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Abstract

Background: Long-read sequencing has enabled unprecedented surveys of structural variation across the entire human
genome. To maximize the potential of long-read sequencing in this context, novel mapping methods have emerged that
have primarily focused on either speed or accuracy. Various heuristics and scoring schemas have been implemented in
widely used read mappers (minimap2 and NGMLR) to optimize for speed or accuracy, which have variable performance
across different genomic regions and for specific structural variants. Our hypothesis is that constraining read mapping to
the use of a single gap penalty across distinct mutational hot spots reduces read alignment accuracy and impedes
structural variant detection. Findings: We tested our hypothesis by implementing a read-mapping pipeline called Vulcan
that uses two distinct gap penalty modes, which we refer to as dual-mode alignment. The high-level idea is that Vulcan
leverages the computed normalized edit distance of the mapped reads via minimap? to identify poorly aligned reads and
realigns them using the more accurate yet computationally more expensive long-read mapper (NGMLR). In support of our
hypothesis, we show that Vulcan improves the alignments for Oxford Nanopore Technology long reads for both simulated
and real datasets. These improvements, in turn, lead to improved accuracy for structural variant calling performance on
human genome datasets compared to either of the read-mapping methods alone. Conclusions: Vulcan is the first long-read
mapping framework that combines two distinct gap penalty modes for improved structural variant recall and precision.
Vulcan is open-source and available under the MIT License at https://gitlab.com/treangenlab/vulcan.
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Background nomic alterations that can be categorized into five types: dele-
tions (DEL), duplications (DUP), insertions (INS), inversions (INV),
and translocations (TRA) [6, 7]. Owing to higher false-positive
and false-negative rates in SV detection with short reads, long
reads are preferred to accurately detect and fully resolve SVs [6].

In recent years, three types of single-molecule long reads
have been established, produced by two sequencing platforms:

Pacific Biosciences (PacBio) and Oxford Nanopore Technology

The advent of long-read DNA sequencing over the past decade
has led to many new insights in genomics and genetics [1-
3]. One of the main advantages of long-read sequencing is for
human research given the size and complexity of the human
genome, and specifically for the detection of structural varia-
tion (SV) [1, 2, 4, 5]. SVs are often defined as 50 bp or larger ge-
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(ONT) [3]. The latest PacBio device (Sequel II) [3] sequences not
only continuous long reads (CLR) that have error rates of <10%
but also longer average length; it can also produce HiFi reads
[8]. The latter is produced by repeatedly sequencing the same
molecule multiple times (10-20 kb long), producing a consen-
sus read that lowers the sequencing error down to 1% or even
lower [8]. ONT is the other long-read sequencing platform. ONT
also offers single-molecule sequencing and can produce ultra-
long reads (>100 kb and <2 Mb) [9] with drastically reduced cost
with respect to HiFi reads but at a higher error rate (3-10%) [10].
In recent years, SVs have been shown as an important type of
genomic alteration often leading to more modified base pairs
than single-nucleotide variants (SNVs) on their own [6, 8]. Fur-
thermore, SVs have been shown to have an effect on many hu-
man diseases and other phenotypes across multiple species [6,
11-13]. Most of the existing SV detection approaches depend on
long reads to facilitate the mapping of these reads to a known
reference genome.

We define read mapping as the process of performing a pair-
wise alignhment between a read and a reference genome to iden-
tify the region of origin for this DNA molecule [14, 15]. Early on
BLASR [16] was the method of choice for high-error long-read
mapping. Given its advantageous speed, BWA-MEM [17] later
emerged as the method of choice to align single-molecule se-
quencing reads. We have previously shown that while BWA-
MEM performs well in aligning these long reads, it produces
less optimal alignments in the presence of structural variants
(SVs) [2, 18]. This is mainly due to sequencing errors coupled
with SV signals in repetitive regions being mixed and causing
sub-optimal pairwise alignments, hindering an accurate detec-
tion of SV. To circumvent this issue we introduced NGMLR [2],
which made use of a convex scoring matrix to better distin-
guish between read error and SV signal. Using this approach, we
were able to achieve high-accuracy SV detection and at a similar
speed compared to BWA-MEM. However, as sequencing through-
put increased, NGMLR was not fast enough to keep up with the
sheer volume of data, thus becoming a bottleneck in the analysis
of larger datasets. Minimap2 [18] has since emerged as a highly
efficient long-read mapper, implementing a much faster align-
ment approach involving extending the traditional affine gap
cost model to a two-piece affine gap model [19] and implement-
ing an efficient chaining process. Thanks to these important al-
gorithmic enhancements, minimap?2 achieved a faster runtime
at a similar accuracy to state-of-the-art long-read mappers [18].
There exist several other long-read aligners that have prioritized
accuracy, sensitivity, or speed, such as MashMap [20], LAST [21],
GraphMap [22], and LRA [23]. However, despite promising recent
progress exemplified by these methods, there is still room for
improvement in long-read mapping [14].

We posit that a single strategy may not be sufficient for
those variable regions; we explore in this study whether distinct
heuristics implemented in the different mappers perform bet-
ter or worse in certain organisms or even regions of the genome
(e.g., human). The latter is especially relevant if one consid-
ers the different mutational rates per specific genomic region
due to recombination [24], housekeeping genes [25], and orphan
genes [26]. For example, a conserved housekeeping gene will
have a very different mutational landscape compared to genes
involved in immune responses (e.g., HLA [26], KIR) or compared
to other highly variable genes among the human population
(e.g., LPA [27], CYP2D®6).

To cope with these challenges, in this work we describe a
unified long-read mapping framework called Vulcan that melds
alignment strategies from two different long-read mappers, here

NGMLR and minimap2. Atits core, Vulcan is based on the follow-
ing straightforward idea: use distinct gap penalties for different
mappings between long reads and a reference genome. Notably,
Vulcan is the first long-read mapping framework that combines
two gap penalty models, as shown in Fig. 1. Vulcan first maps
reads starting with the fastest long-read mapper (minimap2 by
default). The key idea behind Vulcan is to identify reads that are
sub-optimally aligned on the basis of edit distance (i.e., num-
ber of differences between a read and the reference) and then
realign them with a more sensitive gap penalty (NGMLR by de-
fault). Previous works have shown that edit distance-based ap-
proaches may have an effect on effective detection of SVs [28,
29-31]. Here we show that edit distance can be used as a prior
for sub-optimally aligned reads, highlighting the utility and ac-
curacy of Vulcan based on NGMLR and minimap2. We apply Vul-
can on simulated and real datasets (HG002) to measure the im-
provements of our dual-mode alignment approach in both the
number of correctly aligned reads and runtime. Furthermore, to
showcase the benefit of improved read mappings, we compared
SV calling from Vulcan mapped reads to both NGMLR and min-
imap2 mapped reads on simulated ONT reads and human ONT
and PacBio CLR and HiFi reads.

To evaluate Vulcan’s ability to improve structural variant call-
ing, we simulated five types of structural variant in the reference
genome (Saccharomyces cerevisiae S288C). Specifically, we selected
S. cerevisiae S288C genome as the reference and added SVs into
the genome with SURVIVOR (1.0.7) and simSV [11]; later, we used
Nanosim-h (1.1.0.4) [32] to simulate a 10x coverage reads set.
We ran NGMLR, minimap2, and Vulcan on the dataset and used
Sniffles (version 1.12) to identify SV. In this experiment we also
included other SV types such as DUP, TRA, and INV.
Additionally, we used real data to show the improvements
over HG002, a benchmark sample well studied by Genome in a
Bottle (GIAB NIST). Here we downloaded ONT, PacBio HiFi, and
PacBio CLR datasets for the same sample. The data are available
at [33] and have been described in multiple publications [34, 35].
The subsample of coverages (Nanopore 10x, 20x, 30x; PacBio
CLR 10x, 20x; PacBio HiFi 10x) was performed with seqtk [36].

To demonstrate the ability of Vulcan to improve the overall map-
ping of long reads and thus to improve the SV detection across
organisms we used simulated (S. cerevisiae S288C) and real data
(human hg19) datasets. For the real datasets we used three dis-
tinct long-read technologies (PacBio HiFi and CLR, ONT) [32, 35].
Using these datasets, we evaluated the edit distance improve-
ment after Vulcan’s refinement and SV calling performance (re-
call, precision, and F1 score). Also, we show that Vulcan reduces
computational time against the methods that use convex gap
penalty (NGMLR).

First, we investigated Vulcan’s ability to identify reads that
would benefit from convex gap penalty vs two-piece affine gap
penalty by thresholding the reported edit distance from the
mappers (see Methods section) and thus minimize the edit dis-
tance between the read and mapped location on the reference
genome. To accomplish this, we mapped the GIAB HG0O02 ONT



Reference

Alignment s———
1

80000 A l

Initial read
mapping

Cut-off

0.2
Normalized Edit Distance

Edit
distance e

Normalized Edit Distance £= e//

High edit Merge
distance mapping
remapping results

Figure 1: Overview of Vulcan: As step 1, Vulcan takes raw ONT or PacBio reads as input, then uses minimap2 to map them to the provided reference genome. Subse-
quently, in step 2, Vulcan performs a normalized edit distance calculation (see Methods) to identify the reads with the highest normalized edit distances. In step 3,
Vulcan realigns the high edit distance reads with NGMLR. Finally, in step 4 Vulcan merges the minimap2 and NGMLR remapped reads to create a new bam file.

Ultra-long UCSC dataset using minimap?2 and investigated the
alignments from the reads given their reported edit distance
(NM tag).

We benchmarked Vulcan genome-wide to see whether it
would improve the overall edit distance compared to minimap2
alone. Figure 2A shows this trend, as Vulcan on the median has
a lower normalized edit distance than minimap?2 alone. Notably,
Vulcan does not recapitulate the overall distribution of edit dis-
tance from NGMLR because it only realigns 10% of the reads in
this example. Thus, by automatically realigning only 10% of the
reads Vulcan significantly improves the alignments in certain
regions of the human genome compared to minimap2. These
results provide support for our dual-mode alignment strategy
implemented in Vulcan to select reads on the basis of their nor-
malized edit distance and then realign these using NGMLR. This
strategy seemed to work and indeed improve the representation
of SV (Tables 1 and 2).

Next, we evaluated the speed-up of Vulcan compared to min-
imap2 and NGMLR. As shown in Fig. 3, Vulcan is able to achieve
<2.5x speed-up over NGMLR, from 6.5 CPU hours down to 2.5
CPU hours for the 90% cut-off (default parameter setting for hu-
man genome mapping). When increasing the edit distance cut-
off percentile, Vulcan CPU time decreases linearly. When com-
paring minimap2’s CPU time we see that Vulcan’s default set-
ting only requires ~3 times more CPU time compared to >10
times more CPU time required for NGMLR. This highlights Vul-
can’s ability to drastically reduce NGMLR CPU time and main-
tain comparable CPU time to minimap2, one of the most effi-
cient long-read aligners that currently exists. The RAM usage of
Vulcan 90% cut-off with Nanopore 10x reads is 29.7 GB.

We also show the relative contribution to CPU time for each
component in Vulcan (Fig. 3B and C): minimap2, samtools, file
parsing, and edit distance calculation with Python , and NGMLR.
As expected, NGMLR dominates this breakdown when mapping
the reads that are above the Vulcan cut-off (60% in this exper-
iment); the remaining components represent minor contribu-
tions to Vulcan’s execution time.

Next, we highlight the finding that NGMLR’s SV-aware mappings
enable the improved detection of SV (here deletion indicated by

black lines in Integrative Genomics Viewer [37]) compared to the
mapping results from minimap2 (Fig. 4A). We see in this ex-
ample that minimap2 demonstrates a more scattered pattern
of the deletion signal across all three regions (Fig. 4A-C). These
regions include an INS and a DEL, which induce noisy align-
ments from minimap?2. In contrast, automatically realigning the
reads with Vulcan using NGMLR shows a more consistent map-
ping pattern (Fig. 4B and C). Notably, Vulcan is able to elimi-
nate a false-positive SV call by preferentially selecting a convex
gap penalty over the two-piece affine gap penalty (Fig. 4C), high-
lighting the benefit of trading off increased CPU time (measured
in CPU hours) for increased accuracy (measured as fewer false-
positive SV calls).

Benchmarking SV calling with Vulcan’s mappings on simulated ONT
data

To follow up on the previous result, we next benchmarked SV
calls based on each of the three mapping strategies: minimap2,
NGMLR, and Vulcan. To perform this evaluation, we simulated
Nanopore reads from the S. cerevisiae S283C genome. As we see
in Fig. 5, Vulcan combined with Sniffles offers the highest re-
call and lowest false discovery rate (FDR) of all three mapping
approaches. Next, Fig. 5B highlights that Vulcan has the high-
est recall for all five SV types. We see that minimap?2 has the
lowest recall for DUPs on this low-coverage simulated long-read
dataset. However, both NGMLR and Vulcan are able to capture
the DUP with >99% recall. We also see that while TRA and INS SV
recallis identical for all three mapping approaches, Vulcan map-
pings help to improve both INV and DEL detection. With respect
to precision (Fig. 5C), Vulcan once again performs best across all
five SV categories, with NGMLR mirroring Vulcan performance
in all cases.

Benchmarking SV calling with Vulcan’s mappings on GIAB human
data

Given the promising SV calling results based on Vulcan map-
pings that we discovered in the simulated data, we next eval-
uated SV calling using Vulcan on real human (hg19) read sam-
ples from the GIAB project [35]. Similar to the SV experiment
with simulated data, we used Sniffles to call SVs called from
human (hgl9) reads mapped from each of the three methods:
minimap2, NGMLR, and Vulcan. This GIAB dataset allowed us to
evaluate against an established ground truth on real hg19 long-
read sequencing data. We next describe SV performance for var-
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Figure 2: Overall edit distance improvements. A: Normalized edit distance comparison of Vulcan’s (green) 90% percentile cut-off, NGMLR (red) and minimap?2’s (blue)
mapping result with human ONT 30X reads. We can see clear evidence that the realignment of only 10% of the reads lead to an improvement in edit distance and thus
of the variant calling. B: Distribution of mappings’ normalized edit distance from Vulcan (green), NGMLR (red) and minimap?2 (blue). Vulcan has a lower edit distance

mapping than minimap2 with NGMLR’s refinement.

Table 1: Benchmarking SV recall, precision, and F1 on HG002 Human (hg19) ONT reads at varying coverages (10x, 20x, 30x)

Method Recall, % Precision, % F1, %
ONT 10x
minimap2 78.31 75.59 76.93
NGMLR 77.40 76.65 77.02
Vulcan
60% 74.64 88.69 81.06
70% 76.66 87.87 81.88
80% 77.66 85.55 81.42
90% 78.29 83.31 80.72
ONT 20x
minimap?2 83.55 76.13 79.67
NGMLR 83.39 76.24 79.66
Vulcan
60% 83.78 77.71 80.63
70% 83.91 78.53 81.13
80% 83.50 79.57 81.49
90% 83.55 80.65 82.08
ONT 30x
minimap2 88.74 77.37 82.66
NGMLR 88.47 77.79 82.79
Vulcan
60% 89.37 79.11 83.93
70% 89.36 79.87 84.35
80% 89.24 80.71 84.76
90% 88.81 81.40 84.94

Various percentile cut-offs for Vulcan were used, including 60%, 70%, 80%, 90%. SV calls based on Vulcan mappings achieve the highest F1 score for various cut-off

values.

ious Nanopore coverages (10x, 20x, 30x), PacBio CLR (10x, 20x),
and PacBio HiFi (10x) datasets.

Specifically, we tested Vulcan on three different coverages
across ONT and PacBio datasets with respect to improving the
SV calling ability based on the GIAB SV call sets. Table 1 shows
the performance for Vulcan, NGMLR, and minimap2 together
with Sniffles to identify SV across the dataset. Similar to the
simulated data, we achieve the best SV calling results using Vul-
can together with Sniffles. Vulcan provides the most improve-
ment on lower coverage datasets. For the Nanopore 20x cover-

age, which is roughly equivalent to one ONT PromethION Flow
cell of a human genome, Vulcan improves F1 score by 3.13%
compared to minimap2-based alignments.

We then benchmarked the impact of the normalized edit dis-
tance thresholds for the ONT 30x dataset (Table 1). We show
that by increasing the cut-off percentile, we realign fewer reads
and thus Vulcan exhibits lower overall CPU time. However, this
subsequently results in lower SV recall but higher precision. We
observed the highest SV recall for Vulcan with a 60% cut-off
when realigning the top 40% edit distance reads. SV precision



Fuetal. | 5

Table 2: Benchmarking SV recall, precision, and F1 on HG002 Human (hg19) PacBio reads (CLR and HiFi) at varying coverages (CLR 10x, 20x,

30x; HiFi 10x)

Method Recall, % Precision, % F1, %
PacBio CLR 10x
minimap2 62.85 88.88 73.63
NGMLR 60.11 86.44 70.91
Vulcan
60% 60.13 89.41 71.90
70% 60.79 90.12 72.61
80% 60.97 90.13 72.73
90% 61.85 89.93 73.29
PacBio CLR 20x
minimap2 77.76 71.85 74.69
NGMLR 75.74 68.36 71.86
Vulcan
60% 75.74 74.69 75.21
70% 75.98 75.32 75.65
80% 76.22 75.65 75.93
90% 76.90 75.08 75.98
PacBio CLR 30x
minimap2 83.71 86.25 84.96
NGMLR 81.79 82.41 82.10
Vulcan
60% 82.05 86.31 84.12
70% 82.33 87.12 84.66
80% 82.47 87.60 84.96
90% 82.75 87.49 85.05
PacBio HiFi 10x
minimap2 81.50 90.70 85.85
NGMLR 78.22 86.26 82.04
Vulcan
60% 77.73 86.04 81.68
70% 77.74 86.19 81.75
80% 76.40 85.75 80.81
90% 76.26 85.73 80.72

Various percentile cut-offs for Vulcan were used, including 60%, 70%, 80%, 90%. Vulcan achieves the highest F1 score on PacBio CLR 20x and 30x reads, with minimap2

achieving the highest F1 score on PacBio CLR 10x and PacBio HiFi 10x reads.
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Figure 3: Comparing runtime for Vulcan, NGMLR, and minimap2. The time was measured in terms of CPU time for all programs. A: Vulcan achieves an approximately
linear acceleration with the increase of the cut-off percentile. With a 90% percentile cut-off, Vulcan only takes approximately one-fourth of NGMLR’s CPU time. B: The
majority of Vulcan’s CPU time is spent in running NGMLR on the subset of reads, leading to an improvement of their alignments. C: In 90% percentile cut-off, NGMLR

only re-aligns 10% of the reads, leading to time usage similar to that of minimap2.

was the highest at a 90% threshold where only the top 10% of
the reads are realigned. Notably, across all thresholds, Vulcan
performs the best in terms of F1 score. Vulcan by default uses a
90% threshold, yielding <3.79% improvement in F1 score on low-
coverage (10x) ONT data. However, SV calls based on minimap2
mappings achieved the highest recall on 10x coverage (0.02%
improvement over Vulcan mappings).

Finally, we investigated Vulcan’s performance with respect
to Sniffles SV calls on PacBio CLR and HiFi human datasets (Ta-
ble 2). PacBio CLR and HiFi reads offer a different error profile
compared to ONT reads, with PacBio HiFi representing the low-
est error rate long reads available to date. As we see in Table 2, SV
calls from Vulcan mappings offer the best recall, precision, and
F1 score for 20x coverage PacBio CLR data, improving on both
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Figure 4: Comparison of the two read mappers used in Vulcan based on 30x ONT data. A: An example at chr2: 112,870,823-112,871,894 of reads that show a higher

normalized edit distance and thus were automatically realigned with NGMLR. The
at this location compared to the minimap?2 alignments. B: Another example at chrl

overall alignments of these reads improved, clearly highlighting a larger deletion
: 108,567,498-108,567,633 of automatically aligned reads with Vulcan. The colored

reads indicate the same read aligned by the two different methods. The realignment with NGMLR clearly shows a deletion and insertion to be present likely on the

two different haplotypes. C: Example false-positive SV call improved by Vulcan mapping. This is an example of a false-positive SV call based on minimap2 that would
later be resolved with Vulcan’s alignment. The region of the genome is on chr1 at 167,9787,40.
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SV calls on Vulcan mappings offer the highest recall (95%) and lowest FDR (26%). B:

Recall of different SV types from minimap2, NGMLR, and Vulcan mappings with

Sniffles’ SV calling on simulated Nanopore reads. C: Precision of different SV types from NGMLR, Vulcan, and minimap2’s mappings with Sniffles’ SV calling on
simulated Nanopore reads. NGMLR has similar performance across all SV types, while minimap2 has a lower precision on INVs and DUPs.

NGMLR- and minimap2-based SV calls by >2% in F1 score and
nearly a 4% improvement over minimap2 and NGMLR precision.
The F1 score improvement is due to the SV calls based on Vulcan
offering similar recall to existing approaches but improved pre-

cision. However, when comparing SV recall, we see that Vulcan
mappings offer slightly lower performance compared to min-
imap2, while meeting or exceeding NGMLR recall. We also ob-
served that SV calls based on Vulcan mappings offer a slightly



increased recall rate when the normalized edit distance cut-
off increases in the PacBio CLR read dataset, different from the
ONT dataset results. One difference between these two datasets
is that the coverage of the PacBio CLR dataset is lower, and so
the Sniffles minimum read support is set lower. Then when in-
creasing the cut-off percentiles for Vulcan, there remain enough
NGMLR mappings to meet or exceed the minimum read number
support for SV calling.

In this article we introduce Vulcan, a novel long-read mapping
tool that leverages dual-mode long-read alignment, which we
have shown improves SV calling. Vulcan uses the edit distance
information across the mapped reads to rapidly identify regions
that are better suited for a convex gap penalty vs two-piece
affine gap penalty. The key idea behind Vulcan is that differ-
ent regions of the genome can benefit from distinct alignment
methods (e.g., due to differences in mutation rate), leading to,
e.g., improved SV detection. The latter is often highlighted over
mismapped reads, indicated by a higher per read substitution
and Indels rate [2, 35]. Throughout the Results section we have
highlighted the benefits of using a dual-mode alignment ap-
proach compared to minimap2 and NGMLR alone; Vulcan not
only results in long reads mapped at smaller edit distances, it
also improves the recall and precision of SV calling on ONT data.

Our results show that Vulcan runs up to 4 times faster than
NGMLR alone and produces lower edit distance alignments than
minimap?2, on both simulated and real datasets. In addition to
improved alignments (Fig. 3), we also show that using Vulcan
improves the precision and recall of SV calls for both PacBio CLR
and ONT datasets (Tables 1 and 2). Specifically on ONT, Vulcan
is able to achieve up to a 5% improvement in F1 score for SV
calls (harmonic mean of recall and precision) over the other two
mappers, minimap2 and NGMLR. This result not only highlights
the benefit of dual-mode alignment, it supports our hypothe-
sis that Vulcan can improve SV calling in human genome sam-
ples. We further speculate that Vulcan could improve SNV call-
ing for complex regions. However, the edit distance selection of
the reads would need to be adapted for this task and thus the
signal would not be that clear. Therefore, we abandoned this
benchmarking. Nevertheless, SNV detection around breakpoints
or within SV will obviously be improved.

When designing Vulcan, we opted to focus on precision and
computational efficiency. The NM tag is required according to
SAMtools specifications and contains all the information needed
to evaluate alignment quality. Future improvements to this ap-
proach may include not counting every difference on the read
(i.e., edit distance) but instead only the start of each edit. The
latter would count a longer deletion as 1 and not by the length of
the event as in the current implementation. Therefore, misalign-
ments that often introduce many smaller events and or substitu-
tions would be more penalized than larger INS or DEL. This could
slightly improve the selection process of Vulcan but will lead
to longer runtimes because the entire alignment would need to
be reconstructed per read. This approach would also consume
the majority of the time of our parsing method and thus signifi-
cantly alter the runtime. Thus, we did not implement this in the
current version of Vulcan but will continue to investigate other
filtering schemas. The soft clipping also takes place at split reads
that are indicative for SV and thus often form at breakpoints of
SV. The focus here is on reads that did not get split due to an SV
in this region but rather are forced into a continuous alignment.

Such reads will benefit from a realignment step as is done here
with Vulcan. We currently do not use MAPQ as a filtering crite-
rion because MAPQ reports the confidence of a read in a region
(weighted distance of best vs other potential alignments) [38].
This is indicative for repeats or other regional properties but not
for misalignments, or misrepresentation of variants. The issue
with correct or wrong representation of SV is more related to the
alignment score or chosen alignment algorithm rather than the
region. Most of the time NGMLR will not change the location of
the read compared to minimap?2 but the alignment itself. For ex-
ample, Fig. 4 shows the same reads in the same region but with
a better variant representation. Thus, using the normalized edit
distance has been shown to be a robust and rapid approximation
to detect these alignment artifacts.

Finally, we note that Vulcan could be used for any combi-
nation of long-read mappers that output the edit distance (NM
tag) directly within sam/bam file output. Thus, allowing the in-
clusion of WinnowMap [39], LAST [21], LRA [23], or Duplomap
[40] may further exploit our observation that variable gap costs
for different read-to-reference mappings provide improved SV
calling while offering improved runtimes compared to the more
computationally expensive long-read mapping approaches.

A key finding of this article is that the utilization of dual-mode
alignment, combining convex gap costs with two-piece affine
gap costs, leads to improvements in alignment edit distance and
subsequently SV identification. Notably, we see that SV calling
based on minimap2 mappings has low recall for DUPs, compared
to near perfect recovery of DUPs with NGMLR and Vulcan. Re-
cently, Jain et al. [39] discuss that the minimizer selection strat-
egy in minimap?2 may lead to a degradation in repeat detection.
Improved SV calling based on Vulcan’s results can be attributed
to leveraging the strengths of the long-read alignment strate-
gies found in minimap2 and NGMLR. Vulcan provides the first
approach for long-read mapping able to track variable mutation
rates and predominant mutation types at certain regions or SV
hot spots. The straightforward idea behind Vulcan of adapting
alignment gap costs to specific regions of the genome may be
found useful for compensating for highly polymorphic regions
such as HLA, a 14-Mb section of the human genome that has
been at the center of several recent studies [24, 25, 28]. Vulcan
takes the first step in leveraging this observation, and we antic-
ipate other mappers for long reads to follow up on this observa-
tion. In conclusion, in this study we have shown that combining
different long-read alignment strategies improves SV recall and
precision of human SV detection and have provided a new open-
source software tool (Vulcan) that encapsulates these benefits.

The main idea behind Vulcan is that we combine the benefits
of two popular long-read mapping tools (here NGMLR and min-
imap?2) for improved SV calling. To accomplish this, we first map
the reads (sequenced on the ONT or PacBio platform) to a refer-
ence genome with minimap?2 (2.17-r941), then identify the large
edit distance alignments taken from minimap2 mapping results
and flag them for realignment with NGMLR (0.2.7). As shown in
Fig. 1, Vulcan is composed of 4 main steps: (i) initial read map-
ping, (ii) normalized edit distance calculation, (iii) high edit dis-
tance remapping, and (iv) merging mapping results for down-
stream SV calling. The first step of the pipeline is to map all the
reads against the reference using minimap2 and its preset pa-



rameters suitable for either PacBio or ONT long-read sequences.
Subsequently, Vulcan uses the edit distance and scans the reads.
The edit distance is the number of substitutions, insertions, or
deletions that are different between the read and its region of
the reference [39, 41]. The edit distance is captured by the “NM”
tag (mandatory tag in sam format) in read mappers. We normal-
ize the edit distance with the overall read length to obtain a ra-
tio that represents the alignment of a given read. By dividing
the edit distance by the alignment length of a read, we can nor-
malize it to calculate the number of mismatches given an align-
ment length; i.e., with longer alignments, we tolerate larger edit
distances. And normalized edit distance can be expressed as
E =e/l,whereeis the edit distance and lis the alignment length.
We only keep all the primary mappings and gather the normal-
ized edit distances with SAMtools and pysam [42]. Note, the sec-
ondary mappings typically have larger edit distances because
they have a lower mapping quality than the primary mapping,
which may lead to the increase of high edit distance mappings
in the distance profile that we generated. With the knowledge
of all the normalized edit distances calculated from minimap2’s
mapping result, we can now set a percentile cut-off in agree-
ment with the user’s preference (90% as the default, based on
experimental results). With the selected percentile cut-off, we
can separate reads mapped with minimap?2 into two sets: reads
that are mapped below the cut-off and reads that are mapped
above the cut-off. If we only use raw edit distance, bamtools
[42, 43] supports splitting mapped reads via specific tags. How-
ever, with normalized edit distances, we instead use pysam, a
wrapped Python interface for htslib [42] to calculate the normal-
ized edit distance and split the mapping result. We then extract
all the reads above the cut-off and re-map them with NGMLR.
Thanks to NGMLR’s ability to accurately remap large edit dis-
tance reads, Vulcan is able to improve minimap2’s high edit dis-
tance results (in some cases) into read mappings with small edit
distances. Finally, we combine the mapping results—specifically,
the mapped reads from minimap2 below the cut-off and the
remapped reads from NGMLR—into a final merged and sorted
BAM file. Vulcan was written in Python 3.8 using the multipro-
cessing module for multicore support. All versions of software
and parameters used in this study are provided in Supplemen-
tary Table S1.

To evaluate Vulcan’s computational performance, we assessed
the fold speed-up vs NGMLR and compared Vulcan to minimap?2.
We chose subsampled ONT real data with 10x coverage as test
data. In this experiment, we assessed our speed-up under dif-
ferent edit distance cut-offs in Vulcan and compared them with
NGMLR and minimap2. We used the /usr/bin/time command in
Linux to record the program’s wall clock and CPU time. Further-
more, to profile the individual steps of Vulcan, we also counted
the time usage per step on the ONT 10x coverage dataset with
90% and 60% percentile normalized edit distance cut-off. In the
time benchmarking experiment, the read dataset size is a 62.6
GB fastq file and contains 6,190,519 reads.

We used Vulcan on three long-read human genome datasets:
ONT Ultra Long reads, PacBio HiFi reads, and PacBio CLR reads
[35]. We downloaded these three long-read types from GIAB [34]
and mapped them to the human reference genome hgl9. Fur-

thermore, we used Sniffles to call SVs from our mapping re-
sult, then compared with the ground truth that GIAB provided
through truvari (v2.0.0-dev) [35].

Sniffles [2] allows users to define the minimum number of
reads supported for the SV calling; we set that parameter as 2
and then use bcftools [44] to further filter the minimum sup-
ported read number to achieve the optimal F1 score. We set the
minimum read support to be the same for all three methods
when the coverage and read type is the same, and the opti-
mal F1 score was preferentially selected for both minimap2 and
NGMLR.

The experiment was performed on an Intel® Xeon® Gold
5218 CPU at 2.00 GHz with 64 threads with Ubuntu 18.04 LTS.
Total RAM was 300 GB.

Project name: Vulcan

Project home page: https://gitlab.com/treangenlab/vulcan
Operating system(s): Unix

* Programming language: Python

Other requirements: Python 3.8 or 3.9

License: MIT

RRID:SCR_021657

biotools:vulcan_mapper

The Saccharomyces cerevisiae 288C reference genome for reads
and SV simulation, NCBI:txid559292, is available at [45].

* The Ashkenazim Trio HG002 raw sequence data, and ground
truth sets of SVs are available at [33].

Simulated reads, supporting data and an archival copy of the
code is also available via the GigaScience database, GigaDB [46].

Supplementary Figure S1: Wall clock time benchmarking of Vul-
can, NGMLR, and minimap2 on ONT 10x datasets. A wall clock
time benchmarking has been performed to compare the perfor-
mance of three different methods. From the chart we can infer
that Vulcan takes less than two-fifths the time of NGMLR. The
experiment was performed on a Nanopore 10x subsample real
dataset from the GIAB project.

Supplementary Figure S2: CPU time benchmarking of Vulcan,
NGMLR, and minimap2 on PacBio 20x datasets. Vulcan achieves
an approximately linear acceleration with the increase of the
cut-off percentile. With a 90% percentile cut-off, Vulcan only
takes roughly one-fourth of NGMLR’s runtime. The experiment
was performed on a PacBio CLR 20x subsampled real dataset
from the GIAB project.

Supplementary Table S1: Programs, program versions, and pa-
rameters used in this study.

Supplementary Table S2: Accuracy, precision, and F1 score of
simulated data.

bp: base pairs; BWA: Burrows-Wheeler Aligner; CLR: continuous
long read; CPU: central processing unit; DEL: deletion; DUP: du-
plication; FDR: false discovery rate; GIAB: Genome in a Bottle;
INS: insertion; INV: inversion; kb: kilobase pairs; Mb: megabase
pairs; NCBI: National Center for Biotechnology Information; NIH:


https://gitlab.com/treangenlab/vulcan
https://scicrunch.org/scicrunch/Resources/record/nlx_144509-1/SCR_021657/resolver

National Institutes of Health; ONT: Oxford Nanopore Technolo-
gies; PacBio: Pacific Biosciences; PacBio HiFi: PacBio circular con-
sensus sequencing; RAM: random access memory; SNV: single-
nucleotide variation; SV: structural variant; TRA: translocation;
UCSC: University of California Santa Cruz.
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