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Background. Triple-negative breast cancer (TNBC) is usually poorly differentiated, highly invasive, susceptible to distant metastasis,
and less responsive to endocrine and targeted therapy. However, immunotherapy is a promising treatment for TNBC patients
recently. Methods. The prognostic value of immune-related genes (IRGs) was explored by using RNA sequencing and
microarray data of 123 and 107 TNBC patients from TCGA and GEO databases, respectively. Results. In TCGA database, GO
and KEGG pathway analysis of 119 differential IRGs indicated that they actively participate in the interaction of cytokines and
receptors. A nomogram model constructed by the prognosis-related CCL25, IL29, TDGF3, GPR44, and GREM2 in the IRGs
could personalize and visualize the 1-, 2-, 3-, 4-, and 5-year overall survival (OS) of TNBC patients. Moreover, TNBC patients
could be defined as low-risk (risk score < 194) or high-risk (risk score ≥ 194) cohorts based on the risk score derived from the
nomogram model. The results could be validated by the GSE58812 dataset. Furthermore, the risk score was an independent risk
factor for TNBC patients (HR = 1:019, 95% CI 1.012-1.027, p < 0:001) and was positively related to stage (p = 0:017).
Interestingly, the risk score could reflect the infiltration of B cells, CD4+ T cells, CD8+ T cells, dendritic cells, and neutrophils.
Conclusion. These findings provided a reference for personalized OS prediction in TNBC patients and might be potential
immune biomarkers for designing novel therapy.

1. Introduction

Breast cancer has high incidence in women. Different types
of breast cancer have obvious differences in morphology,
molecular pathological characteristics, clinical features, and
responses to tumor treatment [1]. As a special subtype of
breast cancer, triple-negative breast cancer (TNBC) lacks
the expression of estrogen receptor (ER), progesterone recep-
tor (PR), and epidermal growth factor receptor 2 (HER2),
which severely limits the clinical usage of endocrine and
targeted therapy.

TNBC is usually poorly differentiated, highly invasive,
susceptible to distant metastasis, and less responsive to treat-

ment than other hormone receptor-positive breast cancers,
so it has a higher risk of early relapse [2]. However, due to
its unstable genome and high mutation rate, TNBC is highly
immunogenic [3]. At present, some progress has been made
in immunotherapy for TNBC. Immunotherapy stimulates
the immune response of TNBC patients through active
immunity, such as cancer vaccines, or passive immunity,
such as adoptive T cell therapy, tumor-specific antibodies,
and immune checkpoint inhibitors [4]. A study has fused
TNBC cells with peripheral blood monocyte-derived den-
dritic cells (DCs) to generate DC vaccines, which stimulate
the proliferation of T lymphocytes and enhance the cytotoxic
effect on breast cancer cells [5]. Emerging immune
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checkpoint inhibitors have received increasing attention in
numerous TNBC study. TNBC patients with higher PD-L1
expression levels and more tumor-infiltrating lymphocytes
(TILs) have higher immunogenicity, which plays a crucial
part in regulating the immune response [6]. FDA has
approved PD-L1 blockade combined with chemotherapy
for patients with PD-L1-positive TNBC [7].

Increasing evidence suggests that immune gene expres-
sion and TIL may be prognostic for TNBC. Rody et al. [8]
analyzed the RNA sequencing data of 579 TNBC patients
and find that the expression of immune cell metagenes is
closely related to prognosis. A study found that TNBC
patients with higher TILs have better overall survival (OS)
[9]. Yeong et al. [10] found that high PD-1+ cell infiltration
significantly improved disease-free survival in TNBC
patients. Similarly, PD-1, IFNG, and IFN signaling genes
are positively correlated with the improvement of clinical
outcomes of TNBC patients. These studies suggest that
immune genes and TILs play an important role in TNBC.
However, there are currently no immune-related genes that
individually and visually predict OS and TILs for patients
with TNBC.

In this study, we analyzed the RNA-seq and microarray
data in The Cancer Genome Atlas (TCGA) and Gene Expres-
sion Omnibus (GEO) databases to comprehensively evaluate
immune-related genes (IRGs) expression levels and predict
prognosis and immune cell infiltration in TNBC patients.
The cell functions involved in IRGs were also explored. These
explorations are especially important for the individual
assessment of the prognosis of TNBC patients and the
discovery of targeted immunization methods.

2. Materials and Methods

2.1. Acquisition of Datasets and Patients’ Information. UCSC
Xena (https://xenabrowser.net/datapages/) [11] was used to
download the RNA-seq data of breast cancer in the form of
log2 (norm count + 1) from TCGA database (http://www
.tcga.org/), including 123 newly diagnosed PR-, ER-, and
Her2-negative breast cancers and 13 normal tissues adjacent
to tumor. At the same time, the clinical information of
patients was obtained, involving age, gender, tumor invasion
depth (T), lymph node metastasis (N), distant metastasis
(M), TNM stage, survival time, and status. The 123 TNBC
patients in TCGA database served as a training cohort, and
the clinical characteristics are listed in Table S1. In
addition, a microarray dataset and clinical characteristics
from 107 TNBC cases obtained from the GSE58812 dataset
[12] in the GEO database were used as a validation cohort.

2.2. Differential Analysis of Genes. The limma package in R
(version 3.6.1) was used to select differential genes between
123 cases of primary TNBC and 13 normal tissues adjacent
to tumor. A total of 20,530 genes were included into the dif-
ferential analysis, setting the adjusted p value < 0.05, log2 ∣
fold change ∣ >1, and expression level > 0:2. And a total of
1076 genes with significant differences were finally deter-
mined. We focused on the role of IRGs in TNBC. The Imm-
Port database (https://www.immport.org/) [13] provides and

updates 2498 IRGs for cancer research, all of which have been
identified as being involved in the biological processes of
immunity. Therefore, we downloaded the list of IRGs from
the ImmPort database. Finally, 4.8% of IRGs were identified
as those (a total of 119) differentially expressed genes and
were included in subsequent analysis. Functional enrichment
analysis of KEGG (Kyoto Encyclopedia of Genes and
Genomes) and GO (Gene Ontology) was performed on 119
IRGs through the Database for Annotation, Visualization
and Integrated Discovery (DAVID, https://david.ncifcrf
.gov/) to explore potential molecular mechanisms.

2.3. Construction and Validation of Nomogram Model. The
foreign and rms packages in R (version 3.6.1) were applied
for establishing a nomogram model to analyze the role of
IRGs in TNBC patients, which was described in detail in
our previous study [14]. First, according to the nomogram,
a point is given for each patient’s IRG expression level. Then,
a total risk score is obtained by gathering the given points of
all the IRGs of the patients, which can predict OS. The con-
cordance index (C-index) of 1000-sample bootstrap and the
receiver operating characteristic (ROC) curve were used to
evaluate the prognostic prediction ability of the nomogram
model, and the judgment criterion was Area Under the Curve
(AUC) or C‐index > 0:5. Model performance was assessed
through both the internal and external calibration curve of
1000-sample bootstrap.

2.4. The Clinical Value of Risk Score. The risk score was
divided into high or low based on the median value. Risk dis-
tribution, survival status, and IRG expression distribution of
high- and low-risk TNBC were plotted by the heat map pack-
age in R (version 3.6.1). Survival and survminer packages
were used to draw survival curves. We also explored the pre-
dictive value of risk score in TNBC for immune cell infiltra-
tion. The TIMER database (http://cistrome.org/TIMER/)
[15] analyzed the TILs of 32 cancers in TCGA. Therefore,
we obtained TIL abundances in TNBC patients from the
TIMER and evaluated the correlation between the risk score
and TILs.

2.5. Statistical Analysis. All statistical analysis was conducted
in R (version 3.6.1, https://www.r-project.org/). Uni- and
multivariate Cox regression analyses were used to screen
prognostic variables. A log-rank test was used to compare
the difference between survival curves. Two sets of quantita-
tive data were compared by the Wilcoxon test. The correla-
tion between the two sets of quantitative data was expressed
by Spearman coefficient. A two-tailed p value < 0.05 was
considered statistically significant.

3. Results

3.1. Identification of Differential IRGs. Differential analysis
found that a total of 1076 genes were differentially expressed
in TNBC, including 323 high expression and 753 low expres-
sion genes (Figure 1). Among them, a total of 119 differential
IRGs, including 36 high expression and 83 low expression
IRGs, were found. Their positions on the chromosome are
shown in Figure 2. The KEGG showed that the enrichment
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of differentially expressed IRGs was primarily in the “neuro-
active ligand-receptor interaction” and “cytokine-cytokine
receptor interaction” (Figure 3(a)). Biological processes,
cellular components, and molecular functions are primarily
enriched in “cell-cell signaling,” “extracellular region,” and
“growth factor activity,” respectively (Figures 3(b)–3(d)).
These findings suggested that cytokines and receptor
pathways were most frequently implicated.

3.2. Identification of Prognosis-Related IRGs. Because prog-
nostic molecular biomarkers are important for guiding treat-
ment and disease monitoring, we focus on the impact of IRGs
on the OS in TNBC. Prognostic analysis revealed that a total
of 6 IRGs had significant impact on the OS of TNBC patients.
Among them, high expression of C-C motif chemokine
ligand 25 (CCL25), interleukin 29 (IL29), teratocarcinoma-
derived growth factor 3 (TDGF3), and killer cell immuno-
globulin like receptor, two Ig domains and long cytoplasmic
tail 4 (KIR2DL4) predicted a favorable OS in TNBC patients
(Figures 4(a), 4(d), 4(e), and 4(f)). Conversely, high expres-
sion of G protein-coupled receptor 44 (GPR44) and gremlin

2, DAN family BMP antagonist (GREM2) predicted a poor
OS in TNBC patients (Figures 4(b) and 4(c)).

3.3. Establishment of Nomogram Model. CCL25, IL29,
TDGF3, KIR2DL4, GPR44, and GREM2 obtained from the
analysis of TCGA database were included into the establish-
ment of a nomogram model. According to the expression
levels of these IRGs, we got the total risk score of each indi-
vidual, which could predict 1-, 2-, 3-, 4-, and 5-year OS
(Figure S1). However, we could observe from Table S2 that
the upregulated KIR2DL4 accounted for only 5 risk scores
in the model. Compared with the risk scores of the other
five IRGs, KIR2DL4 had a lower contribution to predicting
the OS of TNBC patients, so we excluded KIR2DL4 in the
establishment of the nomogram model. Finally, five
prognosis-related IRGs including CCL25, IL29, TDGF3,
GPR44, and GREM2 were included into the establishment
of the nomogram model (Figure 5). To assess the predictive
effect of the nomogram model on the OS of TNBC patients,
we used the AUC of the ROC curve and the C-index of
1000-sample bootstrap for evaluation. When KIR2DL4 was

Stage

Stage
I/II
III/IV

N
N0
N1-3

M
M0
M1

T
T1-2
T3-4

Age (years)
< 60

Gender
Female

Group
Normal
Tumor

Significant

Significant Down
Up

≥ 60

Unknown

X/Unknown

8

4

0

–4

–8

N
M
T
Age
Gender
Group

Figure 1: The heat map shows the differential genes between 123 cases of primary TNBC and 13 normal tissues adjacent to tumor. The color
scale from green to red represented the difference in gene expression from low to high.
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not removed, the AUC was 0.839 and C-index was 0.878
(Figure S2). When KIR2DL4 was excluded, AUC was 0.852
and C-index was 0.879 (Figure 6(a)). Further external
validation of the nomogram model with the GSE58812
dataset in the GEO database showed that the AUC of the
ROC curve was 0.619 and the C-index is 0.615
(Figure 6(b)). We also used the calibration curves to further
validate the nomogram model. The calibration curves for
the training group showed a good consistency between the
predicted and actual 1-, 2-, 3-, 4-, and 5-year OS of the

nomogram model (Figure 7(a)). At the same time, the
calibration curves in the validation group were also well
identified (Figure 7(b)). Through internal and external
verification, it was proved that the nomogram model in this
study could conduct relatively accurate prediction of the OS
of TNBC patients.

3.4. Risk Stratification. In order to analyze the clinical value
of the risk score, we compare the risk scores of different clin-
ical information and found that compared with stage I/II

Figure 2: Differentially immune-related genes (IRGs) and their chromosomal locations. The number in the outermost circle is the name of
the chromosome. The second circle is the positions of the genes in the chromosome. The black and white bars represent the chromosome
bands, and the red bars represent the centromeres. The third circle is the gene names. The fourth circle is the average expression levels of
the genes, and the bars from low to high represent the gene expression from low to high. The fifth circle is the fold change of genes. Blue
represents fold change < −2, while red represents fold change > 2. In the center of the circle diagram is the positions of genes that cannot
be fully displayed on the second circle.
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TNBC patients with stage III/IV had higher risk scores
(p = 0:017), and there was no significant difference between
different ages, T, N, and M (p > 0:05) (Figure 8). After uni-
and multivariate Cox regression analyses, we found that the
risk score was an independent risk factor (HR = 1:019, 95%
CI 1.012-1.027, p < 0:001, Table 1). The risk score was highly

correlated with TNM stage, indicating that risk score could
be used to construct risk stratification. TNBC patients can
be defined as low-risk (risk score < 194) or high-risk
(risk score ≥ 194) cohort based on the risk score
(Figures 9(a)–9(d), left panel). As shown in Figure 9(d), left
panel, the survival curve of low- and high-risk TNBC patients
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Figure 3: Functional enrichment of differential IRGs, and the top 15 of items are displayed. (a) KEGG pathway analysis; (b) biological
process; (c) cellular component; (d) molecular function. The bubbles in the figures from small to large indicate that the number of
enriched genes is from small to large. The color scale from blue to red indicates that the p value is from large to small.

6 BioMed Research International



1.00

CCL25

High expression (n = 61)

Low expression (n = 62)

0.75

0.50O
S

0.25

0.00

0 5 10
Time (years)

Number at risk

15 20 25

0 5 10
Time (years)

15 20 25

61 20 2 0 0 0
62 13 3 3 3 0

HR (High expression) = 0.161 (95% CI: 0.047–0.556)
Log rank test: p < 0.001

(a)

O
S

1.00

GPR44

High expression (n = 61)

Low expression (n = 62)
0.75

0.50

0.25

0.00

0 5 10
Time (years)

Number at risk

15 20 25

0 5 10
Time (years)

15 20 25

61 17 2 1 1 0
62 16 3 2 2 0

HR (High expression) = 3.958 (95% CI: 1.304–12.013)
Log rank test: p < 0.009

(b)

Figure 4: Continued.

7BioMed Research International



O
S

1.00

GREM2

High expression (n = 62)

Low expression (n = 61)
0.75

0.50

0.25

0.00

0 5 10
Time (years)

Number at risk

15 20 25

0 5 10
Time (years)

15 20 25

62 15 2 2 2 0
61 18 3 1 1 0

HR (High expression) = 3.107 (95% CI: 1.109–8.711)
Log rank test: p < 0.023

(c)

O
S

1.00

IL29

High expression (n = 61)

Low expression (n = 62)

0.75

0.50

0.25

0.00

0 5 10
Time (years)

Number at risk

15 20 25

0 5 10
Time (years)

15 20 25

61 18 1 0 0 0
62 15 4 3 3 0

HR (High expression) = 0.251 (95% CI: 0.083–0.758)
Log rank test: p < 0.008

(d)

Figure 4: Continued.

8 BioMed Research International



showed significant differences (p < 0:001). This finding could
be validated by the external dataset GSE58812 (p = 0:032,
Figures 9(a)–9(d), right panel).

3.5. Correlation between Risk Score and TILs. In order to
investigate whether the risk score reflected by immune genes
could accurately assess the state of TNBC immune microen-

vironment, we performed the correlation analysis between
risk score and TILs (Figure 10) and found that risk score
was negatively related to B cells (R = −0:26, p = 0:005), CD4
+ T cells (R = −0:21, p = 0:019), CD8+ T cells (R = −0:19, p
= 0:034), dendritic cells (DCs) (R = −0:25, p = 0:005), and
neutrophils (R = −0:27, p = 0:002). However, the risk score
had no significant correlation with macrophages (p = 0:3).
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Figure 4: Survival curve analysis of prognostic IRGs. Survival analysis based on the expression levels of 119 IRGs shows that 6 genes are
closely related to overall survival (OS).
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4. Discussion

The clonal proliferation andmetastasis characteristics of can-
cer cells depend on genome changes. We focus our research
on changes in the immune genome to reveal its relationship
with the immune microenvironment. In this study, we
extracted differential IRGs from two large TNBC cohorts in
the GEO and TCGA databases and analyzed the underlying
immune mechanism. Pathway and GO analysis found that
TNBC patients primarily function through interactions
between cytokines and receptors. Various studies have
showed that cytokines and receptors are involved in the
growth, invasion, and metastasis of breast cancer, and corre-
sponding immune inhibitors against cytokines and receptors
have been applied to the treatment of breast cancer [16, 17].
In addition, fibroblast growth factor receptors (FGFRs) are
highly expressed in TNBC patients, and inhibitors against
FGFRs have been tested in clinical trials [18]. Bioinformatics
analysis provided clues that changes in the immune system of
TNBC patients were initiated through cytokine and receptor
pathways, which laid the foundation for in-depth immune-
related research.

The nomogram model has been widely applied to sys-
tematically assess the outcome of cancer patients [14, 19].
At the same time, IRGs can provide personalized immune
signature to assess the prognosis of lung cancer patients
[20]. The prognosis-related CCL25, IL29, TDGF3,
GPR44, and GREM2 in IRGs were used to construct a
nomogram model to evaluate its clinical value in TNBC
patients. The nomogram model we constructed can indi-
vidualize and visualize 1-, 2-, 3-, 4-, and 5-year OS for
TNBC patients. Evidence suggests that blocking the
CCR9/CCL25 axis can promote tumor progression and
distant metastasis [21, 22]. IL29 appears to inhibit tumor
growth in a variety of cancers [23]. TDGF3, also known
as TDGF1P3 or CRIPTO3, is expressed in cancer [24].
Our study found that high expression of CCL25, IL29,
and TDGF3 predicted a good prognosis in TNBC patients.
Study has shown that GPR44 is involved in the release of
cytokines from immune cells and the development of
inflammation [25]. Silencing GREM2 can inhibit the JNK
signaling pathway in gastric cancer, which inhibits tumor
growth [26]. In this study, high expressions of GPR44
and GREM2 could predict adverse outcomes in TNBC
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patients. The establishment of risk stratification can pro-
vide a reference for clinicians to more rationally manage
cancer patients and individualized treatment plans [27].
We conducted risk stratification for TNBC patients based
on the risk score and found that patients with a risk
score ≥ 194 belonged to a high-risk cohort, while patients
with a risk score < 194 belonged to a low-risk cohort.

The risk score showed good clinical practicability. The
risk score was an independent risk factor for TNBC
patients and was positively related to TNM stage. In addi-
tion, the risk score was negatively correlated with B cells,
CD4+ T cells, CD8+ T cells, dendritic cells, and neutro-
phils, which could reflect the level of TILs and provide a
reference for clinicians to adjust the treatment plan.
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Figure 7: Internal and external calibration curve validation of the nomogram model. (a) Calibration curves of internal validation in TCGA
database. (b) Calibration curves of external validation in the GSE58812 dataset.
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Table 1: Uni- and multivariate Cox regression analyses of 123 TNBC patients in TCGA database.

Variables
Univariate Cox Multivariate Cox

HR (95% CI) p value HR (95% CI) p value

Risk score 1.022 (1.014-1.031) <0.001∗∗∗ 1.019 (1.012-1.027) <0.001∗∗∗

Age (years) 1.004 (0.969-1.040) 0.842

Tumor invasion depth

T1-2 Reference

T3-4 2.986 (0.976-9.140) 0.055

Distant metastasis

M0 Reference Reference

M1 54.325 (4.926-599.140) 0.001∗∗ 3.099 (0.272-35.283) 0.362

Lymph node metastasis

N0 Reference Reference

N1-3 3.785 (1.437-9.967) 0.007∗∗ 1.778 (0.483-6.548) 0.387

Stage

I/II Reference Reference

III/IV 5.441 (2.113-14.012) <0.001∗∗∗ 4.273 (1.043-17.515) 0.044∗

HR: hazard ratio; CI: confidence interval; ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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Studies indicate that a favorable prognosis is observed in
TNBC patients with high B cells and CD4+ T cells [28,
29]. Furthermore, it has been reported that activated
CD8+ T cells have been shown to kill cancer cells through
various mechanisms [30]. Not surprisingly, less infiltration
of CD8+ T cells into tumors in TNBC patients is often
related to worse outcomes [31]. In addition, a study sug-
gests that neutrophil infiltration is a favorable prognostic
factor for colon cancer [32], which is consistent with our
findings. As we know that DCs take a vital part in the
tumor microenvironment, infiltration of activated DCs
into tumors can improve the antitumor effect of immune
cells [33]. In this study, high-risk patients might have
the lower infiltration levels of B cells, CD4+ T cells, CD8
+ T cells, dendritic cells, and neutrophils, which was asso-
ciated with a poor OS.

The limitation of this study was that no clinical samples
and corresponding clinical information were used to validate
the nomogram model and risk stratification constructed by
CCL25, IL29, TDGF3, GPR44, and GREM2. Additionally,
the reliability of the results was still challenged because we
also lacked validation in vitro and in vivo.

5. Conclusion

A nomogram model constructed by CCL25, IL29, TDGF3,
GPR44, and GREM2 could predict the 1-, 2-, 3-, 4-, and 5-
year OS of TNBC patients and perform risk stratification.
The risk score derived from the nomogram model could also
predict the level of immune cell infiltration in tumors. These
findings provided a reference for personalized prognosis pre-
diction in TNBC patients and might be potential immune
biomarkers for designing novel therapy.
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