tx also could lead to the 
abnormal expression of some genes. Increasing studies 
demonstrated that the initiation and progression of all 
diseases could not be regulated by a few genes, rather a 
network of multiple RNAs [21, 22]. Thus, constructing an 
RNA regulatory network might be a promising strategy 
for understanding disease development and establishing 
new therapy [23]. As a robust bioinformatics approach, 
WGCNA has the capacity to enhance simple correlation 
networks by quantifying the correlations between indi-
vidual pairs of genes, as well as the extent to which these 
genes share the same neighbors [24]. WGCNA includes 
not only differentially expressed genes, but also genes 
that are not significantly differentially expressed, but still 
a key mediator of certain clinical traits. In recent years, 
WGCNA has been applied in a diverse range of human 

Fig. 7  Functional enrichment analysis of the regulatory miRNA–mRNA network. a GO-BP, b GO-CC, c GO-MF, and d KEGG pathway. GO, Gene 
Ontology; BP, biological process; CC, cellular component; MF, molecular function; and KEGG, Kyoto Encyclopedia of Genes and Genomes



Page 10 of 14Guo et al. Human Genomics           (2021) 15:69 

disease researches to screen biomarkers and clarify 
molecular mechanisms underlying disease development 
[25, 26].

In the current study, based on the mRNA and miRNA 
microarray datasets, three modules which were sig-
nificantly correlated with AKI following transplantation 
were identified by using WGCNA. The tan module con-
taining 55 mRNAs showed a significantly negative cor-
relation with post-Tx AKI. Multiple studies reported that 
high concentration of FA could produce acute tubular 
necrosis as the generation of FA crystals in renal tubules, 
leading to renal failure [27, 28]. The mRNAs in the tan 
module were mainly involved in the pathway of FA bio-
synthesis, suggesting that this pathway accounts for the 
development of post-Tx AKI. Next, as the module most 
positively related to post-Tx AKI, the black module was 
comprised of 80 mRNAs. Notably, the most enriched 
items of the black module mRNAs in GO analysis were 
mainly related to the renal functions such as kidney 
development and nephron development, confirming the 
high correlation of this module with post-Tx AKI. A pre-
vious study indicated that extracellular signal-regulated 
kinase (ERK) cascade plays a fundamental role in the acti-
vation of compensatory repair mechanisms during kid-
ney injury [29]. Our study showed that the black module 
mRNAs were also significantly enriched in the functions 
of ERK1/2 cascade. Besides, results of KEGG pathway 
analysis indicated that these mRNAs were closely related 
to MAPK signaling pathway and Ras signaling pathway. 
It is largely documented that the MAPK pathway exerts a 
key role in AKI by regulating renal inflammation, tubular 
injury, and cell death [30–32]. It is universally accepted 
that the MAPK/ERK pathway is downstream signal mol-
ecule in the Ras signaling pathway [33]. The above results 
revealed that the abnormal expression of some genes 
results in AKI by regulating FA biosynthesis, MAPK 
signaling pathway, and Ras signaling pathway to affect 
renal development after kidney transplantation.

Increasing experimental evidence has confirmed that 
certain miRNAs have critical roles in the detection, pro-
gression, and intervention of AKI [34]. Amrouche et  al. 
demonstrated that miR-146a has an important role in the 
renal tubular response, of which upregulation could limit 
the development of AKI [35]. A previous study proved 
that urinary miR-21 could be used as a biomarker for 
predicting AKI development after cardiac surgery [36]. 
As the only miRNA module significantly associated with 
post-Tx AKI in this study, the blue miRNA module con-
taining 151 miRNAs was negatively correlated with post-
Tx AKI. It has been widely acknowledged that miRNAs 
can regulate the expression of their downstream target 
genes to exert biological functions. Accordingly, we pre-
dicted the targets of these miRNAs using “miRNAtap” 

and “multiMiR” to perform functional annotation. It 
should be noted that the targets of key module miRNAs 
were also mainly enriched in MAPK signaling pathway, 
which further confirmed the crucial role of MAPK path-
way in the process of post-Tx AKI.

Moreover, it is necessary to identify regulatory 
miRNA–mRNA network that is potentially involved in 
the pathogenesis of post-Tx AKI as neither genes nor 
miRNAs can independently regulate the development of 
post-Tx AKI. The majority of the previous studies have 
solely focused on miRNAs or genes to clarify the mech-
anism of AKI. By using bioinformatics tools, we finally 
established a regulatory miRNA–mRNA network of post-
Tx AKI, which was comprised of 48 mRNAs and 34 miR-
NAs. Among these 82 nodes, miR-203a-3p, miR-205-5p, 
and ERBB4 showed high degrees and might be central 
nodes in the network. The effects of miR-205-5p in renal 
diseases have been investigated previously. Schena et al. 
reported that the expression level of miR-205-5p was 
significantly and positively correlated with the severity 
of renal cancer and hypertensive nephrosclerosis [37]. 
An experimental study conducted by Sessa and his col-
leagues proposed that miR-205-5p could be a molecu-
lar biomarker of renal damage [38]. Few studies have 
investigated the roles of miR-203a-3p and ERBB4 in AKI 
development. It is documented that ERBB4 could allevi-
ate the oxidative insults of aged mesenchymal stem cells 
by reducing reactive oxygen species (ROS) levels [39]. It 
is well known that all transplanted organs will undergo a 
certain degree of ischemia–reperfusion injury mediated 
by high level of ROS after transplantation and potentially 
develop into AKI. We speculated that ERBB4 also exerts 
the function of regulating ROS levels in the develop-
ment of post-Tx AKI. The GO enrichment analysis of the 
mRNAs in this network showed that these mRNAs were 
enriched in several functions relevant to the renal devel-
opment. Furthermore, KEGG enrichment analysis indi-
cated that this network was mainly involved in a range of 
pathways that have been well studied, such as PI3K–Akt 
signaling pathway, HIF-1 signaling pathway, Ras signal-
ing pathway, and MAPK signaling pathway. Most of these 
pathways have been proven of crucial roles in AKI [30, 
40, 41]. These results proved that our analysis was prop-
erly conducted.

Taken together, our study, for the first time, utilized 
WGCNA combined with miRDIP v4.1 analysis to com-
prehensively identify the most likely interactions and 
construct a regulatory miRNA–mRNA network associ-
ated with transplantation response in AKI, which pro-
vided a preliminary framework and some novel insight 
for elucidating molecular mechanism of the develop-
ment of post-Tx AKI. Nevertheless, some limitations of 
this study should be mentioned. First, only eight post-Tx 
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AKI biopsy samples were enrolled in the present study, 
which were not sufficient to draw entirely credible con-
clusions. Second, the regulatory miRNA–mRNA net-
work requires further studies in clinical and molecular 
biology experiments for validation. Since it is hard to find 
qualified data, other types of RNAs, such as long non-
coding RNAs (lncRNAs) and circular RNAs (circRNAs), 
were not included, which might be a disadvantage in the 
comprehensive clarification of the mechanism underly-
ing post-Tx AKI development.

Conclusions
We first successfully constructed a regulatory miRNA–
mRNA network associated with post-Tx AKI by using 
bioinformatics analysis. The results indicated that two 
miRNAs (miR-203a-3p and miR-205-5p) and ERBB4 
might play a central role in post-Tx AKI, and the biologi-
cal functions of the regulatory miRNA–mRNA network 
were enriched in kidney-/renal-related functions and 
PI3K–Akt/HIF-1/Ras/MAPK signaling pathways. This 
study provides a comprehensive perspective of regulatory 
networks to increase the understanding of the molecular 
mechanism in post-Tx AKI. We hope that the current 
study will be beneficial for discovering new biomarkers 
or therapeutic drugs for enhancing the ability for early 
prediction and intervention and decreasing mortality 
rate of AKI after transplantation.

Methods
Study design and data collection
The overall design of this study is shown in Additional 
file 1: Figure S1. All eligible microarray data were down-
loaded from the Gene Expression Omnibus (GEO) data-
base (http://​www.​ncbi.​nlm.​nih.​gov/​geo/). GSE53769 
dataset is an mRNA expression dataset which was per-
formed using Affymetrix GeneChip® Human Gene 2.0 
ST Array; GSE53771 dataset is a miRNA expression 
dataset which was analyzed by Affymetrix GeneChip® 
miRNA 3.0 Array. These two datasets both consisted of 
18 zero-hour and 18 post-transplant (Tx) biopsy sam-
ples from 18 kidney allograft recipients (eight with acute 
tubular necrosis without rejection defined as AKI and 
ten protocol biopsies without pathology (PBx) defined 
as controls) and were submitted by Wilflingseder and 
co-workers [20]. These samples were divided into four 
groups, namely zero-hour AKI, zero-hour PBx, post-Tx 
AKI, and post-Tx PBx. The two datasets were, respec-
tively, used to construct the co-expression network, 
whereby key mRNA/miRNA modules associated with 
post-Tx AKI could be identified, allowing the construc-
tion of a miRNA–mRNA regulatory network driving the 
progression of post-Tx AKI.

Construction of the co‑expression networks
WGCNA is a widely used method to construct co-
expression networks that allow the discovery of gene 
modules, where coordinated expression patterns of the 
intra-module genes could be identified and related to 
external clinical phenotypes. In this way, the search for 
core disease regulators could be narrowed down and 
confined to the clinically significant modules [13]. Given 
the foregoing, WGCNA has greatly improved the effi-
cacy of data mining; therefore, in this study, the R pack-
age “WGCNA” was utilized to construct co-expression 
networks based on the expression profiles of mRNAs and 
miRNAs, respectively. An optimal soft threshold power 
β, the minimum power parameter that satisfied the scale-
free topology (as manifested by scale-free topology fit 
index > 0.85), was first determined. Next, a scale-free co-
expression network was constructed based on the adja-
cency matrix. The adjacency matrix was obtained using 
the formula: Adjacencyk ,j =

∣

∣cor
(

k , j
)∣

∣

β , where k and 
j correspond to two arbitrary genes and the β is used to 
emphasize the strong similarity between k and j, which 
ensured that gene pairs with low similarity will be omit-
ted during module assignment. Then, the adjacency 
matrix was converted into a topological overlap matrix 
(TOM). By using a TOM-based dissimilarity measure, 
the gene tree dendrogram was generated by average 
linkage hierarchical clustering, and genes with similar 
expression pattern were clustered into different modules 
(the minimum module size was set to 30).

Identification of the significant correlation modules
Module eigengenes (MEs), which summarize gene 
expression pattern as a single characteristic expres-
sion profile within a given module, were used to evalu-
ate the potential correlation of genes with different traits 
for determining the significance of each module. Gene 
significance (GS) represented the correlation between 
genes and different clinical traits, and the average GS 
of all genes in a module was defined as module signifi-
cance (MS), expressed as: MS =

1
n

∑n
i=1GSi (n = number 

of genes within a module). After calculating the Pearson 
correlation between MEs and clinical traits, the modules 
with the highest positive or lowest negative R (correlation 
coefficient) with post-Tx AKI with correlation p-values 
cutoff of 0.05 were defined as key modules. We followed 
the standard workflow recommended by the authors of 
WGCNA [13], and p-value correction for multiple test-
ing was not performed since the Pearson coefficient 
R and correlation p-value are sufficient for significant 
module selection [13]. The intensity of the color in the 
heatmap indicated the strength of correlation. To bet-
ter study a key module, the correlation of module genes 

http://www.ncbi.nlm.nih.gov/geo/


Page 12 of 14Guo et al. Human Genomics           (2021) 15:69 

was analyzed and the gene–gene interaction network was 
visualized by the network analyzer Cytoscape v3.7.2 [42]. 
In this network, the genes with a high degree, which con-
tained highly interconnected nodes in the module, were 
considered as hub genes. These hub genes were detected 
by performing the analysis with the MCODE plugin in 
Cytoscape.

Regulatory miRNA–mRNA network construction
By using miRDIP v4.1 online tool (http://​ophid.​utoro​nto.​
ca/​mirDIP/) [43], the interactions between the module 
genes and miRNAs were obtained. Then, the miRNA–
mRNA pairs with a high confidence of prediction were 
chosen for the construction of a miRNA–mRNA regu-
latory network by using Cytoscape v3.7.2. To cross-val-
idate our results, the miRNA–mRNA interactions were 
also retrieved from miRNet (https://​www.​mirnet.​ca/) 
database.

Functional enrichment analysis
To further understand the potential functions of the iden-
tified genes, the enrichment analysis of Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis were performed by using R 
package “clusterProfiler” [44]; in some cases (Additional 
file 4: S4A, Additional file 5: S5A, Additional file 6: S6A 
and Additional file 9: S9C), the function TCGAanalyze_
EAcomplete in the TCGAbiolinks library was run. In 
this study, the results of GO terms and KEGG pathways 
with the Benjamini–Hochberg (BH) adjusted P-values 
of < 0.05 were considered to be significantly enriched.
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