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Introduction
Biliary strictures are an important clinical condi-
tion that may lead to severe symptoms and com-
plications, including jaundice, cholangitis, liver 

abscesses, and secondary biliary cirrhosis. 
Transpapillary biliary drainage with stent place-
ment or balloon dilation through endoscopic ret-
rograde cholangiopancreatography (ERCP) is a 
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well-established treatment for these patients and 
allows for symptom relief of jaundice, pruritus, 
and pain, and improvement of liver functions.1–4

A biliary stricture may be caused by either benign 
or malignant etiology. Malignant strictures 
account for approximately 70% of cases, and 
most often concern pancreatic cancer, followed 
by cholangiocarcinoma (CCA), and at a lesser 
frequency other malignancies (such as gallbladder 
carcinoma, ampullary carcinoma, metastatic 
lesions).5 The determination of the etiology of a 
stricture often requires the combination of several 
diagnostic modalities, including clinical evalua-
tion, laboratory findings, and endoscopic and 
radiological imaging.6,7 In addition, tissue sam-
pling for cyto- or histopathological assessment is 
of paramount importance.8 The level of serum 
tumor markers, in particular CA-19.9 and CEA, 
is often evaluated in clinical practice during eval-
uation of biliary strictures; however, it should be 
noted that elevated levels of these markers are 
compatible with both benign and malignant 
causes of biliary obstruction. Therefore, before 
ordering tumor markers, consideration of the 
consequence of elevated levels is warranted, and 
interpretation of the test results requires combi-
nation with other diagnostic modalities, including 
cross-sectional imaging.9

Although the majority of biliary strictures prove 
malignant after diagnostic work-up or follow-up, 
a number of benign conditions, such as primary 
sclerosing cholangitis (PSC), chronic pancreati-
tis, and IgG4-related sclerosing cholangitis, fre-
quently mimic malignancy, and differentiation 
can be challenging.10–14

Despite the combination of the above-mentioned 
diagnostics, current strategies for the assessment 
of biliary strictures have a very low diagnostic 
accuracy. As a result, biliary strictures remain 
indeterminate in up to 20% of cases.15 Since con-
sequences are devastating when a malignant cause 
of a biliary stricture is missed or diagnosed at a 
later stage precluding surgery, improved diagnos-
tic methods with adequate sensitivity are required. 
In addition to a high sensitivity, these diagnostic 
methods should also demonstrate a high specific-
ity to avoid unnecessary large surgical procedures 
(such as pancreaticoduodenectomy). The impor-
tance of a high specificity is underlined by the 
observation that in approximately 15–25% of 
patients undergoing surgical resection for biliary 

strictures with a high suspicion of malignancy, 
pathological examination of the resected speci-
mens reveals benign disease.16,17

A tissue diagnosis remains key for an adequate 
differentiation of the etiology of biliary strictures. 
Current barriers for a tissue diagnosis include 
both insufficient tissue sampling and a difficult 
cyto- or histopathological assessment mostly in 
an inflammatory background. Therefore, optimi-
zation of diagnostic strategies requires both 
improved tissue sampling during ERCP in com-
bination with development and implementation 
of novel molecular diagnostic tools on biliary 
tissue.

In this review, we summarize current knowledge 
regarding optimal biliary tissue sampling of bil-
iary strictures during ERCP, and elaborate on 
promising molecular techniques to differentiate 
between benign and malignant strictures. It 
should be noted that these diagnostic strategies 
will be included in a complex diagnostic algo-
rithm in clinical practice.

Optimizing tissue sampling techniques 
during ERCP

Cytology
Brush cytology is the most commonly used tissue 
sampling technique during ERCP. Since the 
majority of CCAs develop distal (40%) or in the 
perihilar (50%) region, most strictures are ame-
nable to this technique.18 After transpapillary bil-
iary cannulation, a brush catheter is inserted over 
a guidewire into the biliary tree, and is advanced 
to the stricture. After advancing the brush from 
the catheter, the brush is moved back and forth 
along the stricture, resulting in attachment of epi-
thelial cells to the brush. Thereafter, the brush is 
retracted in the catheter and withdrawn from the 
endoscope. The brush is cut off the catheter and 
can be smeared onto glass slides or can be stored 
in CytoLyt fixative solution.19

Due to low diagnostic yield of brush cytology 
(which is described in detail in the following para-
graph on ‘Cytology’), multiple studies have inves-
tigated modified techniques and new cytology 
brush designs to increase its diagnostic yield. These 
techniques aim at enhancement of exfoliation of 
epithelial cells and subsequently making material 
more representative by increasing cellularity. 
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Repeat brushing (>1 brush per patient) increases 
cancer detection,20 whereas obtaining brush cytol-
ogy after stricture dilation by a balloon or passage 
dilating catheter does not result in higher cancer 
detection rates.20,21 The newest brushes are larger 
and/or have different types of bristles oriented at 
an angle greater than the conventional 45 degree 
angle. However, these more expensive Infinity® 
brushes (Infinity sampling device, US Endoscopy, 
Mentor, OH, USA) and the Cytolong® brush 
(Cook Endoscopy, Winston-Salem, NC, USA) 
demonstrated an equal diagnostic performance as 
compared with the conventional brush, and have 
therefore not widely replaced conventional brushes 
in clinical practice.22–24 The use of other devices to 
disrupt the biliary epithelium, such as a scraping 
brush and stent retriever have been studied in the 
past years, but study results were inconclusive due 
to small series. 25–27

In several patients it is a challenge to obtain cyto- 
or histological specimens with brushing or biop-
sies due to technical difficulties. Intraductal bile 
aspiration cytology is an easy and established 
method and a suitable alternative diagnostic strat-
egy to investigate the morphology of biliary epi-
thelial cells when other methods, in particular 
brush cytology, fail.28 Biliary aspiration can be 
performed during either ERCP, via an endo-
scopic nasobiliary catheter, or a percutaneous 
transhepatic biliary catheter.29 In general, 10–
50 ml bile is aspirated and centrifuged to separate 
the cells for preparation of a smear, whereafter 
the slide is stained by standard Papanicolaou 
technique for cellular examination. These cells 
are well preserved and can be observed singly, in 
monolayer, or folded sheets.30 The most impor-
tant drawbacks of this technique is the low abun-
dance of epithelial cells in bile and the lack of 
knowledge about the ideal bile volume and the 
ideal sampling site.31

Finally, another technique that has been described 
in literature to obtain cytological specimens is by 
fine needle aspiration (FNA) of the biliary lesion 
during ERCP. This procedure is performed with 
a biliary catheter with a retractable needle that 
can be placed into the target lesion under fluoro-
scopic guidance.32 The needle is moved back and 
forth into the lesion, after which the aspirations 
are processed into smears or are stored in 
CytoLyt.33 This technique is not commonly 
applied in routine practice, since its additional 
value to brush cytology has not been proven.

Histology
Brushes are often combined with fluoroscopy-
guided biliary biopsies to increase diagnostic 
accuracy for malignant biliary strictures. 
Obtaining ductal biopsies can, however, be tech-
nically challenging. Under fluoroscopic guidance, 
the biopsy forceps are advanced to the level of the 
stricture, and opened and closed to grasp a speci-
men from the stricture. It usually provides a sam-
ple of bile duct lining epithelium sometimes 
together with underlying stroma. In patients with 
an indeterminate biliary stricture it has been 
shown to improve diagnostic performance as 
compared with brush cytology alone.34 
Endoscopic retrograde transpapillary forceps 
biopsy demonstrates sensitivities ranging from 
40% to 60% and specificities from 97% to 
100%.35–40 Because of a limited sampling area for 
biliary biopsies, obtaining multiple biopsies or 
complementary biliary brushing is recommended. 
When biopsy is combined with brush cytology, 
sensitivity increases from 47% to 86%, while 
specificity remains close to 100%.41 Furthermore, 
the combination of bile aspiration cytology, brush 
cytology, and forceps biopsy results in a sensitiv-
ity of 85% and a specificity of 100%.42

Over recent years, many new tools have been 
developed to optimize the success rate of ade-
quate tissue sampling in the bile duct. One of 
those methods is the wire-guided biopsy forceps, 
which can be advanced over a wire through the 
common bile duct. This technique may overcome 
the difficulties encountered by freehand insertion 
of the forceps across the major papilla. In the 
direct method, the forceps are directly inserted 
into the bile duct alongside the guidewire. Both 
direct and wire-grasping methods for obtaining 
transpapillary forceps biopsies have been 
explored, resulting in a significantly higher suc-
cess rate of obtaining adequate specimens using 
the wire-grasping method (100% versus 50%).43

Cholangioscopy targeted biopsies
Peroral cholangioscopy (POC) allows targeted 
biopsies by direct endoscopic visualization of the 
biliary stricture, resulting in a superior diagnostic 
performance as compared with ERCP-guided 
cytology brushing and forceps biopsies.44,45 In 
POC, a slim endoscope is introduced through a 
working channel of a duodenoscope. The cholan-
gioscope is then introduced into the bile duct, 
either freehand or over a guidewire. This technique 
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enables direct intraductal visualization of stric-
tures, targeted biopsy sampling of suspected areas 
and in case of stones, intraductal lithotripsy. POC 
is considered to be a well-tolerated technique 
with relatively few complications. The nature and 
frequency of complications are comparable with 
those reported for conventional ERCP, including 
pancreatitis, perforation and bleeding, with a pos-
sible exception for the occurrence of cholangi-
tis.46 Retrospective studies have found higher 
rates of cholangitis among patients undergoing 
POC as compared with conventional ERCP, 
although prospective data are lacking.47 In clini-
cal practice, the use of antibiotic prophylaxis 
could be considered before POC to prevent chol-
angitis. The success rate with peroral cholangios-
copy to achieve a visual diagnosis and a histological 
diagnosis is reported to be high (up to 90% and 
80%, respectively).48–51 The addition of peroral 
cholangioscopy to biliary brushes or forceps biop-
sies resulted in a sensitivity of 100% and a speci-
ficity of 87%.52 In up to 15% of cases the 
cholangioscope is not able to pass through the 
stricture, with PSC as an important risk factor for 
failed cannulation.44,53 The disposable through 
the scope Spyglass® single-operator cholangios-
copy is a popular tool to obtain visual assessment 
and (fluoroscopic-guided) targeted biopsies of 
biliary lesions with a reported sensitivity as well as 
specificity of 83% for visual diagnosis, and a sen-
sitivity and specificity of 66–86% and 94–100% 
for representative biopsies.54–59 Further improve-
ment of sensitivity is reached when increasing the 
number of biopsies for histological assessment.60 
However, a critical look at the studies is needed. 
Many studies have included a small series of sam-
ples, a high risk of selection bias exists, and histo-
logical assessment is not blinded for clinical 
characteristics. Furthermore, in the above-men-
tioned studies, only representative samples were 
included, meaning that the real sensitivity is lower 
than the reported sensitivity. Nevertheless, pero-
ral cholangioscopy with bile duct biopsies appears 
to be a valuable tool in the diagnostic work-up of 
indeterminate biliary strictures. Although at pre-
sent the use of cholangioscopy with biopsies is 
often limited to expert centers, more widespread 
use can be awaited during coming years.

Confocal laser endomicroscopy
A novel technique for the distinction of benign 
and malignant biliary strictures is probe-based 
confocal laser endomicroscopy (pCLE), which 

provides in vivo evaluation of gastrointestinal 
mucosal histology.61 A laser illuminates the tissue 
with a wavelength of 488 nm.62 The light is locally 
absorbed by fluorophores and the reflected fluo-
rescence is detected by the probe, resulting in 
multiple two-dimensional images, which can 
reconstruct a true microscopic three-dimensional 
structure in real time.63 This technique has shown 
an excellent sensitivity of 89–98% to detect malig-
nant strictures, but the diagnostic value is ham-
pered by a disappointing interobserver agreement 
and a low specificity of 67%, mostly due to false 
positive results in cases with a benign inflamma-
tory stricture.64–66 The Miami and Paris classifica-
tions have been developed to improve diagnostic 
accuracy of the confocal laser endomicroscopy for 
benign strictures caused by inflammation.67,68 Up 
to writing, only a small number of studies in a low 
number of expertise centers have investigated the 
diagnostic performance of pCLE. Therefore, 
prior to implementation of this technique in clini-
cal practice, prospective studies need to be 
awaited to establish the additional diagnostic 
value of pCLE to existing diagnostic strategies.

Optimizing tissue analysis and new 
molecular techniques

Cytology
Several processing options exist for biliary brush 
samples to optimize the assessment of cytology, 
including smears on glasses, generally stained 
with May Grünwald–Giemsa (MGG) stain, and 
fixation in CytoLyt. After fixation in CytoLyt, 
cellular material can be further processed into 
sections by the use of ThinPrep® or Cellient™, 
which are suitable for cytological assessment 
(Supplementary Figure 1).69–71

Brush cytology is scored by morphological exami-
nation and can be classified into the following 
categories according to the Papanicolaou classifi-
cation: nondiagnostic, negative for malignancy, 
atypical, neoplastic (benign or other), suspicious 
for malignancy, or malignant (Figure 1).72,73 
Specimens scored as nondiagnostic cannot be 
interpreted due to technical or sample issues, 
including absence of epithelial cells.74 In malig-
nant smears, cells have among others, enlarged 
nuclei and an irregular nuclear membrane.

The diagnostic accuracy of brush cytology has 
been investigated in several studies. Table 1 
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provides an overview of the accuracy to detect CCA 
of biliary brush cytology in available studies, includ-
ing reports on PSC patients.8,26,35,36,40,73,75–128 
Specificity has been shown to be close to 100% in 
all these studies. However, sensitivity rates of 
brush cytology are rather disappointing, reported 
within a considerable range from 15% to 
70%.104,107,129,130 Main reasons for the high rate of 
false-negative results are sampling errors and low 
tissue yield due to technical challenges, including 
difficult anatomic sites and poor visualization.106 
Moreover, the pathological assessment is difficult 
as illustrated by reports on a considerable 

interobserver disagreement.102,131 Especially in 
PSC the distinction between benign and malig-
nant cytology on brush is notoriously difficult due 
to altered cellular morphology caused by inflam-
mation. Predictors of a positive yield of brush 
cytology include advanced age, mass size >1 cm, 
stricture dilation before sampling, stricture length 
of >1 cm, and increased serum levels of CA-19.9, 
alanine aminotransferase (ALT), and total 
bilirubin.114,132

Similar to biliary brush cytology, bile aspiration 
cytology specimens from neoplastic biliary stric-
tures demonstrate identical cellular alterations as 
compared with specimens from inflammatory bil-
iary strictures, including hyperplasia or regenera-
tive or degenerative alterations. In order to 
confirm neoplasia, increased nuclear–cytoplasmic 
ratio, variation in shape, and clumping of chro-
matin are essential features in cytological mate-
rial.30 Further research is required to explore the 
diagnostic accuracy of cytological examination 
from bile aspiration, since mainly small series 
were published with conflicting results and large 
ranges of sensitivity. Although promising results 
of bile aspiration were reported with a signifi-
cantly higher sensitivity as compared with routine 
brushes (89% versus 37%), no difference in sensi-
tivity between brushing and bile aspiration were 
observed when only adequate samples were 
examined and bile aspiration cytology needed to 
be repeated several times to obtain an acceptable 
sensitivity.29,133 Moreover, other studies did not 
confirm these findings and reported markedly 
lower sensitivities of 41–55%.30,134,135

Immunohistochemistry
Immunohistochemical staining is a widely availa-
ble method in order to investigate specific tumor-
igenesis-related protein expression patterns in 
brush and biopsy samples. In CCA, patterns of 
multiple antibodies have been evaluated in sev-
eral studies, including insulin-like growth factor 
II mRNA-binding protein-3 (IMP3), tumor-
associated protein p53, Mac-2 binding protein 
(Mac-2BP), interferon α-inducible protein 27 
(IFI27), urokinase-type plasminogen activator 
(uPA), and S100P. Sensitivity and specificity of 
immunohistochemical staining of these proteins 
are reported in Table 2.101,136–149

IMP3 is an oncofetal RNA-binding protein 
expressed in embryologic epithelial cells, myocytes 

Figure 1. Examples of routine cytology of biliary 
brush samples. (a) Normal biliary epithelial cells. 
(b) Atypia; reactive changes with variation in nuclear 
size, often observed in PSC. (c) Adenocarcinoma, 
showing variation in nuclear architecture and size. 
Papanicolaou staining. Original magnification, ×25.
PSC, primary sclerosing cholangitis.
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and placental tissue during embryogenesis.137 In 
several, mainly gastrointestinal malignancies, pro-
tein expression can be significantly upregulated.136 
It has been demonstrated that 58–78% of bile duct 
carcinomas show intermediate to strong cytoplas-
mic staining of IMP3.137,143 IMP3 is also expressed 
in biliary tissue with low or high-grade dysplasia.137 
Sensitivity and specificity of IMP3 immunohisto-
chemistry for the diagnosis of CCA are 64% and 
100%, respectively. When staining is combined 
with routine cytology, sensitivity increases to 72% 
with a specificity of 100%.136 Positive IMP3 
immunohistochemistry is often associated with 
concurrent p53 overexpression and enhanced 
tumor proliferation, indicated by a significantly 
higher ki-67 staining in tumor tissue with a strong 
IMP3 expression, and is associated with reduced 
survival rates.

The protein p53 is a product of the TP53 tumor 
suppressor gene, in which mutations occur in many 
cancers, including biliary carcinomas.150 Staining 
biliary brush cytology and biopsies for p53 may be 
helpful to identify malignant strictures in samples 
showing indeterminate results on conventional 
brush cytology, since the majority of CCAs with 
TP53 mutations demonstrates overexpression of 
p53 protein.148,151 In 17–60% of CCAs, an increased 
p53 protein expression is observed, more often in 
poorly differentiated neoplasia as compared with 
well differentiated neoplasia.140,146,147,152

Mac-2BP is a cytoplasmic glycoprotein that inter-
acts with galectin-3 on tumor cell surfaces and 
plays an important role in cell adhesion.153 
Approximately 94% of bile duct carcinomas show 
Mac-2BP expression, suggesting that this protein 
could be a diagnostic marker for biliary carcino-
mas.142 Nevertheless, due to a lack of data, Mac-
2BP immunohistochemistry is not recommended 
at present for differentiation between benign and 
malignant biliary strictures.

IFI27 is an oncogene involving the innate immune 
system and cell proliferation.139 High expression 
leads to cell proliferation and invasion. IFI27 
knockdown in CCA has been shown to lead to 
cell cycle arrest in the S-phase, resulting in a 
lower cell proliferation rate.154 In addition to 
diagnostic applications, this finding suggests that 
IFI27 might also be a potential treatment target.

Immunohistochemical analysis of uPA has been 
performed in a pilot study with 11 patients with 
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known or suspected malignant strictures, demon-
strating expression of this protein in 73% of the 
biliary cytology samples obtained during 
ERCP.141 uPA plays a role in tumor invasion, 
growth, and cellular migration leading to the 
development of metastases.

S100P is a member of the S100 calcium-binding 
proteins and is involved in multiple cellular pro-
cesses, including cell cycle progression and dif-
ferentiation. An increased expression level is 
frequently observed in CCA, while no expression 
is seen in healthy bile duct tissue.101 It has also 

Table 2. Review of literature. Sensitivity and specificity of immunohistochemistry in CCA.

Author Protein No. of samples Immunohistochemistry

 Sensitivity (%) Specificity (%)

Hart et al.136 IMP3 64 64 100

Riener et al.137 IMP3 113 47 100

Diamantis et al.140 p53 39 54 NR

Stewart et al.146 p53 66 46 98

Tascilar et al.147 p53 49 40 100

Yeo et al.148 p53 139 65 93

Ordonez et al.145 Mesothelin 19 37 NR

Yu et al.149 Mesothelin 24 33 NR

Koopmann et al.142 Mac-2 36 94 NR

Chiang et al.139 IFI27 96 45 NR

Gibbs et al.141 uPA 11 73 NR

Hamada et al.101 S100P 85 83 92

 S100P + cytology 90 92

Ali et al.138 KOC 99 67 99

 S100P 81 100

 Mesothelin 55 98

 MUC1 33 86

Levy et al.143 S100P 72 90 100

 IMP3 78 94

 VHL 93 94

 S100P + IMP3 + VHL 70 97

Ligato et al.144 KOC 44 92 95

 S100A4 79 95

 KOC + S100A4 100 95

CCA, cholangiocarcinoma; KOC, K homology domain-containing protein overexpressed in cancer; NR, not reported; uPA, 
urokinase-type plasminogen activator; VHL, von Hippel-Lindau.
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been shown that S100P expression level increases 
during pancreatic carcinogenesis.155 Moreover, 
cell proliferation, survival, motility, and invasion 
are stimulated by S100P expression in an in vitro 
culture of cancer cells.156

Lastly, biomarker panels have been suggested in 
the detection of CCAs, including KOC, S100P, 
and mesothelin.138 At least two of these biomark-
ers need to be positive to achieve a sensitivity of 
100% and a specificity of 99%. K homology 
domain-containing protein overexpressed in can-
cer (KOC) is an oncofetal RNA-binding protein, 
frequently positively expressed in pancreatic  
carcinomas.157 In addition, one-third of CCAs 
demonstrates mesothelin overexpression, a differ-
entiation antigen with expression normally lim-
ited to mesothelial cells.145,149 Another suggested 
immunohistochemical biomarker panel includes 
S100P, von Hippel-Lindau gene product 
(pVHL), and IMP3. Negative staining of S100P 
and IMP3 combined with positive staining of 
pVHL can be found in a significant number 
(69%) of biliary adenocarcinomas.143 The VHL 
protein has a tumor suppression function, mean-
ing that carcinogenic development can occur in 
case of inactivation of both VHL alleles.158

In summary, many immunohistochemical tumor 
markers have been investigated with varying suc-
cess rates. However, full appreciation of these 
ancillary techniques is hindered by the low num-
ber of carcinomas evaluated in these studies. Due 
to this lack of data, none of the available immuno-
histochemical markers is recommended for rou-
tine use in clinical practice.

Chromosomal instability
Biliary tract tumors are genomically unstable, lead-
ing to chromosomal copy-number alterations.159 
Several techniques can be used to demonstrate 
DNA quantity and abnormalities, including digital 
image analysis, microsatellite instability, fluores-
cence in situ hybridization and next-generation 
sequencing (NGS).

Digital image analysis (DIA) quantifies DNA 
content, chromatin distribution, and nuclear 
morphology, by using a camera interfaced with a 
microscope. The determination of these charac-
teristics may help to distinguish between benign 
and malignant biliary strictures. However, the 
accuracy of DIA is quite disappointing and 

comparable to routine brush cytology with a 
described sensitivity of 40% and specificity rang-
ing between 77% and 92%.85,91

Analysis of microsatellite DNA is also widely used 
for detecting different types of cancer. Micro-
satellites are short highly polymorphic DNA frag-
ments composed of nucleotide repeats, located 
on many positions within the genome.160 In 
genomic unstable tumor cells, microsatellites may 
be gained or lost, implying allelic imbalance. In 
addition, in tumor cells, defective in DNA mis-
match repair, microsatellites are prone to deletion 
and insertion mutations during DNA replication. 
This phenomenon is known as microsatellite 
instability (MSI) and can be the result of defects 
in mismatch repair genes, including mutL 
homolog 1 (MLH1), mutS homolog 2 (MSH2), 
and mutS homolog 6 (MSH6).161 In addition, 
tumor clonality can be explored with microsatel-
lite analysis. Microsatellite assays are able to 
detect identical genetic alterations in body fluids 
as found in the corresponding primary tumors, 
illustrating the clonality of the tumors.162

Furthermore, fluorescence in situ hybridization 
(FISH) is a valuable strategy to add to the diag-
nostic work-up of biliary strictures. This technique 
utilizes fluorescently labelled complementary 
DNA probes targeting specific chromosomes or 
chromosomal loci of individual cells.163 It allows 
detecting aneuploidy of chromosomes in biliary 
brushes or biopsies in order to distinguish between 
CCA and benign bile duct strictures (Figure 2). 
Several studies have investigated sensitivity and 
specificity of FISH on biliary brush samples in 
CCA and PSC-associated CCA. Table 1 provides 
an overview of 60 studies on both diagnoses. For 
CCA (non-PSC) reported sensitivity ranges from 
31% to 65% and specificity is consistently reported 
close to 100%, and for PSC-associated CCA sen-
sitivity ranges from 29% to 88% and specificity 
from 57% to 100%. All but one studies have 
included invasive carcinoma as study samples for 
FISH analysis; only Kushnir et al.108 have included 
both invasive carcinoma and high-grade dysplasia. 
The range of reported sensitivities is considerable, 
which may be caused by various methods and 
endpoints used in the studies, including different 
probe sets and polysomy and/or trisomy as end-
points. Mostly, FISH leads to an enhanced accu-
racy of CCA diagnosis in addition to brush 
cytology assessment.87,111,120 Polysomy of chro-
mosomes 3, 7, and 17, and loss of chromosome 
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locus 9p21 are well-known genetic alterations in 
malignancies.99,164 Also in patients with PSC, pol-
ysomy is suspicious for the presence of biliary neo-
plasia, especially in combination with an elevated 
serum CA-19.9 level.165,166 For the detection of 
CCA an optimized set of four probes has been 
suggested, containing DNA probes directed to 
chromosomes 1q21, 7p12, 8q24, and 9p21.92 
CDKN2A is a 9p21 gene of which homozygous 
deletion and loss of heterozygosity is regularly 
found in CCA (5% and 20%, respectively).167 In 
addition, FGFR genetic aberrations are also com-
mon in CCA, including FGFR2 fusions and 
amplification of FGFR19 and FGFR3.168,169 
FGFR2 fusions are typically observed in small-
duct intrahepatic CCA.170 Amplification of 
ERBB2 and EGFR are less common in CCA, but 
both are also described in around 5–8% of 
patients.150,171 Amplification of these genes leads 
to overexpression of the corresponding proteins.

Finally, chromosomal imbalance can also be 
detected by NGS. Several algorithms have been 
currently developed to identify copy-number var-
iations based on targeted amplicon sequencing 
data.172–175 In addition, single-nucleotide poly-
morphism (SNP) analysis is another suitable 

NGS strategy to detect chromosomal imbal-
ance.176 During this analysis highly polymorphic 
SNP amplicons are included in the NGS panel, 
after which the status of each SNP can be inter-
preted as homozygous (noninformative), bal-
anced heterozygous, or imbalanced heterozygous 
(loss or amplification of one allele).

Mutation profiling
Many studies have identified mutations in resec-
tion specimens of CCA, including in the genes 
TP53, KRAS, ARID1A, and IDH1.150,164,177–180 
Mutations in TP53 are most common in biliary 
tumors with a prevalence of 26%.150 Also KRAS 
mutations are frequently detected in CCA (17%). 
Some studies have even reported a prevalence of 
KRAS mutations in resection specimens and bil-
iary brushes up to 30–40%.181–185 In addition to 
the previous described chromosomal imbalance 
of FGFR, also mutations have been identified in 
this gene family, more often in FGFR2 than in 
FGFR1, FGFR3, and FGFR4.168 In contrast to an 
aggressive tumor progression in case of TP53 and 
KRAS mutations, FGFR mutations correlate with 
a significantly indolent disease course.186 
Furthermore, in addition to the previously 
described amplification of EGFR in a small num-
ber of CCA patients, somatic mutations of the 
EGFR gene have also been described in biliary 
tract cancer.187 Patients with these mutations 
might benefit from EGFR inhibitors, such as gefi-
tinib or erlotinib, which are used in EGFR mutant 
lung cancer.188–190 Mutations in GNAS and 
PIK3CA are less frequently observed alterations 
in CCA.183,191

Mutations differ between intrahepatic and extra-
hepatic CCA. TP53 and KRAS mutations are 
more common in extrahepatic than in intrahe-
patic CCA (45% versus 35% and 40% versus 24%, 
respectively). Furthermore, mutations in IDH1, 
ARID1A, BAP1, MCL1, NRAS, and PBRM1 are 
mainly detected in intrahepatic CCA, while 
ERBB2, SMAD4, FBXW7, BRAF, and CDKN2A 
alterations are mainly identified in extrahepatic 
CCA.192–196 A systematic review reported fre-
quencies of IDH1 mutations in intrahepatic CCA 
ranging from 5% to 56%, while less than 1% of 
the extrahepatic CCA showed IDH1 muta-
tions.197 Mutations in PSC-associated CCA 
(PSC-CCA) are largely identical to mutations in 
sporadic (non-PSC-related) CCA, including 
alterations in TP53, KRAS, IDH1, and SMAD4.198 

Figure 2. Examples of FISH negative (a) and positive 
(b) cases for MYC copy-number assessment. (a) 
Tumor cells with two signals for each of the two 
probes. (b) Tumor cells with MYC amplification.
MYC (green); centromere-bounded probe (red).
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In comparison to sporadic CCA, ERBB2 muta-
tions and amplification are more often observed 
in PSC-CCA.198,199

NGS in both intraductal brushes and biopsies is 
promising for standard diagnostic care in biliary 
strictures. Different sequencing technologies are 
available, including Sanger, targeted sequencing, 
whole exome sequencing, and whole genome 
sequencing.200 All methods have unique charac-
teristics, leading to differences in coverage, read 
length, ideal DNA input, and limit of detection 
for mutations, and are therefore not all appropri-
ate for mutation profiling in brush cytology. 
Singhi et al.123 have identified mutations in a con-
siderable number of biliary brushes and biopsies 
by performing targeted NGS with a large gene 
panel. With this gene panel a sensitivity of 73% 
and specificity of 100% was reached for biliary 
neoplasia. The most prevalent genomic altera-
tions consisted of mutations in KRAS, TP53, 
CDKN2A, SMAD4, PIK3CA, and GNAS. 
Overall, when routine cytology was combined 
with targeted NGS with a large gene panel, sensi-
tivity increased from 36% to 60–80% with a spec-
ificity of 99%.123,185 Kushnir et al.108 demonstrated 
that the combination of brush cytology, FISH 
analysis, and mutation profiling of KRAS resulted 
in an increase of the diagnostic performance with 
a sensitivity of 66% and a specificity of 100%. 
When a large gene panel of 39 potentially inter-
esting genes was added to brush cytology exami-
nation, sensitivity increased to 85%, with a 
maintained high specificity of 96%.164 The prom-
ising data of mutation profiling need further 
confirmation.

Mutation profiling on liquid biopsies is a promis-
ing technique for the diagnosis of CCA, especially 
when tissue sampling fails, and to monitor tumor 
response to (targeted) therapy.201–204 Genetic pro-
files of cell-free (cf)DNA in blood samples have 
been shown to match the profiles in CCA.205–207 
As an alternative, the mutation profiles may be 
investigated in bile samples. According to a small 
case series, cfDNA genetic profile analysis in bile 
has a higher diagnostic value as compared with 
blood samples for the detection of mutation pro-
files of CCA.208 In addition, mutations may also 
be found in cfDNA from the supernatant fluids 
after biliary flushing during ERCP, similar to 
observations in samples obtained during bron-
choscopy.209 This technique requires further eval-
uation for biliary lesions. Another promising 

technique is the detection of circulating free 
microRNAs. MicroRNAs are small noncoding 
RNAs (21–23 nucleotides) that play an important 
role in cancer development by influencing many 
cellular processes, such as differentiation, prolif-
eration, and apoptosis.210,211 Due to the remark-
able stability of cfmicroRNAs in blood, these can 
be detected by various methods, including north-
ern blotting, in situ hybridization, RT–PCR, 
microarray, and deep sequencing.212,213 Bernuzzi 
et al.214 have identified several promising microR-
NAs as biomarkers for the diagnosis of PSC and 
CCA, including miR-200c for PSC and miR-194 
for CCA. The analysis of microRNAs in serum 
might differentiate between PSC and CCA. 
According to a cohort study of 40 PSC, 40 CCA, 
20 primary biliary cholangitis patients and 40 
controls, the miR-483-5p and miR-222 were sig-
nificantly more upregulated in CCA as compared 
with PSC. More data on the diagnostic value of 
microRNAs for the differentiation of benign and 
malignant biliary strictures are eagerly awaited.

In addition to diagnostic purposes, identifying 
mutations might also be important for the treat-
ment of CCA. In several cancer types, suitable 
molecular targets have been identified for indi-
vidualized targeted therapy, including EGFR and 
BRAF mutations in lung cancer and melanoma, 
respectively.215,216 The development of molecular 
targeted therapies in CCA is challenging due to 
the large variety of genetic aberrations.217–219 
However, mutations in genes as ERBB2, EGFR, 
and PIK3CA are detected and agents with these 
genes as targets have been suggested for targeted 
therapy in CCA.220 Bankov et al.221 identified 79 
mutations in 39 intraductal biopsies of 16 CCA 
patients with targeted NGS, resulting in poten-
tially therapeutic targets in 6/16 patients: EPHA2, 
ERBB2, PIK3CA, and PTEN. Unfortunately, 
several clinical trials have been performed in CCA 
with inhibitors of various targets in oncogenic 
pathways, including MEK1/2, EGFR, ERBB2, 
and BRAF/VEGFR, all of which did not show a 
pronounced clinical benefit.222–225 Also in PSC-
CCA, potentially actionable molecular targets 
were identified, including ERBB2, EGFR, MET, 
and MYC.199 However, clinical data of targeted 
therapy in PSC-CCA is scarce.

Methylation
Aberrant DNA methylation contributes to carcino-
genesis in several types of tumors by inactivating 
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tumor suppressor genes.226 Normally, DNA meth-
ylation occurs at CpG sites, which are DNA regions 
where a guanine nucleotide follows a cytosine 
nucleotide. Hypermethylation is mostly located in 
the promoter regions, while dense CpG islands are 
usually devoid. Promoter hypermethylation of the 
CpG islands leads to transcriptional repression.227 
In addition, global hypomethylation is also often 
found in neoplastic cells.228 However, the precise 
role of the hypomethylation and the mechanism to 
silence tumor suppressor genes are unclear. The 
epigenetic change of aberrant DNA methylation 
induces silencing of tumor suppressor genes and 
appears to be an early event in carcinogenesis.229 In 
many tumor types, including lung cancer, methyla-
tion plays a critical role in the initiation and pro-
gression of neoplasia.230,231 Tumor suppressor 
genes MLH1, p14ARF, CDKN2A, CDH1, NPTX2, 
TFPI-2, APC, TIMP3, RASSF1, and DAPK are 
commonly methylated in CCA.226,232,233 
Approximately 80–85% of the biliary tract tumors 
shows methylation in at least one known tumor 
suppressor gene, while around 70% of CCA dem-
onstrates methylation in at least three genes.226,234

In addition, inactivation of tumor suppressor 
microRNAs by DNA methylation is frequently 
found in CCA.232 MicroRNAs are involved in 
several pathways and deregulation of these small 
molecules can lead to progressive carcinogenesis 
of different types of cancer.235 For example, 
tumor suppressor miR-370 can be inactivated by 
DNA methylation in tumor cells of bile duct car-
cinomas.236 MiR-370 is downregulated by a high 
expression of interleukin-6, a pro-inflammatory 
cytokine. Overexpression of interleukin-6 is often 
found in CCA and may contribute to tumor cell 
growth by miRNAs deregulation, including 
miR-370.237

Detection of DNA methylation of tumor suppres-
sor genes and microRNAs could be a valuable 
diagnostic tool for CCA. Besides, DNA methyla-
tion inhibitors might be promising for the treat-
ment of these tumors. Further investigations of 
these techniques are required.

Conclusion
CCA is commonly diagnosed at an advanced stage 
and has a devastating prognosis. A low diagnostic 
yield of currently available diagnostic methods 
contributes to the late diagnosis of CCA. Genetic 
factors and a variety of signaling pathways are 

involved in the carcinogenesis and are potential 
diagnostic targets. Current diagnostic work-up 
consists mainly of routine cytology examination, 
and in some centers the standard is assisted by 
FISH analysis or p53 immunohistochemistry. 
Genetic alterations and aberrant DNA methyla-
tion in biliary brushes and/or biopsies are promis-
ing diagnostic and prognostic markers for CCA, 
which are already implemented in the diagnostic 
work-flow of some laboratories. Amplification of 
1q21, 7p12, 8q24, ERBB2, EGFR, and FGFR 
genes are observed in biliary tumors, as well as 
CDKN2A loss and FGFR2 fusions. The majority 
of these potential markers could be identified by 
FISH or NGS and aid in a timely diagnosis of 
CCA. Prompted by the described considerations, 
in case of a high suspicion of malignant stricture, 
we would recommend obtaining both brush cytol-
ogy and fluoroscopic-guided biopsies. NGS 
should be performed on this biliary material when 
results are inconclusive. A prominent position of 
molecular analyzes for the diagnosis of CCA may 
be awaited in the near future.
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