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Exposure to different organisms (bacteria, mold, virus, protozoan, helminths, among

others) can induce epigenetic changes affecting the modulation of immune responses

and consequently increasing the susceptibility to inflammatory diseases. Epigenomic

regulatory features are highly affected during embryonic development and are

responsible for the expression or repression of different genes associated with cell

development and targeting/conducting immune responses. The well-known, “window

of opportunity” that includes maternal and post-natal environmental exposures, which

include maternal infections, microbiota, diet, drugs, and pollutant exposures are of

fundamental importance to immune modulation and these events are almost always

accompanied by epigenetic changes. Recently, it has been shown that these alterations

could be involved in both risk and protection of allergic diseases through mechanisms,

such as DNA methylation and histone modifications, which can enhance Th2 responses

and maintain memory Th2 cells or decrease Treg cells differentiation. In addition,

epigenetic changes may differ according to the microbial agent involved and may even

influence different asthma or allergy phenotypes. In this review, we discuss how exposure

to different organisms, including bacteria, viruses, and helminths can lead to epigenetic

modulations and how this correlates with allergic diseases considering different genetic

backgrounds of several ancestral populations.

Keywords: asthma, allergies, holobiont, microbiome, epigenetics

INTRODUCTION

Asthma and allergy are the most common chronic inflammatory diseases, especially in children
(1). The prevalence of asthma is elevated in economically developed countries in Western and
Eastern Europe and higher in the United States compared to other countries (2, 3). A progressive
increase in the prevalence of asthma in low-income countries has also been observed (4, 5),
which makes asthma prevalent worldwide. According to the World Health Organization over
80% of asthma-related deaths occur in low- and low-middle-income countries, and difficulties
in accessing treatment and management are also related to that (6). On the other hand, the
prevalence of eczema, allergic rhinitis, and food allergies in childhood is distributed differently
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between tropical countries and temperate zones (7–14).
Geographic differences in the prevalence of allergies between
and within populations may reflect both exposure to common
environmental factors and a host genetic background, which can
either increase or decrease risk (15). In terms of genetics, large
genome-wide association studies (GWAS) initiatives were unable
to completely explain such high and still increasing prevalence
of allergic disorders as well as their phenotypic heterogeneity (1).
Among the top pathways linked to asthma in such initiatives,
include those related to epithelial barrier dysfunction and
reduction of immune tolerance (16). In addition, studies have
found not only shared but also distinct genetic components
between asthma subtypes, indicating that heterogeneity is related
to individual genotype (17, 18) but still do not completely
explain everything.

Thus, the knowledge about the interactions between the
genetic pool and the environment is increasing with several lines
of evidence explaining those trends (19–21). In this context, some
hypotheses explain the links between environmental changes
that occurred in recent decades with the prevalence of allergies
across the globe, such as urbanization, housing condition, diet,
and fewer exposures to organisms such as bacteria, virus and
helminths (21, 22). In fact, there is a link between the higher
incidence of allergic diseases and reduced infections/exposure
to organisms in Western countries and across the globe and
this has been studied for several years now and appears to
reflect the economy and sanitation in each territory. Additionally,
the degree of industrialization and consequent changes in the
habits and lifestyle of the population imply that limited exposure
to several environmental factors for reducing biodiversity may
contribute to an increased risk of developing or exacerbating
asthma and allergies (23). David Strachan observed in 1989
that infections transmitted in early childhood, through contact
between older siblings, could restrict the development of allergies
(22, 24). Urbanization and improvements in hygiene, better
housing conditions, and reduced chances of cross-infection in
younger members of the family are the basis for what we
know as the “hygiene hypothesis” (24). The initial mechanistic
explanation of the hygiene hypothesis emphasized the role
of Th1 cells in regulating Th2 responses. Later, the role of
regulatory T cells was emphasized in the regulation of both Th1
and Th2-induced inflammatory responses through mechanisms
that include the production of regulatory cytokines (25). The
mechanistic pathways of the hygiene hypothesis were described
extensively in the literature, other theories amplified the initial
concept such as the “old friends” hypothesis (26) and, afterwards,
the biodiversity hypothesis, proposed by The Karelia Allergy
Study from 1998 (27). Both theories attempt to explain the impact
of modifications in human living conditions and habits on the
prevalence of immune-mediated diseases (28, 29).

Abbreviations: AAI, allergic airway inflammation; BCG, Bacillus Calmette–
Guérin; CpG, cytosine-phosphate-guanine; ERK, Extracellular signal-regulated
kinases; ES, excretory/secretory antigens; EWAS, epigenome-wide association
studies; GWAS, genome-wide association studies; HAT, histone acetyltransferase;
HAV, Hepatitis A virus; HDAC, histone deacetylase; ICS, inhaled corticosteroids;
MAPK, mitogen-activated protein kinase; miRNAs, MicroRNA; SOCS, suppressor
of cytokine signaling; STH, soil-transmitted helminths; VNN1, Vanin-1.

Studies show that early exposure to antibiotics during
childhood increases the risk of developing allergic diseases (30)
and also regular anthelmintic use (31). Numerous epidemiologic
studies reinforce that the increase in allergic diseases, eczema,
and food allergies is inversely related to parasitic infections
(32–36). Soil biodiversity and climatic characteristics of a
country are also determinants in the types of environmental
exposures and consequent development of infectious diseases
and allergic sensitization. The climate and biodiversity of the
tropics (fauna and flora) favor intestinal helminth infections and
the dissemination of human infectious diseases transmitted by
vectors like insects (37–42). According to (6), Soil-transmitted
helminth infections are distributed in tropical and subtropical
areas, with the highest incidence in sub-Saharan Africa, the
Americas, China, and East Asia.

The tropics are also marked by sharp economic and social
inequalities that reflect health and sanitary conditions and
an increased risk of spreading fecal-oral transmission diseases
(toxoplasmosis, giardiasis, hepatitis A, worms). In addition, the
relationship between helminths and allergies is complex and
is influenced by the parasite burden, chronicity, first infection
or reinfection, coinfections, and parasite species present in the
environment (33). In contrast, allergic sensitization to house
dust mite species such as Dermatophagoides pteronyssinus, D.
farina, and Blomia tropicalis is prevalent in the tropics, markedly
in individuals living in better sanitary conditions and urban
areas (43–45).

The importance of environmental exposures does not
underestimate the fundamental participation of the family
history of atopy and/or asthma and genetic background.
Thus, we still have an enormous challenge to explain the
occurrence of allergies and asthma. Increasing attention has been
given to epigenetic modifications, i.e., modifications in DNA
without sequence changes, triggered by individual exposure to
environmental factors, for instance, by products of combustion,
drugs, diet, and infections. Epigenetic mechanisms, such as
DNA methylation and histone modifications, can modulate gene
expression upon exposure to a specific environmental agent (46).
Such biochemical alterations can alter different targets within
the body, leading to the risk or protection of several conditions.
In this review, we present the concept of holobiont and discuss
how exposure to different organisms, including bacteria, viruses,
and helminths, can lead to epigenetic modulations and how this
modulation correlates with allergic diseases, taking into account
different genetic backgrounds of several ancestral populations.

THE CONTEXT OF MICROBIAL
EXPOSURE, THE CONCEPT OF
HOLOBIONT, AND THE MECHANISMS
INVOLVED IN IMMUNE MODULATION

Holobiont Concept
Microbes are the most ancient, abundant and arguably the
greatest successful form of life on Earth, contributing to
the evolution and function of all more complex multicellular
organisms (47). Since the early days of life, microbes interacted
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and established intrinsic symbiotic relationships which could
evolve as a unit. The term holobiont was first coined by
Lynn Margulis (48) and consisted of a simple and elegant way
to explain how a host and its symbiont would evolve (49).
This concept has been expanded, and it is well-accepted that
a holobiont consists of a set comprised of the host and its
associated microbial communities, i.e., the microbiota composed
of the three domains of life, and viruses (50). According to this
concept, the host (i.e., plant or animal) is subject to ecological
and evolutionary pressures, so the entire community would
evolve according to natural selection (51–53). This concept
has been widely adopted, especially in the coral and human
microbiome literature (54, 55), and it is relevant to understand its
implications on human health. Understanding the relationships
and interactions between microorganisms and parasites, such
as helminths and protozoans, with host cells and tissues within
a holistic approach is of paramount importance (49) and may
provide practical solutions for challenging problems such as
antibiotic resistance, allergies and asthma (56). This concept
is tightly linked with the One Health framework, which is a
multidisciplinary collaborative effort to achieve most appropriate
health for people, animals and environment (50, 57).

The advances in DNA sequencing technologies and
computational tools enabled us to explore in great detail
the microbial communities and their ecological relationships
on several times and space scales (58). This is a flourishing
time for microbiome studies and a robust body of literature
has already elucidated how environmental drivers shape free-
living and host-associated microbial communities (58). Several
lines of evidence show that human health is tightly linked
with the equilibrium of the commensal microbial community,
ultimately holobiont homeostasis. The microbial biodiversity
and the relationships and interactions among microbes lead to
functional outcomes. Reducing diversity, usually by a dominant
microorganism, promotes a more variable and less resilient
microbiota, a phenomenon known as dysbiosis, which can alter
the ecosystem services provided by the microbiota, leading to a
disease state.

More specifically, for the scope of the present review, the
mammalian gastrointestinal tract harbors a wide diversity of
microorganisms. It is estimated that Homo sapiens DNA makes
up only a small percentage of the overall DNA on and within
the human body—far greater genetic contributions are derived
from bacteria, fungi, viruses, archaea, and other microorganisms
as part of a vast (and individually distinct) residential
community collectively known as the human microbiome (48).
Additionally, more than 100 trillion microorganisms, colonize
the oral–gastrointestinal tract (59). The microbiota interacts
and stimulates the host immune system by activating bacterial
metabolism through biochemical pathways (60), mediated
by diet, host and microbiota metabolites, and antimicrobial
compounds (60). The commensal microbiota is essential not only
for the use of nutrients through good digestion and resistance
to infections by pathogens but also supports the regulation
of the host immune system, influencing innate, and adaptive
immune responses (61). Dysbiosis can lead to a disruption
on immune homeostasis and, consequently, to diseases such

as allergy, asthma, neurodegenerative disorders, autoimmune,
cardiovascular, and metabolic diseases (60, 62).

Host-Bacterial Interactions
The presence of organisms/microbes in the human body is
important to induce a proper immune response, including a
regulatory mechanism that could even have a bystander effect of
inflammatory conditions (63). The immune system is regulated
by immune organs and cells, soluble cytokines, and cell receptors
(64). The gut-associated lymphoid tissue is composed of three
different lymphoid structures of the mucosa: immune cells
present in the compartments of the intestinal epithelium, lamina
propria, and Peyer’s patches of the small intestine (61, 64).
Commensal human host bacteria modulate the immune system
through a bridge between epithelial cells and lymphoid structures
(65). It has been previously described that microbiota can induce
both Th17 and T regulatory (Treg) immune responses (66). The
interaction with epithelial cells induces Th17 cell polarization
and a positive regulation of antimicrobial proteins. Th17 cells
are vital for protective host immunity and have been implicated
in autoimmune disease development by producing the pro-
inflammatory cytokines IL-17A, IL-17F, and IL-22 (59, 66).

Clostridia, segmented filamentous bacteria, Bacteroides
fragilis, and other microorganisms can induce the development
and/or activation of Treg cells by stimulating intestinal epithelial
cells, lamina propria dendritic cells (DCs) and macrophages
(59). However, it is unclear which molecular mechanisms
commensal microbiota induce Treg cells in the gut (67, 68).
Treg cells control autoimmune reactivity, suppress inflammatory
responses, and maintain homeostasis of the microbiota (69).
According to Kamada et al. (59), the reduction of Treg cells
can increase the expansion of CD4+ Th cells expressing
commensal bacteria-specific T cell receptors (TCRs), leading to
intestinal inflammation.

In fact, the mechanisms whereby commensal microbiota can
modulate immune response is an area of increasing interest.
In this context, the immune cells in the Peyer’s patches are
responsible for the surveillance of the intestinal lumen (70).
Peyer’s patches contribute to the generation of B cells, which,
once activated, produce intestinal secretory IgA (sIgA) (64).
IgA is the most abundant class of immunoglobulin produced
in mucosal tissues, mostly the gut (59, 71). sIgA is essential
for the neutralization of toxins and response to pathogens. It
promotes intestinal barrier function and supports maintaining
host–commensal mutualism. In addition, IgA is involved in
determining the diversity and regulating the composition and
function of the gut microbiota (59, 70). Innate lymphoid cells
(ILCs), categorized into three subsets (groups 1, 2, and 3),
help also with the homeostasis, control the composition of
the microbiota, contribute to the resistance to pathogens and
heal the gut (59, 64). ILC1s promote homeostasis through the
production of IFN-γ, while ILC2s are activated by IL-25 (induced
by commensal microbiota) to release amphiregulin (Areg), which
is responsible for tissue repair, and IL-5/6, which has a role
in the production of IgA by B cells (72). IL-22 induces the
production of ILC3s, leading to mucus production, the release of
the antimicrobial peptide, fucosylation (a type of glycosylation)
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of the proteins from the lumina and lipids that offer energy for
the microbiota (72).

Some commensal bacteria, such as Clostridia strains, have
been shown to suppress the immune response by promoting the
differentiation of Tregs and IL-10 production in the gut (65, 73).
The induction of colonic Tregs can depend onClostridium cluster
IV and XIV and the production of metabolites, such as short-
chain fatty acids (SCFAs), which have immune and metabolic
functions involved in the regulation of cellular processes (74, 75).
SCFAs are metabolites synthesized by bacterial fermentation of
indigestible carbohydrates, in the colon, and decomposition of
dietary fibers (61, 76). Propionate, butyrate, and acetate are the
most predominant SCFAs in the gut and enable Treg production
(73, 75). Butyrate is involved in Treg differentiation by binding
G-protein-coupled receptor 43 (GPR43), a receptor of SCFAs
present in colonic T cells (76). Butyrate has also been shown
to induce Treg cell differentiation via dendritic cells dependent
on GPR109a (77). This metabolite also can regulate central
steps of the eosinophil lifecycle and function (78), inhibit ILC2
proliferation and cytokine production likely through inhibition
of GATA3 expression (79), inhibit nuclear factor- κB (NF-κB)
signaling via protein acetylation by a HDAC inhibitor (80)
and limit the production of TNF by lipopolysaccharide (LPS)-
stimulated neutrophils (81) and peripheral blood mononuclear
cells (66) (Table 1).

Escherichia coli trytophanase produces indole from
tryptophan (94). This metabolite activate aryl hydrocarbon
receptor, a transcription factor that induces expression of genes
such as CYP4501A1, which cleans chemicals and toxins (95).
Indole has an immunomodulatory function by maintaining the
integrity of the enteral mucosa and promoting the epithelial
barrier defense against pathogens by stimulating the production
of anti-microbial peptides, mucins, and proliferation of intestinal
goblet cells (62) (Table 1).

Polysaccharide produced by Bacteroides fragilis, a species
of gut microbiota, was described to conduct systemic
immunological maturity and could restore the balance between
Th1 and Th2 cells and CD4+ T cell deficiency in germ-free
mice (65, 66, 74). B. fragilis triggers toll-like receptors to create
a symbiosis between the host and microbiota and affects the
differentiation and development of T cells (74). Lactobacillus
reuteri is a Gram-positive facultative anaerobic bacterium that
also resides in the gut microbiota. This microorganism has many
benefits as a probiotic, such as reducing infection, influencing
the integrity of gut mucosa, and modulating the host’s immune
responses (96). L. reuteri has a role in protecting lung infections,
stimulating the production of gut granulocyte-macrophage
colony-stimulating factor, which promotes clearance of
pathogens by alveolar macrophages (74, 96).

Host-Fungus and Viruses Interactions
Although bacteria are a main component of the human
microbiota, there are other organisms also composing the
holobiont such as fungi, viruses, and multicellular parasites that
are also important for a good balance, with potential effects
on human health. The most-reported fungi in the intestines
of mice and humans include Saccharomycetes (Candida and

Saccharomyces spp.), Eurotiomycetes (Aspergillus and Penicillium
spp.), Tremellomycetes (Cryptococcus and Trichosporon spp.)
along with Cladosporium,Wallemia, andMalassezia spp. (97).

Candida albicans interacts with intestinal epithelial cells
through some events, including adhesion, invasion, damage,
and apoptosis (98). This interaction can lead to superficial
overgrowth and epithelial invasion, followed by disease and
immune activation (82). The Candidalysin, a cytolytic peptide
toxin released byC. albicans, induces proinflammatory cytokines,
chemokines and antimicrobial peptides of epithelial cells that
are necessary for the recruitment of immune cells, via MAPK
signaling, specifically the p38 pathway, resulting in the activation
of the AP-1 transcription factor c-Fos, and the ERK1/2 pathway,
leading to the activation of MKP1 (MAPK phosphatase 1), which
regulates the immune response (82).

Aspergillus fumigatus produces a variety of precursors of
toxins such as gliotoxin, which represses IFN-γ responses and
induces neutrophil apoptosis through inhibition of NF-κB, a
transcriptional regulator of the host proinflammatory response
(99); and fumigaclavine C that down-regulates Th1 cytokines, by
binding to IFN-È receptor 1 (IFN-È R1) (100) and induces host
cell apoptosis via caspases-3,−8, and−9 (83, 101).

In addition to bacteria and fungi, the intestinal virome is
composed of DNA and RNA viruses and includes eukaryotic
viruses, endogenous retroviruses and bacterial viruses (102).
According to (84), eukaryotic viruses and bacteriophages can
stimulate changes in the immune response. Eukaryotic virus by
altering the hematopoiesis or immune activation, improving
a secondary infection. Bacteriophages by stimulating the
production of inflammatory cytokines and type I interferon.
These changes in immune responses can contribute to
inflammatory diseases. In this review, we will focus in unicellular
and multicellular organisms leading to immune modulation.

Host-Helminths Interactions
Moreover, the different life cycle stages of helminths and
protozoa challenge host immune responses to recognize and
respond to different antigens. Distinct pattern recognition
receptors members participate in the recognition of these
parasites and are responsible for driving the TCD4 + cells
polarization. Many molecules secreted by adult intestinal worms
known as “excretory/secretory antigens” (ES) can stimulate
different effects on the host’s immune cells. The helminth
ES products activate basophils, eosinophils, mast cells, innate
lymphocyte T cells 2 (ILC2) and TCD4 + cells and drive
the production of innate and adaptive cytokines. Different
classes of lipids extracted from schistosome eggs and adult
worms have been able to stimulate the production of several
inflammatory cytokines (IL-6, IL-8, IL-10, IL-12, TNF-α).
Schistosomal lysophosphatidylserine through TLR2 stimulates
activation of dendritic cells with subsequent development of IL-
10 producing Treg cells (85) and Ascaris lumbricoides derived
phosphatidylserine containing preparations in the presence of
interaction between TLR4 and LPS induced TLR2 with activation
of TH2 response (91).

Schistosomal-Derived Lysophosphatidylcholine in vivo
was able to induce cytokine production and eosinophil
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TABLE 1 | Summary of the main products (molecules) from holobionts with immunomodulatory potential and biological activities in the host.

Microbial Molecules Biological activities References

Clostridium SCFAs • Anti-inflammatory activities

• Regulate Treg production

• Inhibit nuclear factor- κB (NF-κB) signaling

• Limit the production of TNF in neutrophils and peripheral

blood mononuclear cells

(60, 77, 80, 81)

Escherichia coli Indoles • Immunomodulatory function

• Integrity of the enteral mucosa

• Promotes epithelial cell barrier function

(62)

Bacteroides fragilis Polysaccharide A • Influences T cells fate through its

• Interaction with the toll-like receptor 2.

(66)

Candida albicans Candidalysin • Induces proinflammatory cytokines, chemokines, and

antimicrobial peptides

(82)

Aspergillus fumigatus Gliotoxin and Fumigaclavine C • Suppresses interferon (IFN)-γ

• Downregulates Th1 cytokines

• apoptosis

(83)

Eukaryotic Virus Alteration in hematopoiese or immune activation (84)

Bacteriophages Production of inflammatory cytokines and type I interferon (84)

Schistosoma mansoni Schistosomal-Derived

Lysophosphatidylcholine; The

soluble extract of eggs (SEA) and

lacto-N-fucopentose III;

Schistosomula tegument (Smteg)

Sm22·6, PIII, and Sm29 antigens

Schistosomula tegument (Smteg)

Sm22·6, PIII, and Sm29 antigens

TLR2 activation

• IL-10 producing Treg cells

• Eosinophil recruitment

• DC2 maturation

• Polarization of the Th2 response.

• Phosphorylation of ERK

• Up-regulation of CD40 and CD86 expression

• IL-12 and TNF-α production

• Reduction of eosinophils in the BAL

• Reduction of specific IgE

• Increase in IL-10 (Sm22·6)

• Reduction in IL-4 and IL-5 levels in the BAL. (PIII and Sm29)

(85–90)

Ascaris lumbricoides Phosphatidylserine containing

preparations (PS)

• TLR2 activation

• Polarization of the Th2 response.

(91)

Schistosoma ssp. A. lumbricoides Glutathione transferases • Stimulate specific IgE antibodies (43, 92)

Leishmania spp., Toxoplasma gondii The glycosylphosphatidylinositol

(GPI) anchors

• TLR2 and TLR4 activation induce of TNF-α (93)

recruitment potentially through TLR2 recognition (86).
Lysophosphatidylcholine participates in the recruitment
of eosinophils (85) IL-5 and IL-3 stimulate eosinophilia,
and recruitment is mediated mainly by chemoattractant
CCL11 and CCL26 (eotaxins). Activation of eosinophils
results in degranulation of chemical mediators such as
Matrix metalloproteinases, cysteinyl leukotrienes, major
basic protein and others (103). It has been shown that patients
with Schistosoma infection exhibit a higher concentration of
CCL3, CCL5, and CCL11 in plasma compared to uninfected
individuals. These chemokines favor granulocyte recruitment,
granulomatous response against egg antigens (104, 105).

Antigens from Schistosoma mansoni, Sm22·6 (soluble protein
from the tegument of S. mansoni), PIII (multivalent antigen
from the S. mansoni adult worm) and Sm29 (a membrane-
bound glycoprotein from the adult worm tegument) were
tested in a murine model of induced airway inflammation and
showed immunomodulatory ability. These antigens induced a
reduction in the number of eosinophils in bronchoalveolar
lavage (BAL) and lower levels of specific IgE. In addition,
Sm22·6 was associated with an increase in IL-10 while PIII

and Sm29 showed a reduction in IL-4 and IL-5 levels in the
BAL (90).

The soluble extract of Schistosoma mansoni eggs and lacto-
N-fucopentose III (carbohydrates group in S. mansoni) has
been associated with DC2 maturation and induction of the Th2
response dependent on recognition by TLR4, as well as induces
phosphorylation of ERK (87, 88). In addition, schistosomula
tegument (Smteg) can induce up-regulation of CD40 and CD86
expression and production of proinflammatory cytokines, such as
IL-12 and TNF-α, and such activation is TLR4-dependent (89).

The glutathione transferases from helminths (Schistosoma
ssp. and A. lumbricoides) stimulate specific IgE antibodies (92,
106) The glycosylphosphatidylinositol anchors from protozoan
(Leishmania spp., Toxoplasma gondii) is involved in the
activation of cells of lymphoid and myeloid lineage, such
molecules are recognized by TLR2 and TLR4 with activation
of NF-κB and subsequent induction of TNF-α in murine
macrophage cells (93).

The secretion of ES products from hookworms induces
activation of ILC2s and tolerogenic dendritic cells, followed by
increased expression of molecules associated with tolerance and
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reduced expression of co-stimulatory molecules with expansion
of Treg cell numbers in the gut and suppresses Th17 cell, this
implies a decrease in inflammation and proliferative capacity of
the parasite (107, 108). Interestingly, the Howkworms’ tolerance
ability was demonstrated in experimental hookworm infection
in patients with celiac disease, Necator americanus infection
suppressed gluten-induced IFNγ, IL-17, and IL-23 expression
and increased the expression of IL-10, TGFβ, and IL-22 in the
gut (107, 109).

It has been shown that infection with geohelminths (A.
lumbricoides, Trichuris trichiura, hookworm) induces IL-10 and
a higher mRNA expression of the Foxp3, PD-1, and regulatory
molecules suppressor of cytokine signaling (SOCS) (−3) (110),
reinforcing the immunomodulatory capacity of geohelminths.
In addition, many of the ES components have pleiotropic
immunomodulatory properties.

Taken together, it is possible to see that a balanced holobiont
is necessary to maintain homeostasis. Any alteration in this
environment can lead to dysregulation of the immune system and
metabolism. Further studies are needed to exactly describe how
holobionts changes regulate the host immune system, and which
changes in its composition is associated with specific diseases.

THE RELATIONSHIP BETWEEN THE
SHIFTS IN HOLOBIONT COMMUNITY’S
COMPOSITION WITH ASTHMA AND
ALLERGIES

Exposures during the peri- and post-natal periods are critical for
the host’s immune homeostasis, reflecting immune maturation,
the development of immune tolerance mechanisms, and
susceptibility to disease, also known as the first “window of
opportunity” (111). This exposure includes fetal environment
conditioned to the individual to the mother’s lifestyle, type of
delivery, diet, use of antibiotics, exposure to other children
and animals, and contact with parasites and environmental
microbes (112). Studies have reported that exposure to specific
immunostimulatory molecules (from helminths and bacteria
mainly) in childhood could reduce or block allergic disease
development or progression (113). In embryonic development
the immunological regulation of pregnancy is complex and an
increased production of Th2 cytokines is observed, along with
decreased production of Th1 cytokines. In addition, TGF-β1
appears to be involved in the differentiation of the trophoblast
being an important inducer of regulatory T cells (CD4 + CD25
+) and Th17 cells, this seems to be essential for avoiding
fetal allorejection (114, 115). Microbial exposures in childhood
determine factors in modulation and gradual replacement for T
cells and cytokines other than Th2 (116).

Moreover, universal initiatives seeking to improve the
population’s health conditions, such as immunization in children,
improved hygiene and sanitation, access to clean water,
indiscriminate use of antibiotics and anti-parasitic drugs, have
been implied in reducing opportunities of microorganism’s
exposure/infections in early childhood with decreased Th1
responses and or decreasing Treg activation and polarizing the

immune response to the Th2 profile, breaking homeostasis.
Changes in the exposure of antigen patterns, including proteins
released from environmental particles or infections in childhood,
can impact the diversity of commensal microorganisms that
make up the microbiota (117).

The use of antibiotics by mothers during pregnancy is
associated with a child’s asthma risk, promoting an imbalance
between commensal, and pathogenic bacteria (118). Changes
in the colonization of the lung microbiota of neonatal mice
have (119, 120) been associated with decreased aeroallergen
responsiveness induced by Helios– regulatory T cells (Helios–
Treg cells) activated depending on interaction with programmed
death-ligand 1 early in life, widely known as a regulator of allergic
responses. Imbalance in the formation of these cells implies
increased susceptibility to atopy in adulthood (119). Likewise, the
altered composition of the airway microbiota is often found in
asthmatic patients (120, 121). This could be explained partially
by differences in environment.

Rural vs. Urban
For instance, the prevalence and severity of asthma differ between
urban and rural areas. An agricultural environment has been
associated as a protective factor against the development of
asthma, hay fever, and atopic sensitization in children (12, 122).
An explanation would be associated with concentrations of
endotoxin significantly higher in rural homes than in urban
centers (123). Exposure to higher levels of endotoxin and other
bacterial components in early childhood can play a protective
role against allergies and asthma (123). The endotoxin constitutes
the membrane of gram-negative bacteria, inducing the Th1
response by stimulating cytokines such as IL-12 and IFN-È
(12). In addition to that, helminth infections caused by Ascaris
lumbricoides, Trichuris trichiura, are more prevalent among
children living in areas of the rural tropics in poverty and poor
access to clean water and sanitation (124).

Helminths vs. Asthma/Allergies
Helminths and allergic asthma induce similar immune responses,
including elevated serum IgE, systemic eosinophilia, and
cytokines such as IL-4, IL-5, IL-9, and IL-13, the hallmark
of an immune Th2 response (125). Additionally, basophils,
mast cells, neutrophils and innate lymphoid cells are involved
(126). Interestingly, infections by parasite species such as
A. lumbricoides, Schistosoma mansoni, Strongyloides stercoralis,
and T. trichiura, have been associated with a reduction in
airway allergic inflammation (34) with decreased Th1 responses
(Table 2). The immunomodulatory ability of geohelminths to
reduce susceptibility to allergies in humans has been recognized,
and it is related to the immune-regulatory network, including
helminth-derived products. Recombinant proteins of S. mansoni
were associated with an increase in IL-10 and TGF-β, an
increased frequency of regulatory T and B cells, and a reduction
in the frequency of activated T lymphocytes that produce IL-4
and IL-13 in individuals with severe asthma and animal models
(142, 143). In addition, T. trichiura infection appears to modulate
the immune response among asthmatics, with some studies
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TABLE 2 | Summary of the immunomodulatory effects of some halobiont’s organisms on asthma and allergy.

Holobiont Immunomodulatory effects Consequences

Schistosoma mansoni ↑TNF-a and IFN-g in acute phase

↑ IL-10 in chronic phase

Prevent against the development of allergies and asthma

(32, 34)

Down-modulate the inflammatory response in murine

model of ovalbumin (OVA)-induced airway inflammation

(90)

Ascaris lumbricoides, ↑IL-4, IL-5, and IL-10 Ascaris lumbricoides eggs was associated with an

increased prevalence of asthma (124)

Reduced risk of wheeze (127)

Anti-A lumbricoides IgE antibodies were associated with

risk of wheezing in atopic children and atopia (36)

Trichuris trichiuria Modulation of pro and anti-inflammatory cytokine (35)

↓TNF-α and IL-6 levels among asthmatics infected

↑IL-10

↓allergen skin test reactivity (33)

Positively associated with wheezing (36)

Helicobacter pylori Th1 polarization

↓Th2 response

↑ (IFN)-γ, IL-12, IL-18, IL-23 (128)

Negative association between H. pylori infection and

asthma, eczema, and rhinitis (128)

Hookworm (Ancylostoma

duodenale and Necator

americanus)

Induction of IL-25 and ILC2s (129)

↑IgG1, IgG4, and IgE

Expansion of Treg cell numbers in the gut (107, 108)

Protect against wheezing, asthma, and allergic diseases.

Reduction in risk of wheeze (130)

Toxoplasma gondii Induces IL-10 production, IL-27, and activity of lipoxins

(131, 132).

Protective effect against atopy (133)

Suspend the development of airway inflammation and

atopy in mice (133)

Decrease in specific IgE for Dermatophagoides

pteronyssinus (134)

Toxocara spp. ↑ levels of total IgE

Cross reactivity with aeroallergens

Positive skin tests to allergens, and asthma prevalence

and morbidity (135, 136)

Bifidobacterium Stimulating IL-10 or IL-12 synthesis Protective factor for high risk of allergic asthma and

atopic dermatitis in children from Turkey (137)

Bacteroides fragilis Stimulate Th2 cytokines by biding TLR2 Risk factor in children with a positive API (138)

Penicillium High counts in patients with atopy Risk factor for atopic asthma (139, 140)

Aspergillus fumigatus Decrease the expression of GCR Aggravate airway hyper-responsiveness and increase the

level of TLR2 (141)

↑increase; ↓decrease.

reporting a risk association for asthma among infected people
and positively associated with wheezing (33, 35, 36).

Maternal soil-transmitted helminths (STH) infections can
sensitize the individual still in the fetal phase. Cooper et al. (144)
reported a strong association between Maternal STH infections
during pregnancy (mainly moderate to chronic A. lumbricoides

infection) and childhood STH infections. During pregnancy,
infected mothers have an increased number of CD4+ T cells and
production of IL-10 in cord blood from newborns demonstrating
immunomodulation mediated by parasite antigens (145, 146). In
the same study, poor hygiene conditions, with the prevalence
of STH infections, were not associated with reduced eczema-
asthma-rhinitis symptoms (144). Co-exposure to mites and
Ascaris lumbricoides in the context of low worm burdens
promotes allergic sensitization and asthmatic symptoms by
increasing parasite-specific IgE production, mite-specific and
mite–parasite cross-reacting IgE antibodies, observed mainly
in urban areas, once in rural areas the exposure to helminths
tends to be chronic (40). A. lumbricoides extract was associated
with inhibition of pulmonary eosinophilia in mice sensitized
with ovalbumin (OVA) and a decrease in allergic inflammation
independent of IL-10 (147) (Table 2). In contrast, Anti-A.

lumbricoides IgE (but not active infection), were associated with
risk of wheezing in atopy in atopic children (36).

Viruses and Protozoans vs.
Asthma/Allergies
Some viral and protozoan infections have been associated with
decreased reactivity to skin prick tests for aeroallergens (148,
149) and asthma (150). The host’s defenses against viruses are
marked by a predominance of the Th1 response and interaction
with different Toll-like receptors with probable biological and
immunomodulatory effects on Th2 responses.Toxoplasma gondii
infection has been reported to suspend the development of
airway inflammation and atopy in mice (133) and induces IL-
10 production, IL-27 and activity of lipoxins (131, 132). In
addition, a negative association was reported between T gondii
seropositivity and specific IgE toDermatophagoides pteronyssinus
(134). Hepatitis A virus (HAV) exposure has been inversely
associated with allergies (151). In the United States, positive
serology for HAV was associated with a lower chance of
developing hay fever and asthma and skin reactivity to airborne
allergens (152). In Turkey, the prevalence of atopy was lower
among individuals with positive serology for HAV and hepatitis
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B virus (anti-HAV IgG, HBsAg, anti-HBc IgG) (153). The
accumulated infection burden, considering HAV, herpes simplex
virus, Epstein–Barr virus, Cytomegalovirus, Helicobacter pylori,
and Toxoplasma gondii (> 3 microbes), was associated with a
protective effect against atopy (149, 153). According to Amedei
et al. (128) H. pylori infection was negatively associated with
asthma, eczema and rhinitis and induces Th1 polarization
(Table 2). Moreover, BCG vaccination at an earlier age was
associated with a decreased risk of atopy in children without a
family history of asthma and atopy (154). However, there are
controversies regarding some types of vaccines (155, 156).

Bacteria vs. Asthma/Allergies
A study (157) from the Copenhagen Prospective Study on
Asthma in Childhood has shown that the lack of development
of the gut microbiome in the first year of life is the determinant
to the occurrence of childhood asthma, increasing asthma risk.
The lower number of Lachnospiraceae and Ruminococcaceae
genera was observed in asthmatic children and was associated
with allergic wheezy phenotype (157). The production of
SCFAs was suggested to be associated with asthma development
in a study of high vegetable fiber intake by children from
Manitoba Prospective Cohort Study of Allergy, Genes and the
Environment, acting as a protective factor against to airway
hyperresponsiveness (158, 159). Bifidobacterium longum has
been described influencing the prevalence of allergic disease
being a protective factor for allergic asthma and atopic dermatitis
in children from Turkey (Table 2) (137). In contrast, Bacteroides
fragilis count was significantly higher in children with a positive
Asthma Predictive Index as compared with those negative (138).
It seems that Bacteroides species maybe stimulate Th2 cytokines
and some studies have found an association between this genera
and higher IgG in children with allergies (138) (Table 2).

Fungus vs. Asthma/Allergies
Skin-test for fungal allergens is usually characterized with the
presence of immediate cutaneous hyperreactivity or positive
results for specific IgE antibodies to fungal antigens and
has been related to be especially common in patients with
life-threatening asthma (139, 160). Aspergillus, Alternaria,
Penicillium, Cladosporium, and Trichophyton, have been
described to be associated with exacerbation and severity of
asthma (139). Penicillium species was higher in patients with
atopy compared with healthy control subjects, suggesting to be a
risk factor for atopic asthma since this genera is one of the most
common fungi related to allergic asthma exacerbations among
adults (Table 2) (140, 161). A study using rats with asthma
shows that Aspergillus fumigatus may decrease the expression of
glucocorticoid receptor aggravating airway hyper-responsiveness
and increase the level of TLR2, involved in airway inflammation
(141) (Table 2).

The immune response in the context of asthma and atopy
as well as its development, differentiation of cell subtypes
and expression of receptors and cytokines are influenced by
exposures to holobionts. This immunological modulation is often
accompanied by epigenetic changes. In part, such modifications
that allow such plasticity of immune responses, also promote

homeostasis through the balance of adaptive immune responses
in certain conditions and are responsible for themaintenance and
intensification of Th2 responses, increasing the risk for allergic
diseases and other inflammatory diseases.

EPIGENETIC MECHANISMS: BASIC
CONCEPTS

Currently, epigenetics can be defined as changes above the
DNA without changing the nucleotide sequence (162). Different
mechanisms of epigenetic regulation have been described, such as
DNA methylation, histone modifications and non-coding RNAs.
Since the first Waddington epigenetics works (163, 164), many
studies have been conducted to determine the influences of
epigenetics in several conditions. The epigenetic mechanisms
are widespread in the different cell types of the human body,
including cells that participate in an immune response pathway
directly involved in the etiopathogenesis of asthma and other
allergic diseases. Understanding the impact of epigenetic changes
on the normal and abnormal functioning of these cells, therefore,
is an important piece to compose the complex puzzle that allergic
diseases represent. Bellow, are described the main mechanisms of
epigenetics-induced changes in gene expression.

DNA Methylation
DNA methylation is the addition of a methyl group (CH3)
to a cytosine by DNA methyltransferases, generating 5-methyl-
cytosine (165). Promoter regions of genes have a large amount of
CpG (cytosine-phosphate-guanine), known as CpG islands, that
when methylated prevents the binding of transcription factors
and represses gene expression (166).

Several factors can contribute to DNA methylation changes,
such as aging, environmental exposure, cell type, and age.
These modifications can be passed through cell division through
either mitosis or meiosis (167). Recently, many epigenome-
wide association studies (EWAS) have described the association
between DNA methylation and asthma, and several genes were
identified, including EPX, IL4, IL5RA, PRG2, SIGLEC8, CLU,
AP2A2, and KCNH2 (168–170).

Histone Modifications
Histone is a protein involved in the organization of chromatin
and regulation of gene expression. They are grouped into
8 subunits, two of each H2A, H2B, H3, and H4 forming
an octameric nucleosome where the DNA coils. Histone H1
is associated with this complex and stabilizes the chromatin
structure. Somemodifications can occur in theN-terminal tails of
histones, including acetylation, methylation, ubiquitylation, and
phosphorylation (171).

Histone acetylation occurs when acetyltransferases add lysine
residues to histone tails. Histone acetylation increases DNA
access and facilitates the process of transcription, increasing
gene expression. Previous studies reported that H3K4me3 and
H3K27me3 were associated with T helper cell differentiation and
IL-5 expression (172), and higher histone 3 acetylation levels
at the IL13 locus were associated with higher protein levels of
IL13 (173).
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Methylation in histones is performed by methyltransferases
and usually occurs at lysine (K) or arginine (A) residues and can
increase or decrease gene expression depending on the modified
residue. For instance, inactivation can occur by methylation
on H3K9, H3K27, and H4K20, while activation occurs by
methylation on H3K4 and H3K36 (174).

Non-coding RNAs
Non-coding RNAs are a group of RNAs that do not encode
proteins but can play an important role in the regulation of
gene expression acting at the post-transcriptional level (175).
Regarding size, RNAs with regulatory functions are divided into
short non-coding RNAs (siRNAs, miRNAs and piRNAs) and
long non-coding RNAs (lncRNAs) (176). They can silence genes
through the RNA interference pathway and modulate several
biological processes, including immunological functions (177).

SHAPING IMMUNE RESPONSES
THROUGH EPIGENETICS MECHANISMS:
REGULATION OF CYTOKINE GENE
EXPRESSION, TRANSCRIPTION
FACTORS, AND REGULATION OF IMMUNE
RESPONSES IN ASTHMA AND ALLERGY

The epigenetic mechanisms previously described are present
in the different contexts and cell types of the human body,
including driven immune cell pathways directly involved in
the etiopathogenesis of asthma and other allergic diseases.
Understanding the impact of epigenetic changes on the normal
and abnormal functioning of these cells, therefore, is an
important piece to compose the complex puzzle that allergic
diseases represent. Some advances in this direction have recently
been achieved. Thus, epigenetic modifications play a role
in regulating the expression of cytokines related to T cell
differentiation and transcription factors (178). The development
of cell types and, consequently, the specificity of immunological
responses occur through internal stimuli or driven by stimulatory
molecules of microorganisms. They act on surface receptors
such as TLR signaling, signal transduction proteins, and lineage-
specifying transcription factors, promoting intracellular events.
Even the development of T lymphocytes and maturation for
helper (CD4+) and cytotoxic (CD8+) cells are influenced by
epigenetic control. This promotes CD4+ silencing in CD8+
thymocytes and the development of T helper cell subsets (Th1,
Th2, and Th17) accompanied by epigenetic changes (179, 180).
Epigenetic changes have also been linked to the activation and
polarization of macrophages (M1/M2 phenotypes) (181).

Allergic diseases, e.g., asthma, result from a strong interaction
of genetic and environmental components with remarkable
phenotypic heterogeneity. This heterogeneity of asthma can
be partially explained by dysregulated epigenetic mechanisms
correlated with environmental exposures, pharmacological
treatments, and airway inflammation and function (182). There
is evidence that the induction of Th2 cells, maintenance, and
the resurgence of memory Th2 cells are controlled by epigenetic
regulation since this induction is mediated by signal transducer

and activator of transcription 6 and the consequent production
of the Th2 cytokine profile (183). Hypermethylation in GATA3
CpG loci was associated with a decreased risk of asthma at birth
(184), and hypomethylation of IL-13 and interleukin 5 receptor
subunit alpha (IL5RA) was associated with an increased risk of
asthma in teenagers (169).

Epigenetic mechanisms are essential in controlling gene
expression or silencing and the consequent balance of Th1/Th2
responses. Corroborating the principle that Th1/Th2 imbalance
is involved in the pathogenesis of asthma and atopy, experimental
studies in mice showed hypermethylation in the IFN-È gene
promoter in TCD4+ cells, leading to the silencing of the IFNG
gene (Th1 pattern) (185). During initiation of a Th2 immune
response, an increase in histone acetylation was observed at the
Th2 cytokine loci. It has been demonstrated that the IL4 and IL13
genes are hypomethylated in asthmatic patients, critical genes in
amplifying the Th2 response (186).

A balance of histone deacetylase (HDAC) and histone
acetyltransferase (HAT) activity has been considered to regulate
gene expression. Reduced HDAC expression was observed
among adults with severe asthma compared to mild asthma
(187). In atopic asthmatic children, a relationship was found
between HDAC/HAT activity and increased histone acetylation,
and the degree of acetylation was associated with an increase in
bronchial hyperresponsiveness (188).

miRNAs have also shown an essential role in the inflammatory
response of asthma. Studies have shown that miR-155 and miR-
221 are associated with modulation of the Th2 response (189)
and hyperproliferation of airway smooth muscle in asthmatic
patients, respectively (190). In the asthma context, non-coding
RNAs have been observed as markers of disease diagnosis,
phenotypes, and response to treatments. For example, a negative
correlation between the levels of miR-323-3p and IL22 and IL17
was observed in PBMCs from patients with asthma, suggesting
that non-coding RNA acts as negative feedback in the production
of these cytokines influencing the immune response of these
individuals (191). Moreover, elevated levels of miRNA-21 in
the peripheral blood of children with asthma were identified,
suggesting that this non-coding RNA may be a biomarker in
the diagnosis of asthma (192). Furthermore, high expression
of microRNA-155 and decreased expression of Let-7a were
observed in the plasma of asthmatic patients and were associated
with the degree of asthma severity, suggesting that these markers
can be used both in diagnosis and in the prediction of the severity
of disease (193).

In the context of regulatory T cells (Tregs), cells that play a
substantial role in immune homeostasis through mechanisms of
tolerance and immune de-activation during a regular immune
response and suppression of a self-destructive immune response,
the repressive phenotype of Tregs is conferred, in part, by
the expression of Forkhead box protein 3 (FOXP3) (194).
Hypermethylation of CpG islands in the promoter region in the
FOXP3 locus impacts transcriptional silencing and consequent
reduction in Treg cell function. Air pollutants have been
recognized as acting on epigenetic changes. Increased exposure
to polycyclic aromatic hydrocarbons has been associated with an
increase in DNA methylation at the FOXP3 locus in peripheral
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blood mononuclear cells and elevated total IgE with significant
effects on asthmatics (195). Furthermore, an increase in FOXP3
DNA methylation has been associated with an increased risk of
asthma and persistent wheezing (196).

Figure 1 shows different factors shaping asthma and
allergy, such as environmental factors, epigenetic changes, and
exposure to holobionts components which can be modulated by
disturbances in the homeostasis.

EPIGENETIC CHANGES ASSOCIATED
WITH HOLOBIONT INTERACTIONS

Since immune dysregulation is linked to allergies and asthma
through the lack of certain environmental exposure, one could
think that potential epigenetic mechanismsmay play a role in this
phenomenon. A question raised by these new findings is at “what
point in the development of the human being the epigenetic
mechanisms could act to drive the maturation of the immune
system in early life?.” In this sense, in recent years, the hygiene
hypothesis has been expanded to encompass the potential effect
of prenatal exposure to microbial agents on modulating the
individual risk of asthma and other allergic diseases (115).
Although some evidence in this regard was already available
through epidemiological studies that assessed the impact of
maternal microbial exposure on the risk of developing allergic
conditions in the offspring (116), the elucidation of the molecular
mechanisms underlying these processes has been a relatively new
and fascinating field of investigation.

Alterations in the gut microbiota, called dysbiosis, is
related to infections and inflammatory diseases and comes
with irregular immune responses, e.g., particular inflammatory
cytokines (66, 75). Changed gut microbiota can also increase
the production of NK-κ-B and TNF-α and the overexpression
and activation of Th1 and Th17 cells (197). Studies have
shown that changes in the gut bacterial composition and the
production of its metabolites can influence epigenetic levels,
such as reducing methylation and inhibiting histone deacetylases
(197). Specifically, the metabolites influencing epigenetic enzyme
activity are a substrate needed for epigenetic changes (197).
For example, Butyrate, a metabolite from microbiota, can also
inhibit HDAC, increasing the expression of FOXP3 through the
acetylation of histone H3 in the promoter and enhancing Treg
generation (164).

One of the first mechanistic studies on the allergoprotective
effects of maternal exposure to microbes used a mouse model
with the farm bacteriumAcinetobacter lwoffii (198). In this study,
the protective effect for allergic airway inflammation (AAI) in
the offspring was dependent on maternal TLR signaling, since
this protection was abolished when mothers were knocked out
for multiple TLR genes. The authors also demonstrated that
the immune dampening observed in the progeny of pregnant
mice was not due to microbial components able to pass the
fetus-maternal interface and directly activate the developing
fetal immune system. This last observation suggests the possible
involvement of epigenetic factors operating in the fetuses of
mothers exposed to Acinetobacter lwoffii. Indeed, another study

by the same group reported epigenetic changes in Th1/Th2
cytokine genes in offspring from pregnant mice exposed to
A. lwoffii (199). While the IFNγ promoter on CD4+ T cells
exhibited significant protection against the loss of histone
4 (H4) acetylation, with the consequent increase in IFN-È
expression in OVA-induced AAI, the IL4 promoter showed
a significant decrease in H4 acetylation and diminished gene
expression. A protective effect against induced AAI has also
been shown in the progeny of pregnant mice exposed to
Helicobacter pylori extracts (200). An epigenetic consequence
observed in the offspring was the enhanced demethylation of
the regulatory T cell-specific demethylated region in Foxp3+
Treg cells. Intriguingly, this protective effect extended to the
second generation (F2) of mice exposed to H. pylori antigens
during pregnancy, with both sexes exhibiting similar levels of
protection. This indicates that the epigenetic changes in the
offspring induced by transmaternal exposure to H. pylori may
extend to chromosomal loci other than just the TSDR linked
to the X chromosome. The transfer of allergoprotective effects
during the prenatal phase through maternal infection with
the helminth Schistosoma mansoni has also been previously
investigated in experimental models of AAI in mice (201).
Interestingly, this protective effect was dependent on the stage
of the immune responses to S. mansoni in the females at the
time of mating. While the offspring of the mothers mated during
the Th1 and regulatory phases showed protection against OVA-
induced AAI, those born to mothers mated during the Th2 phase
showed an exacerbation of the allergic inflammatory response
compared to the controls. The authors also demonstrated that
the protective effect of transmaternal exposure to S mansoni was
mediated by maternally produced IFN-È and not by the transfer
of helminth antigens to the fetus. Potential epigenetic changes in
the offspring associated with the protective immune phenotype,
however, were not further investigated and remain to be
clarified (202).

In humans, data on epigenetic changes induced by pre- or
post-natal exposure to microbial agents and their relationship
to asthma and other allergic conditions are still scarce. A pilot
study evaluated the effect of maternal exposure to the farm
environment on offspring epigenetic changes for genes known
to be associated with asthma and allergies (203). Significant
differences between non-asthmatic children born to mothers
exposed to the farm environment and asthmatic children born
to unexposed mothers were observed for the methylation pattern
of the ORMDL3 and STAT6 genes in cord blood. In a recent
study, Lund et al. (204) reported that changes in the methylation
pattern in chromosomal previously linked to asthma, such as
the SMAD3 promoter at 15q22.33 and intronic regions of the
DDO/METTL24 genes at 6q21, were associated with atopic
asthma in children with early rhinovirus-induced wheezing. In
turn, DNA methylation changes linked to the prostaglandin
D2 synthase gene were associated with non-atopic asthma in
children with rhinovirus etiology at the first severe wheezing
episode (204). This suggests that the epigenetic changes triggered
by the same microbial agent may differ according to the specific
phenotype of asthma or other allergic diseases, which needs to be
further investigated in the future.
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FIGURE 1 | Interaction between multiple environmental exposures and epigenetic changes: impact on immune-mediated diseases. Polluting agents, environmental

exposure, diet, age, drugs, and especially exposure to organisms (species of bacteria, fungi, protozoan, and helminths) act as inducers of epigenetic changes. Among

the epigenetic modifications are DNA methylation and histone modifications. Histone acetylation increases DNA access and facilitates the process of transcription,

increasing gene expression. The addition of a methyl group in CpG islands prevents the binding of transcription factors and represses gene expression. The

interaction between environmental exposures and epigenetic variations begins in the embryonic period and continues throughout life, being strongly dependent on the

environmental experiences/challenges of everyone. Such alterations can be highly modifiable by instantaneous adaptation to the environment or generate inheritable

epigenetic patterns and consequences to offspring. Epigenetic mechanisms influence cell differentiation and polarization of immune responses, these events modulate

biological responses, and can interfere with the development of different immune-mediated diseases such as cancer, asthma, allergies, autoimmune diseases.

Taken together, although several studies related to epigenetics
of asthma and allergies have been published so far, very
few initiatives explores the role of the environmental
changes, in special, exposure to organisms such as

bacteria, fungi, protozoan and helminths as important
modulators of those biochemical changes in human
DNA. Further studies are needed to better understand
such associations.
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FUTURE THERAPIES AS POTENTIAL
MODULATORS OF EPIGENETICS
CHANGES IN ASTHMA AND ALLERGIES:
OBSERVATIONS AND FUTURE
PERSPECTIVES

The usual immunotherapy and pharmacological therapy in the
treatment of asthma and allergies act in the modulation of
immune responses, with a focus on reducing inflammation
and increasing immunological tolerance. This immunological
modulation is almost always accompanied by epigenetic
changes. It is even possible to distinguish different epigenetic
signatures between untreated individuals and individuals under
treatment (205).

The use of inhaled corticosteroids (ICS) in the management
of moderate to severe asthma is recommended by asthma
management guidelines (206) and several studies have shown
that corticosteroids are potent epigenetic modifiers (207–
209). Children with better response to corticosteroids have
been shown to have hypermethylation in Vanin-1 (VNN1)
promoter compared to the group with poor response, in
addition VNN1 mRNA expression was higher among good
responders. VNN1 appears to have an important role in
corticosteroid responsiveness among asthmatics, and can be used
as a biomarker for treatment response (209, 210). Acetylation
of histones by HATs activity was reported to be reduced in
asthmatics treated with inhaled steroids (211). Variations in
serum IgE concentrations can be influenced by DNAmethylation
patterns. An association between total serum IgE concentration
and low methylation at 36 loci has been demonstrated, this
observation may be useful in optimizing therapies with anti-IgE
antibodies such as omalizumab (212).

Studies evaluating the effectiveness of peanut oral
immunotherapy found a great suppressive function of Treg
cells and higher levels of FOXP3 hypomethylation among
treated individuals (213). In addition, a study involving cow’s
milk allergy children and dietary intervention using probiotic
Lactobacillus rhamnosus (abundant in butyrate-producer
bacteria strains) demonstrated that oral tolerance in children
with IgE-mediated CMA involves epigenetic regulation of the
FOXP3 gene. Difference in the methylation status of FOXP3
was found among children who developed oral tolerance after
probiotic therapy (205). Prenatal administration of Acinetobacter
lwoffii F78 in murine demonstrated a modulation in Th1/Th2
balance genes, with protection for asthma in the progeny,
accompanied by changes in DNA acetylation (199).

Although some studies using probiotic supplementation in
animal models have indicated a protective effect of probiotics
on asthma and allergic Rhinitis (214, 215), studies in humans
are still limited due to couple limitations such as the duration
of supplementation.

Many efforts have been focused on understanding and
developing microbial therapies using technological approaches
involving parasitology, genomics, transcriptomics, and
proteomics methods. Currently with the help of bioinformatics
and helminth genome sequencing initiatives it is possible

through in silico analyzes to identify molecules with potential
immunomodulatory properties. These databases are available on
WormBase Parasite, HelmDB, and Heminth.net (216–218).

The identification of genomic sequences of helminth parasites
known to down-modulate the immune system of mammalian
hosts such as Ascaris suum, Necator americanus, Schistosoma
mansoni, Strongyloides spp. as mentioned in previous topics in
this review, have motivated the development of recombinant
helminth proteins with therapeutic potential for immune-
mediated diseases such as protease inhibitors, cytokine homologs
and lectins (219). High immunogenicity has been observed for
these therapeutic recombinant proteins (220) which may be
able to mimic the immunomodulation observed in helminth
infections. However, standardized studies in humans as well as
adequacy of doses and treatment duration are still necessary.

Epigenetic mechanisms play an important role in the
regulation of immune response and are strongly influenced by
microbial exposures and drug use, advancing the knowledge
about such interactions may be used to both development of
future target therapeutic strategies for asthma and allergies but
also to discover new biological properties in current drugs in use.

The genetic susceptibility to allergic disorders is known
be polygenic and recent studies have established that the
presence of the gut microbiota is essential for normal gene
expression (221, 222). The presence of certain bacterial species
in the gut, such as Helicobacter pylori increases the CpG
methylation in the promoter region of O6-methylguanine
DNA methyltransferase, which ends up decreasing the
expression of this DNA methyltransferase in gastric mucosa
cells (222).

Lactobacilli and Bifidobacteria are the major source of
butyrate and the absence of these species is important.
By inhibiting HDACs, butyrate suppresses nuclear NF-κB
activation, upregulates PPARÈ expression, and decreases IFNÈ

production in the residing gut immune cells, promoting
an anti-inflammatory gut environment (222). In a study
with patients with allergic rhinitis, blocking the HDAC
activity restored the integrity of the nasal epithelium and
restored mucosal function and prevented the development of
airway inflammation and hyperresponsiveness in experimental
models (223).

Studies in dietary manipulation have demonstrated that
diets high in methyl-donating nutrients are associated
with hypermethylation of the epigenome, impacting the
gene expression, especially during early development
when the epigenome is first established, and can have
long-term effects in adult life (224, 225). According to
Bae et al. (225), in humans, methyl donors for DNA
methylation are mostly derived from dietary methyl
groups nutrients such as folate, vitamin B12, and choline.
Methyl donors affect DNA methylation and immune
responses such as Th17, Th1/Th2 balance, and Treg
generation (225).

Additional studies are needed to better characterize the
mechanisms underlying the different asthma phenotypes and
their correlation with clinical characteristics, and those that
contemplate the complex interaction of different epigenetic
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mechanisms and those that focus on a single-cell type
or investigations at the single cell level (221, 226). In
this sense, EWAS can be useful to identify patterns of
epigenetic signatures among asthma and allergy phenotypes
and clinical characteristics, which reinforces the potential of
epigenetic changes as future biomarkers for diagnosis and target
personalized therapies.
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