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CONSPECTUS: There is need in the molecular simulation
community to develop new quantum mechanical (QM)
methods that can be routinely applied to the simulation of
large molecular systems in complex, heterogeneous condensed
phase environments. Although conventional methods, such as
the hybrid quantum mechanical/molecular mechanical (QM/
MM) method, are adequate for many problems, there remain
other applications that demand a fully quantum mechanical
approach. QM methods are generally required in applications
that involve changes in electronic structure, such as when
chemical bond formation or cleavage occurs, when molecules
respond to one another through polarization or charge
transfer, or when matter interacts with electromagnetic fields. A full QM treatment, rather than QM/MM, is necessary when
these features present themselves over a wide spatial range that, in some cases, may span the entire system. Specific examples
include the study of catalytic events that involve delocalized changes in chemical bonds, charge transfer, or extensive polarization
of the macromolecular environment; drug discovery applications, where the wide range of nonstandard residues and protonation
states are challenging to model with purely empirical MM force fields; and the interpretation of spectroscopic observables.
Unfortunately, the enormous computational cost of conventional QM methods limit their practical application to small systems.
Linear-scaling electronic structure methods (LSQMs) make possible the calculation of large systems but are still too
computationally intensive to be applied with the degree of configurational sampling often required to make meaningful
comparison with experiment.
In this work, we present advances in the development of a quantum mechanical force field (QMFF) suitable for application to
biological macromolecules and condensed phase simulations. QMFFs leverage the benefits provided by the LSQM and QM/MM
approaches to produce a fully QM method that is able to simultaneously achieve very high accuracy and efficiency. The efficiency
of the QMFF is made possible by partitioning the system into fragments and self-consistently solving for the fragment-localized
molecular orbitals in the presence of the other fragment’s electron densities. Unlike a LSQM, the QMFF introduces empirical
parameters that are tuned to obtain very accurate intermolecular forces. The speed and accuracy of our QMFF is demonstrated
through a series of examples ranging from small molecule clusters to condensed phase simulation, and applications to drug
docking and protein−protein interactions. In these examples, comparisons are made to conventional molecular mechanical
models, semiempirical methods, ab initio Hamiltonians, and a hybrid QM/MM method. The comparisons demonstrate the
superior accuracy of our QMFF relative to the other models; nonetheless, we stress that the overarching role of QMFFs is not to
supplant these established computational methods for problems where their use is appropriate. The role of QMFFs within the
toolbox of multiscale modeling methods is to extend the range of applications to include problems that demand a fully quantum
mechanical treatment of a large system with extensive configurational sampling.

1. INTRODUCTION

Computational modeling plays a vital role in chemical research
by aiding in the interpretation of experimental measurements,
guiding the design of future experiments, and making
predictions when experiment is unavailable. The variety and
complexity of many chemical problems, such as those
encountered in biology, require an array of computational
tools ranging from molecular mechanical (MM) force fields to
quantum mechanical (QM) methods to probe the dynamical,
reactive, and electromagnetic phenomenon of interest.

Theoretical methods rely upon inherent approximations that
limit their accuracy, range of application, and computational
efficiency. Computational modeling therefore begins with the
selection of the most appropriate tool for the task at hand.
Conventional MM force fields are useful for problems that
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require a large amount of configurational sampling, but they are
not designed to describe bond formation and cleavage. On the
other hand, QM methods can accurately model chemical
reactions (depending on the choice of Hamiltonian and basis
set), but they are too costly for generating ensemble statistics.
Hybrid QM/MM methods treat a small part of the system with
a QM model and the remainder with a MM force field. QM/
MM thus offers a practical compromise to enable a direct
comparison with experiment through simulation of chemical
reactions;1,2 however, the QM/MM approach inherits all the
problems inherent within the QM and MM models and
introduces new challenges involving their interaction. For
example, standard MM models neglect multipolar electrostatics
and many-body polarization; the balance between affordability
and accuracy of the QM method is still an issue; the accuracy of
the QM nonbonded interactions is questionable, especially
when large QM regions are required; and the QM/MM
interaction potential does not properly adjust as the reaction
proceeds, as would be expected when significant changes in
atomic charges occur.3

Quantum mechanical force fields (QMFFs) are a class of
methods that divide a system into fragments, each of which are
treated quantum mechanically but whose interactions are
empirically modeled to recover high accuracy while remaining
computationally efficient. QMFFs are not meant to replace
well-established methods such as QM/MM for problems where
those methods are appropriate; rather, their purpose is to
extend the range of applications to include problems that
demand a full QM description of a large system requiring
extensive configurational sampling. Example application areas
that stand to benefit from QMFFs include (1) enzyme design
studies of catalytic events that involve delocalized changes in
chemical bonds, charge transfer, or extensive polarization of the
macromolecular environment, thus requiring an extended QM
region; (2) drug discovery applications, where the wide range
of nonstandard residues and protonation states are challenging
to model with purely empirical MM force fields; and (3)
interpretation of spectroscopic observables of biological
macromolecules, for example, infrared (IR), Raman,4 nuclear
magnetic resonance5−7 (NMR), and 2-D IR8 spectra, which are
inherently quantum mechanical in nature.

A variety of QMFFs have been examined through proof-of-
principle studies that introduce the methodology and
demonstrate their feasibility.9−14 The ultimate success of a
model, however, is judged through its application and
subsequent assessment of its balance between speed and
accuracy relative to established techniques.15 The first stages
of model development therefore involve a substantial level of
effort to produce results used to assess the advantages and
disadvantages of proposed models. To this end, the present
work highlights recent advances that demonstrate the speed
and accuracy of a QMFF relative to standard approaches. The
relationship between QMFFs and traditional QM approaches
(including linear-scaling electronic structure methods) is
discussed, and we explain how those differences are exploited
by QMFFs to achieve their tremendous computational speed-
up while simultaneously delivering superior accuracy.

2. BACKGROUND

Linear-scaling quantum methods (LSQMs), that is, methods
whose computational complexity increases linearly with system
size, surmount the high cost of traditional QM algorithms by
avoiding the construction of globally orthonormal molecular
orbitals (MOs). Fragment-based LSQMs, for example, achieve
linear scaling by subdividing the system into fixed-size regions
of locally orthogonal orbitals16 that are constructed from the
diagonalization of matrices whose sizes are proportional to their
respective fragments, so although the number of fragments
increase with system size, the complexity required to generate
each set of fragment MOs remains constant. The various
fragment-based LSQMs, such as the divide-and-conquer17 and
fragment molecular orbital18 methods, represent the different
approaches used to correct the short-ranged interfragment
interactions to account for having relaxed the global
orthogonality constraints. Although there are technical differ-
ences between the methods, their corrections act to mimic the
effect of having enforced the MO orthogonality of a fragment
with its neighbors, which we refer to as the fragment’s “buffer”.
By extending the size of the buffer, LSQMs are capable of well-
reproducing the result of a traditional implementation without
introducing new, empirically parametrized corrections; how-
ever, the use of a buffer necessarily cause LSQMs to become

Figure 1. Illustration of the difference between a standard QM calculation and a MO-based QMFF. The traditional SCF constructs MOs spanning
the space of the entire system by diagonalizing a large Fock matrix. The QMFF MOs are localized on each fragment and are obtained from the
diagonalization of a series of small Fock matrices. The blue and red molecular surfaces are meant to represent the external chemical potential
experienced by the active fragment. The arrows represent the equilibration of the fragment systems due their coupling through their electron
densities.
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computationally advantageous only when applied to large
systems. One will, therefore, pragmatically choose to use them
with relatively inexpensive QM Hamiltonians, for example,
semiempirical models or density functional theory (DFT)
methods with small basis sets. In this event, the capability of
reproducing the result of a standard implementation is not
necessarily advantageous because the cost savings provided by
inexpensive Hamiltonians are countered by their poor
representation of nonbonded interactions.
Orbital-based QMFFs are designed to circumvent the

limitations of LSQM methods by replacing some of their
theoretical rigor with computationally tractable models that can
be tuned emprically to achieve high accuracy. First, the “break-
even point” at which the method becomes computationally
advantageous to use is eliminated by removing the fragment
buffers entirely. Second, parametrized nonbond interactions are
introduced to account for the lack of explicit interfragment
orbital coupling. Furthermore, the empirical parametrization
affords the opportunity to improve the description of nonbond
interactions beyond the capabilities of the underlying QM
model. As illustrated in Figure 1, the QMFF calculation of the
fragment MOs is nearly equivalent to having solved a series of
small, independent ab initio calculations upon embedding the
fragment within the remainder of the system, which is viewed,
from the fragment’s perspective, merely as a source of an
external potential. Although there are no explicit interfragment
MO coupling matrix elements, the MOs of each fragment are
coupled with the others through the interaction of their
electron densities, which change at each self-consistent field
(SCF) step until a global convergence is reached.
There exists an alternative, promising strategy for construct-

ing QMFFs that avoids the use of MOs entirely. These
“density-based QMFFs” prefit an accurate ab initio electron
density with an auxiliary basis that interacts through a density-
overlap model and is allowed to respond under the principle of
chemical potential equalization.13,14 This class of QMFFs,
however, is not designed to model changes in chemical bonding
and is not the focus of this Account.

3. DEVELOPMENT OF A QMFF BASED ON THE mDC
METHOD

The orbital-based QMFF strategy described above was
pioneered by Gao with the X-Pol model9,10,19−22 and was
adopted in our own method, called mDC.12,23 mDC and X-Pol
are conceptually equivalent but differ in their details of how the
fragments interact with one another. The X-Pol method
interacts the fragments using a traditional QM/MM potential;
however, this potential depends upon which fragment is
considered to be the QM region. X-Pol therefore computes the
QM/MM potential for each fragment and averages the
interaction energy and forces. The X-Pol strategy used to
compute interfragment interactions may be sufficient for some
Hamiltonians, like neglect of diatomic differential overlap
(NDDO)-based semiempirical models, but we have found it to
be wanting when applied to popular density functional tight-
binding (DFTB) models, like the DFTB3 semiempirical
model.24 A QM/MM treatment of DFTB3 would result in
the interaction of atomic charges only; however, DFTB3’s
ability to well-reproduce hydrogen bond geometries largely
results from its explicit coupling of MOs between the
molecules, not from the interaction of their atomic charges.
The explicit MO couplings are removed in the QMFF, so

we’ve found it necessary to construct an auxiliary set of atomic

multipole moments from the DFTB3 density matrix to preserve
the angular dependence that would normally be expressed from
the MOs, as illustrated in Figure 2. Considering that we are

now concocting a new interfragment potential, we choose it to
yield symmetric interactions so that, unlike the X-Pol potential,
they are computed once, thereby avoiding a need for averaging.
By having chosen a symmetric interaction potential, the mDC
total energy becomes

∑= +E E N ER p R q( , , ) ( , )
A

N

mDC A A A inter

frag

(1)

where EA is the electronic energy of fragment A with NA
electrons and atom positions RA under the influence of the
external potential p = ∂Einter(R,q)/∂q, and Einter is the total
interfragment interaction energy computed from the atomic
multipole moments q.
In choosing a QM model around which a QMFF is to be

parametrized, one must consider not only its computational
efficiency but also its ability to strike a proper balance between
the quality of intra- and interfragment interactions. Semi-
empirical Hamiltonians are, at the present time, the only
models we consider to be sufficiently fast to make the routine
application of a QMFF to the dynamics of large systems
practical. These methods are faster than ab initio Hamiltonians
because they use very small AO basis sets, they ignore many of
the AO integrals, and they parametrize the remaining integrals
to achieve reasonably good geometries, bond enthalpies, and
other small molecule properties. Both NDDO and DFTB are
established semiempirical methodologies that have been
successfully used in the past, but there are some important
differences between them. NDDO methods use atom-centered
multipoles to perform electrostatics, whereas DFTB3 limits the
second-order electrostatics to atomic charges only. On the
other hand, NDDO methods ignore interatomic AO overlap,
whereas DFTB3 does not. DFTB3’s explicit treatment of AO
overlap affords a better description of intramolecular

Figure 2. Comparison of hydrogen bond angles produced by different
methods. (left) In-plane view of the “up−up−down” water trimer.
(right) Hydrogen bond between water and the secondary amine of n-
methylactimide.
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interactions such as ring puckers,25 as illustrated in Figure 3.
We have therefore chosen to use DFTB3 as the base QM

model to leverage its description of intramolecular interactions
and then parametrically construct atomic multipoles from the
DFTB3 density matrix to interact the fragments. By limiting the
use of the atomic multipoles to the interfragment interactions
only, we can target the parametrization toward nonbond forces
without directly affecting the properties of isolated fragments,
so we do not have to redevelop a new DFTB3 model from
scratch. With this approach, we have recently parametrized an

mDC model that improves electrostatic potentials (Figure 4)
and interaction energies.23 Without having included second-
order multipolar electrostatics, DFTB3 shows discrepancies in
its electrostatic potentials for sp3 oxygens, sp2 nitrogens, and π-
bond electrons. Preliminary tests with a point-charge DFTB3
QMFF, called mDC(q) (ref 12), suggests that higher-order
multipoles are necessary to retain good hydrogen bond angles
(Figure 2), which otherwise devolve into MM force field-like
configurations. The electrostatic potentials and hydrogen bond
angles are improved upon including higher-order multipoles.

4. ACCURACY OF INTERMOLECULAR INTERACTIONS

In ref 12, we introduced a general linear-scaling QMFF
framework that highlighted many of the ingredients we felt
might eventually be brought to bear in the development of a
full-fledged QMFF. One of those ingredients included a charge-
dependent density overlap van der Waals model,3 similar in
spirit to those used in the density-based QMFFs.13 In most
chemical environments, however, significant change in atomic
charges will primarily be limited to those atoms involved in
chemical reactions. A simple Lennard-Jones (LJ) model should
therefore suffice for the majority of a system, and this was the
strategy taken in ref 23. In that work, the LJ interactions were
parametrized to a number of nonbond databases constructed
from benchmark ab initio calculations and comparisons were
made to a standard MM model (GAFF), NDDO and DFTB
semiempirical models, B3LYP/6-31G*, and the MNDO/GAFF
hybrid QM/MM method. A small representative subset of
those comparisons are shown in Figure 5, which we have
supplemented with M062X/6-311++G** results to make
comparison with a modern density functional method and
large basis set. The comparisons reveal that the GAFF force
field produces very accurate nonbond interactions when applied
to small systems. B3LYP/6-31G* and MNDO/GAFF are of
comparable quality and are both outperformed by GAFF.

Figure 3. Deoxycytidine. Pucker phase and amplitudes are listed in
degrees. Standard torsion constraints are employed to mimic the
nucleoside connection to the B-DNA backbone.

Figure 4. Difference between mDC (top) and DFTB3 (bottom) electrostatic potentials relative to B3LYP/6-311++G**. Colors bounded by ±0.003
au. Blue, red, and green indicate electron density deficiency, excess, and agreement relative to B3LYP/6-311++G**, respectively.
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DFTB and NDDO semiempirical models were also observed to
be of comparable accuracy to each other23 (the unsigned errors
of both are approximately twice those of GAFF), in agreement
with previous findings.26 The parametrized mDC model,
however, is found to produce interaction energy mean unsigned
errors smaller than any of the MM, QM, or semiempirical QM/
MM methods.

5. APPLICATION TO DRUG SCREENING

GAFF’s accuracy is impressive when applied to small
molecules; however, it is a fixed-charge, nonpolarizable
model, so one may therefore question to what extent its
quality may degrade when applied to larger systems. Previous
studies have concluded, for example, that electronic polarization
can stabilize transition state barriers by 9 kcal/mol27 and that it
plays a key role in the relative ordering of inhibitor interactions
with focal adhesion kinase28 and the binding of ligands to the
trypsin protein.29 We recently applied GAFF, MNDO/MM,
and mDC to a drug screening exercise involving cyclin-
dependent kinase 2 (CDK2).30 In this simple exercise, drug
ligands with known experimental protein inhibition constants
(IC50) were docked into the receptor pocket of CDK2, and the
gas phase protein−ligand interaction energy was correlated to
the experimental IC50’s. We found that the GAFF interaction

energies correlate less to experiment than either MNDO/MM
or mDC, and we further found mDC to correlate best. Given
that MNDO/MM and mDC both explicitly treat electronic
polarizability and both correlate better than the nonpolarizable
GAFF, it is reasonable to suspect that this difference is due to
explicit polarization. Although reasonable correlations between
binding enthalpy and binding free energy are attainable for this
system without having to explicitly consider the entropic
contributions of the kinase, ligand, or solvent degrees of
freedom through thermodynamic averaging via molecular
dynamics simulation, it has been previously noted that the
correlation between changes in binding enthalpy and free
energy can often be poor.31 The efficiency of QMFFs make
feasible the prospect of modeling free energy changes, including
entropic effects, with molecular dynamics simulation.

6. CONDENSED PHASE WATER SIMULATIONS

New models seek to attain maximum transferability, that is, the
model should produce acceptable results in a variety of
environments, so as to widen their range of application. One
measure of transferability is the reproduction of both small gas-
phase cluster interactions and condensed-phase properties.
Figure 6a,c demonstrates the ability of mDC to reproduce both
small-to-medium sized water cluster binding energies and the

Figure 5. Comparison of mDC with other Hamiltonians using several databases (S22 and JSCH-2005, ref 37; S66, ref 38) of intermolecular
interactions. B3LYP, M062X, and QM/MM refer to B3LYP/6-31G*, M062X/6-311++G**, and MNDO/GAFF, respectively. “(Fixed)” indicates
that the dimer interaction energies are computed using the reference structures.

Figure 6. (a) Water cluster relative energies (reference data taken from ref 39). QM/MM refers to MNDO/TIP3P. (b) mDC and DFTB3 water box
timings with and without gradient evaluation in gas phase and under periodic boundary conditions. (c) Comparison of condensed phase water O−O
radial distribution functions (experimental data taken from ref 40).
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O−O radial distribution function (RDF) of liquid water
obtained from molecular dynamics simulation. The mDC ΔE
mean unsigned error is considerably better than the MM
TIP3P model, the DFTB3 semiempirical model, the MNDO/
TIP3P QM/MM method, and the two ab initio Hamiltonians.
Both mDC and TIP4P-Ew are found to well-reproduce the
experimental RDF. The simulations were performed with a
modified version of the SANDER program and consisted of
512 waters sampled for 3.2 ns in a cubic box with a 1 fs time-
step in the canonical (NVT) ensemble at a temperature of 298
K and density of 0.996 g/cm3.

Figure 6b compares execution times between mDC in

vacuum and periodic boundary conditions and a standard SCF

implementation of DFTB3. The standard SCF implementation

of DFTB3 would take approximately 24 h to evaluate the

energy of a 3000 water system, whereas a condensed phase

mDC calculation takes 0.5 s. The 3.2 ns mDC simulation used

to construct the RDF required 37 h/ns of simulation. Previous

timing analysis of large systems concluded that a point-charge-

only variant of mDC is twice as fast.12

Figure 7. Electrostatic potential arising from the polarization density induced upon protein−protein binding in the gas phase. Blue and red indicate
the positive and negative electrostatic potential (bounded by ±0.04 au) from the response of the multipoles interior to the surface. The surface of
each monomer is shown independently to aid the visualization.
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7. POLARIZATION EFFECTS IN MACROMOLECULAR
BINDING

An important gauge of a model’s transferability is its ability to
accurately describe molecular interactions over a wide range of
heterogeneous electrostatic environments.32 This is particularly
important in macromolecular association where electrostatic
complementarity is critical for molecular recognition and is
often a driving force for binding. QMFFs have the advantage of
including a multipolar description of electrostatic interactions
as well as explicit many-body polarization. Figure 7 illustrates
the importance of these effects by showing the electrostatic
potential due to the electronic polarization density that occurs
upon protein−protein binding for several systems described in
more detail below.
The barnase−barstar complex33 is a classic example of

electrostatic complementarity at the binding interface. It is clear
that the polarization induced upon complexation enhances both
electrostatic complementarity and binding.
Figure 7 displays ribonuclease A (RNase A) bound within

the concave cleft of ribonuclease inhibitor (RI),34 a highly
flexible protein consisting of leucine-rich repeats. The cleft
consists of an inner layer of parallel β sheets and loops
surrounded by an outer layer of parallel α helices. The
intermolecular interaction is largely electrostatic, and the
positively charged RNase A induces considerable electro-
negative potential on the concave surface of the RI to enhance
binding.
The binding of the E202Q mutant of human acetylcholines-

terase (AChE) complexed with green mamba venom peptide
fasciculin-II (FAS-II)35 is shown in the bottom of Figure 7.
AChE is a highly efficient enzyme that hydrolyzes the
neurotransmitter acetylcholine to terminate synaptic trans-
mission, is highly sensitive to reactions with organophosphorus
inhibitors, including nerve agents such as sarin, and is the target
of neurotoxins contained in certain snake venoms. Despite its
relative small size, FAS-II induces a large electronegative
polarization density and potential at the surface of AChE that
helps it to achieve its binding strength.
In the above examples, it is clear that the polarization

induced by protein−protein binding is significant; it enhances
the electrostatic complementarity and thus increases the
binding energies. Nonetheless, fixed-charge force fields may
overestimate the binding energies due to “pre-polarization” of
their charges to account for their lack of an explicit treatment
for polarization.29

8. SUMMARY AND OUTLOOK

This Account has presented advances in the development of a
QMFF to be used as a tool in the study of complex biochemical
problems. The efficiency of the QMFF is achieved by limiting
the explicit use of MOs to the intrafragment interactions while
modeling the interfragment interactions through MO-derived
atomic densities and empirically parametrized functions. This
decomposition and subsequent parametrization of the inter-
actions allows one to achieve very accurate intermolecular
forces. The mDC QMFF is based on the recently developed
DFTB3 method, which models relative conformational energies
and barriers more reliably than the conventional NDDO
semiempirical methods lacking explicit “orthogonalization
corrections”.
The mDC method presented here is demonstrated to be

extremely fast and, in several applications, is found to deliver

higher accuracy than conventional molecular mechanical force
f ields, semiempirical QM/MM potentials, and full QM results.
mDC was further shown to improve the representation of
molecular electrostatic potentials relative to DFTB3, and its
transferability was demonstrated by its ability to reproduce
small-to-medium sized water cluster binding energies and the
O−O RDF of liquid water. The CDK2 drug screening exercise
was used to demonstrate mDC’s transferability to heteroge-
neous environments; mDC was found to better correlate the
receptor−ligand binding energies to experimental IC50’s than
either GAFF or MNDO/MM. The mDC method was applied
to protein−protein interactions to illustrate the importance of
explicit polarization in protein binding. Finally, the mDC
method was shown to be very efficient. On an 8-core desktop
workstation, the calculation of the mDC energy and forces of a
9000 atom system requires 0.5 s.
Our results are meant to highlight mDC’s accuracy and

efficiency to emphasize its promise as a useful tool. These
demonstrations, however, have focused solely on nonbonded
intermolecular interactions and did not illustrate its ability to be
used in chemical reactions or for the calculation of inherently
quantum mechanical observables, such as molecular spectra. It
thus remains to broadly test and apply the mDC method to
study chemical reactions in complex homogeneous and
heterogeneous condensed phase environments, such as those
encountered in biocatalysis, and to use it as an aid in the
interpretation and prediction of 1D- and 2D-IR, Raman, and
NMR spectra of biomolecules.
The mDC method provides a general f ramework from which

new QMFFs can be built using higher-level QM methods. Because
the coupling between fragments occurs through the electron
density, multilevel QMFFs can be designed that combine
different theoretical models to construct a global potential that
is tailored to optimally balance accuracy and efficiency for a
particular problem,36 and in this way, multilevel QMFFs will
provide a set of tools that allow a hierarchy of accuracy and
robustness that can be used together in a multiscale modeling
framework to solve complex biochemical problems.
The mDC method provides the foundation from which f ree

energy surfaces can be systematically corrected to higher levels. The
impact of new QMFFs will be made more powerful still as
other technologies evolve, for example, “free energy surface
(FES) correction” methods. FES correction methods provide a
mechanism whereby complex FESs constructed by exhaustive
sampling with an affordable Hamiltonian can be systematically
and variationally corrected to closely approximate higher-level
surfaces with orders of magnitude reduction in the required
sampling. In conclusion, QMFFs provide the foundation for the
design of multiscale modeling strategies that, together with new
FES methods, will evolve into powerful tools that can be
brought to bear on a wide range of biological problems.
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