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Abstract 

Background: Nucleosome plays an important role in the process of genome expres‑
sion, DNA replication, DNA repair and transcription. Therefore, the research of nucleo‑
some positioning has invariably received extensive attention. Considering the diversity 
of DNA sequence representation methods, we tried to integrate multiple features to 
analyze its effect in the process of nucleosome positioning analysis. This process can 
also deepen our understanding of the theoretical analysis of nucleosome positioning.

Results: Here, we not only used frequency chaos game representation (FCGR) to 
construct DNA sequence features, but also integrated it with other features and 
adopted the principal component analysis (PCA) algorithm. Simultaneously, support 
vector machine (SVM), extreme learning machine (ELM), extreme gradient boosting 
(XGBoost), multilayer perceptron (MLP) and convolutional neural networks (CNN) are 
used as predictors for nucleosome positioning prediction analysis, respectively. The 
integrated feature vector prediction quality is significantly superior to a single feature. 
After using principal component analysis (PCA) to reduce the feature dimension, the 
prediction quality of H. sapiens dataset has been significantly improved.

Conclusions: Comparative analysis and prediction on H. sapiens, C. elegans, D. 
melanogaster and S. cerevisiae datasets, demonstrate that the application of FCGR to 
nucleosome positioning is feasible, and we also found that integrative feature repre‑
sentation would be better.
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Background
The nucleosome is the basic structural unit of eukaryotic chromatin. It is formed by 
the combination of histones and DNA. The core is an octamer formed by two copies of 
each histones H2A, H2B, H3 and H4, DNA is wound around it about 1.65 turns. Among 
them, the DNA wrapped around the octamer is called core DNA, which is 147 base pairs 
in length; the DNA sequence that connects two adjacent nucleosomes is called linker 
DNA, which ranges from 20 to 60 base pairs [1]. In eukaryotic cells, nucleosomes play a 
crucial role in the process of genome expression, DNA replication, DNA repair and tran-
scription [2–6]. In addition, studies have demonstrated that abnormal histone modifica-
tions in the nucleosome structure are directly related to diseases such as tumors [7] and 
lupus erythematosus [8]. Therefore, the mechanism of nucleosome positioning in DNA 
sequence has an extremely important research value, which is also one of the hot spots 
in current epigenetics research.

The precise position of the nucleosome on the DNA sequence in the whole genome 
is called nucleosome positioning. Early experiments mainly used micrococcal nuclease 
to process chromatin to achieve nucleosome positioning [9]. In recent years, benefit-
ing from the development and application of high-throughput experimental techniques, 
such as chromatin immunoprecipitation-chip (ChIP-chip), chromatin immunopre-
cipitation sequencing (ChIP-Seq), many breakthroughs have been made in nucleosome 
positioning experiments. The nucleosome positioning maps of different species such 
as Saccharomyces cerevisiae [10, 11], Homo sapiens [12], Caenorhabditis elegans [13], 
Drosophila melanogaster [14], etc. have been obtained, which provides a large amount 
of data basis for researchers to carry out theoretical research and prediction.

Much of the research in nucleosome positioning is based on DNA sequence analy-
sis [15, 16]. The DNA sequence consists of four nucleotides: A, T, C and G. Studies 
have shown that the affinity between genomic DNA sequences and histones is clearly 
dependent on sequence order, which indicates that the DNA sequence order does affect 
the position of nucleosome formation. Although some provide the support that nucleo-
some positioning is affected by multiple factors such as DNA sequence, ATP-dependent 
nucleosome remodeling enzymes and transcription factors [17, 18]. Many researchers 
used sequence analysis methods to express nucleosome DNA sequence characteristics 
and then performed nucleosome positioning and recognition.

In the past decade, with the popularity of machine learning algorithms, a multitude of 
computational models based on DNA sequence information have been proposed. Chen 
et  al. proposed the "iNuc-Physchem" nucleosome prediction model using 12 physico-
chemical features of DNA, which identified the core DNA and linker DNA of the yeast 
genome nucleosome [19]. Later, the research group also established a biophysical model 
based on the deformation energy of DNA sequences to predict the sequence of nucle-
osomes [20]. Guo et  al. used pseudo k-tuple nucleotide composition to successfully 
express the feature vector of the DNA sequence, and used the support vector machine 
(SVM) classifier to train H. sapiens, C. elegans and D. melanogaster [21]. 3LS model 
used similar methods and combined the distribution of different numbers of nucleotide 
combinations in the sequence to further improve the prediction accuracy [22]. ZCMM 
model based on the Z-curve (z-curve) theory and the position weight matrix (PWM), 
the prediction performance is excellent on D. melanogaster [23].
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Deep learning is also applied to nucleosome positioning and achieved good prediction 
quality. These deep learning models all used one-hot encoding. Gangi et  al. [24] con-
structed a deep learning model that integrates convolutional layers and long short-term 
memory networks. LeNup model added the Inception module and gated convolutional 
network to the convolutional neural network to improve the nucleosome positioning 
[25].

In this work, we firstly will use frequency chaos game representation to construct 
DNA sequence features. This feature representation method has not been used in nucle-
osome positioning before. Secondly, we also integrated FCGR with other feature vectors 
and adopted the principal component analysis (PCA) algorithm to achieve the feature 
dimensionality reduction. Finally, various machine learning algorithms such as support 
vector machine (SVM), extreme learning machine (ELM), extreme gradient boosting 
(XGBoost), multi-layer perceptron (MLP), and convolutional neural networks (CNN) 
will be used to perform comparative analysis and prediction of nucleosome positioning.

Results
Rule of performance evaluation

Cross validation is a statistical analysis method used to validate the model. The basic 
idea is to divide the original data into a training set and a test set. First, use the train-
ing set to train the model, and then use the test set to test the classification or predic-
tion performance of the obtained model. In this work, we used K-fold cross-validation 
to evaluate the performance of the predictor through four parameters: sensitivity ( Sn ), 
specificity ( Sp ), accuracy (ACC), and Mathew’s correlation coefficient (MCC). The spe-
cific definition are as follows:

where TP, TN, FP and FN are the numbers of true positives, true negatives, false posi-
tives and false negatives, respectively [25]. Sn is the true positive rate. When Sn = 1, it 
means that all core DNA of nucleosomes have been correctly predicted.Sp is true neg-
ative rate. When Sp = 1, it means that all linker DNAs are correctly predicted. ACC 
reflects the ratio of the number of correctly predicted samples of each category to the 
total sample. MCC comprehensively evaluates the prediction results. MCC ∈ [− 1,1]. 
MCC =  − 1 means that the correlation is completely opposite. MCC = 1 means that the 
prediction result is completely correlated with the true category. MCC = 0 means that 
the prediction is completely random.

Receiver operating characteristic curve (ROC curve) and area under curve (AUC) are 
often used to evaluate the pros and cons of a binary classifier. Area under curve (AUC) is 
the area under the Roc curve, usually between 0.5 and 1. As a value, AUC can be used to 
evaluate the quality of the classifier more intuitively. The larger the AUC value, the bet-
ter. Taking into account the length of the paper, this paper only calculates the AUC value 
and does not draw the ROC curve one by one.

(1)



















Sn = TP
TP+FN

Sp = TN
TN+FP

ACC = TP+TN
TP+TN+FP+FN

MCC = TP×TN−FP×FN√
(TP+FN )×(TP+FP)×(TN+FN )×(TN+FP)
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Performance of predictors

According to the characteristics of FCGR described above, the different values of K 
nucleotide will affect the feature expression of the DNA sequence [26]. A large K value 
means a high feature dimension. And generally, high-dimensional features are relatively 
sparse, and the fitting quality may not be outstanding. Obviously, choosing an appropri-
ate K value will have a greater impact on the classification effect of each classifier. Some 
studies have combined DNA sequence features [22, 23, 27, 28]. Similarly, FCGR can also 
use different combinations of K nucleotide values as feature vectors.

Feasibility of FCGR 

In this work, we flatten the FCGR matrix into a normalized vector (1-D) corresponding 
to the frequency of K nucleotides as the input of SVM and ELM [27]. The input of MLP 
and CNN models are not only single-channel FCGR images (2D) [26, 27], but also mul-
tiple K-value images, the image size is 64 × 64. For the input of multi-K-value images, 
we leveraged multiple channels to feed in the combination of K values when training 
the model, and used simple averaging to calculate the final prediction result. To find the 
appropriate value of K or combination, we use 10-fold cross-validation. Figure 1 shows 
the classification accuracy of each classifier with different K values and combinations.

For SVM, the accuracy of H. sapiens, C. elegans reaches its peak with K = 1, 2 and 4; 
the accuracy of D. melanogaster was the highest with K = 2 and 4. For ELM, the accuracy 
of D. melanogaster reaches an peak when K = 2; the accuracy of H. sapiens reaches its 
peak when K = 2 and 4; the classification accuracy of C. elegans is best with K = 1, 2 and 
4 like using SVM.

For MLP, the accuracy of H. sapiens and D. melanogaster reaches its peak with K = 3, 
4 and 5; the classification accuracy of C. elegans is best with K = 3 and 4. For CNN, H. 
sapiens have the best classification quality when using the FCGR image with K = 4; the 
accuracy of C. elegans reaches its peak with K = 4 and 5; the accuracy of D. melanogaster 

Fig. 1 The histogram (a–d) shows the accuracy of using SVM, ELM, MLP and CNN with K = 1, 2, 3, 4, 5 or 
combinations
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reaches its peak with K = 3, 4 and 5. Table 1 clearly shows the best prediction results for 
four species via 10-fold cross-validation.

For S. cerevisiae dataset, we used SVM, ELM and MLP to achieve 
Sn = Sp = ACC = MCC = AUC = 1 via 10-fold cross-validation when K = 3 or 4. There 
may be room for improvement in the predicted quality of the other three datasets.

Comparison of the results with integrative features

In addition, we also integrated FCGR with other feature representations [29–32], such 
as DAC, TAC, DACC, TACC, PC-PseDNC, PC-PseTNC, and input them into SVM and 
ELM. Besides, we added the extreme gradient boosting (XGBoost) algorithm. The com-
parative analysis results are shown in Tables 2, 3 and 4 respectively.

From the results in Tables 2, 3 and 4, the combination of FCGR and DAC as feature 
vectors have a greater prediction quality. XGBoost performance is relatively stable, and 
each prediction results have little difference, especially for inputting high-dimensional 
features. However, after some high-dimensional feature vectors are input into SVM and 
ELM, the prediction results are relatively poor. It shows that XGBoost is more suitable 
for processing high-dimensional features.

Comparison of the results with dimensionality reduction

Considering the high dimensionality of the integrative feature vector, it is possible that 
high-dimensional feature vectors would bring the curse of dimensionality, which leads 
to overfitting of the prediction result. Therefore, we also adopted the principal compo-
nent analysis (PCA) algorithm [33] to achieve feature dimensionality reduction. Then, 
the feature vector after dimensionality reduction is input into SVM, ELM and XGBoost 
respectively. In the process of using PCA to dimensionality reduction, the cumula-
tive contribution rate of the retained principal components will directly affect the 

Table 1 The prediction results for four species via 10‑fold cross‑validation by SVM, ELM, MLP, CNN

Best values are in bold

Species Method K ACC Sn Sp MCC AUC 

H. sapiens FCGR‑SVM 1 + 2 + 4 0.8708 0.8980 0.8439 0.7432 0.9300
FCGR‑ELM 2 + 4 0.8332 0.8773 0.7896 0.6695 0.8969

FCGR‑MLP 3 + 4 + 5 0.8565 0.8768 0.8365 0.7144 0.9186

FCGR‑CNN 4 0.8585 0.8746 0.8426 0.7185 0.9214

C. elegans FCGR‑SVM 1 + 2 + 4 0.8603 0.8948 0.8263 0.7229 0.9295

FCGR‑ELM 1 + 2 + 4 0.8754 0.8944 0.8566 0.7515 0.9421
FCGR‑MLP 3 + 4 0.8537 0.8613 0.8462 0.7092 0.9225

FCGR‑CNN 4 + 5 0.8495 0.8839 0.8156 0.702 0.9181

D. melanogaster FCGR‑SVM 2 + 4 0.8113 0.7831 0.8400 0.6241 0.8791
FCGR‑ELM 2 0.7910 0.7648 0.8175 0.5833 0.8595

FCGR‑MLP 3 + 4 + 5 0.8117 0.8000 0.8235 0.6238 0.8848

FCGR‑CNN 3 + 4 + 5 0.8108 0.8014 0.8204 0.6228 0.8854

S. cerevisiae FCGR‑SVM 4 1 1 1 1 1
FCGR‑ELM 3 or 4 1 1 1 1 1
FCGR‑MLP 4 1 1 1 1 1
FCGR‑CNN 4 0.9997 1 0.9994 0.9995 1
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dimensionality reduction effect. Therefore, we calculated the accuracy of 95%, 93%, 90%, 
88% and 85% of the contribution rate of the retained principal components respectively. 
Figures 2, 3 and 4 shows the classification accuracy of each classifier with different con-
tributing rate of principal component. And the results of the optimal contribution rate 
of the principal components corresponding to each predictor are shown in Tables 5, 6 
and 7 respectively.

From Tables 5, 6 and 7, We have noticed that the prediction quality has been improved 
after dimensionality reduction through PCA for H. sapiens. It is increased by 4.57%, 
3.12%, 6.00%, 9.03%, 3.56% in ACC, Sn , Sp , MCC and AUC when we combined FCGR 
vectors and TAC for using with XGBoost. However, the prediction quality has been 
not improved significantly for C. elegans. Especially when ELM was used, its predic-
tion quality decreased slightly. For D. melanogaster, similarly, there is no significant 
improvement.

Comparison with other algorithms

To verify the effectiveness of our method, we compared the prediction results of the 
optimal performing predictors in Tables 1, 2, 3 and 4 with other models using the same 

Table 2 The prediction results of integrative feature representation for H. sapiens via 10‑fold cross‑
validation by SVM, ELM and XGBoost

All features means the feature vector = FCGR + DACC + TACC + PC-PseDNC + PC-pseTAC, and the parameters are consistent 
with the parameters of the corresponding feature. Parameter K indicates the values of K nucleotide in FCGR; lag indicates 
the distance of lag along the sequence; λ represents the highest counted rank (or tier) of the correlation along a DNA 
sequence; w is the weight factor ranged from 0 to 1

Best values are in bold

Method Feature parameter ACC Sn Sp MCC AUC 

SVM FCGR + DAC K = 4, lag = 2 0.8708 0.8896 0.8522 0.7425 0.9315
FCGR + TAC K = 4, lag = 2 0.8679 0.8878 0.8483 0.7369 0.9288

FCGR + DACC K = 4, lag = 2 0.8537 0.8531 0.8544 0.7079 0.9208

FCGR + TACC K = 4, lag = 2 0.8415 0.8319 0.8509 0.6837 0.9113

FCGR + PCPseDNC K = 4, λ = 8, w = 0.5 0.8673 0.8936 0.8413 0.7359 0.9286

FCGR + PCPseTNC K = 4, λ = 8, w = 0.5 0.8708 0.8966 0.8452 0.7429 0.9273

All features 0.8137 0.7518 0.8748 0.6322 0.8996

ELM FCGR + DAC K = 4, lag = 2 0.8292 0.8539 0.8048 0.6598 0.9007

FCGR + TAC K = 4, lag = 2 0.8297 0.8531 0.8065 0.6604 0.8977

FCGR + DACC K = 4, lag = 2 0.8336 0.8627 0.8048 0.6689 0.9009

FCGR + TACC K = 4, lag = 2 0.8325 0.8632 0.8022 0.6668 0.8983

FCGR + PCPseDNC K = 4, λ = 8, w = 0.5 0.8314 0.8658 0.7974 0.6648 0.8985

FCGR + PCPseTNC K = 4, λ = 8, w = 0.5 0.8248 0.8544 0.7957 0.6516 0.8947

All features 0.8356 0.8632 0.8083 0.6735 0.9013

XGBoost FCGR K = 1 + 2 + 4 0.8585 0.89309 0.8244 0.71934 0.9197

FCGR + DAC K = 4, lag = 2 0.8450 0.87503 0.8152 0.69182 0.9160

FCGR + TAC K = 4, lag = 2 0.8402 0.8733 0.8074 0.68221 0.9136

FCGR + DACC K = 4, lag = 2 0.8423 0.86583 0.8191 0.68588 0.9127

FCGR + TACC K = 4, lag = 2 0.8391 0.87287 0.8057 0.68059 0.9115

FCGR + PCPseDNC K = 4, λ = 8, w = 0.5 0.8559 0.88913 0.8230 0.71396 0.9207

FCGR + PCPseTNC K = 4, λ = 8, w = 0.5 0.8498 0.88254 0.8174 0.70168 0.9183

All features 0.8472 0.87374 0.8209 0.69581 0.9170
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datasets. DLNN-5 [24] is a deep learning model with a convolution kernel size of 5, and 
ZCMM [23] is based on SVM. Tables 8, 9, 10 and 11 shows that our methods perform 
prominently on H. sapiens and S. cerevisiae datasets. For S. cerevisiae dataset, we used 
SVM, ELM and MLP to achieve Sn = Sp = ACC = MCC = AUC = 1 via 10-fold cross-
validation when K = 3 or 4. Compared with the model that based on DNA deformation 
energy in the original paper [20], the prediction performance has been obviously lifted. 
For H. sapiens, combined FCGR vectors and TAC for using with XGBoost is higher than 
ZCMM in ACC, Sn , Sp , MCC, AUC by 10.87%, 15.58%, 5.23%, 21.25%, 8.81%, respec-
tively; likewise, it is higher than DLNN-5 in ACC, Sn , Sp by 3.22%, 2.11%, 4.45%, respec-
tively. The performance of CNN is slightly better than ZCMM and DLNN-5. For C. 
elegans, compared with ZCMM, we use ELM to increase the evaluation indicators by 
2.20%, 10.64%, 1.56%, 13.15%, 3.01% when combined FCGR vectors with K = 1, 2 and 4. 
For D. melanogaster, our prediction accuracy is lower, and ZCMM’s prediction accuracy 
(ACC) is the highest at 93.62%. Results imply that our final prediction is positive, it only 
performed unfavorably on the D. melanogaster dataset.

Table 3 The prediction results of integrative feature representation for C. elegans via 10‑fold cross‑
validation by SVM, ELM and XGBoost

All features means the feature vector = FCGR + DACC + TACC + PC-PseDNC + PC-pseTAC, and the parameters are consistent 
with the parameters of the corresponding feature. Parameter K indicates the values of K nucleotide in FCGR; lag indicates 
the distance of lag along the sequence; λ represents the highest counted rank (or tier) of the correlation along a DNA 
sequence; w is the weight factor ranged from 0 to 1

Best values are in bold

Method Feature parameter ACC Sn Sp MCC AUC 

SVM FCGR + DAC K = 4, lag = 2 0.8574 0.8863 0.8290 0.7164 0.9283

FCGR + TAC K = 4, lag = 2 0.8561 0.8824 0.8302 0.7137 0.9272

FCGR + DACC K = 4, lag = 2 0.8471 0.8777 0.8171 0.6961 0.9122

FCGR + TACC K = 4, lag = 2 0.8470 0.8641 0.8301 0.6949 0.9179

FCGR + PCPseDNC K = 4, λ = 8, w = 0.5 0.8576 0.8921 0.8236 0.7176 0.9275

FCGR + PCPseTNC K = 4, λ = 8, w = 0.5 0.8539 0.8839 0.8244 0.7096 0.9275

All features 0.8431 0.8461 0.8401 0.6867 0.9139

ELM FCGR + DAC K = 4, lag = 2 0.8707 0.8863 0.8555 0.7421 0.9355

FCGR + TAC K = 4, lag = 2 0.8696 0.8890 0.8505 0.7400 0.9359
FCGR + DACC K = 4, lag = 2 0.8684 0.8831 0.8539 0.7376 0.9358

FCGR + TACC K = 4, lag = 2 0.8680 0.8917 0.8447 0.7371 0.9329

FCGR + PCPseDNC K = 4, λ = 8, w = 0.5 0.8624 0.8847 0.8405 0.7258 0.9318

FCGR + PCPseTNC K = 4, λ = 8, w = 0.5 0.8557 0.8847 0.8271 0.7132 0.9262

All features 0.8597 0.8863 0.8336 0.7210 0.9271

XGBoost FCGR K = 1 + 2 + 4 0.8487 0.8797 0.8182 0.6995 0.9202

FCGR + DAC K = 4, lag = 2 0.8416 0.8652 0.8182 0.6842 0.9165

FCGR + TAC K = 4, lag = 2 0.8433 0.8707 0.8163 0.6882 0.9169

FCGR + DACC K = 4, lag = 2 0.8462 0.8703 0.8225 0.6938 0.9170

FCGR + TACC K = 4, lag = 2 0.8417 0.8676 0.8163 0.6848 0.9162

FCGR + PCPseDNC K = 4, λ = 8, w = 0.5 0.8450 0.8749 0.8156 0.6917 0.9199

FCGR + PCPseTNC K = 4, λ = 8, w = 0.5 0.8493 0.8789 0.8202 0.7004 0.9178

All features 0.8481 0.8695 0.8271 0.6973 0.9195
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Table 4 The prediction results of integrative feature representation for D. melanogaster via 10‑fold 
cross‑validation by SVM, ELM and XGBoost

All features means the feature vector = FCGR + DACC + TACC + PC-PseDNC + PC-pseTAC, and the parameters are consistent 
with the parameters of the corresponding feature. Parameter K indicates the values of K nucleotide in FCGR; lag indicates 
the distance of lag along the sequence; λ represents the highest counted rank (or tier) of the correlation along a DNA 
sequence; w is the weight factor ranged from 0 to 1

Best values are in bold

Method Feature parameter ACC Sn Sp MCC AUC 

SVM FCGR + DAC K = 4, lag = 2 0.8047 0.7862 0.8235 0.6103 0.8762

FCGR + TAC K = 4, lag = 2 0.8089 0.7835 0.8347 0.6190 0.8747

FCGR + DACC K = 4, lag = 2 0.7753 0.7772 0.7733 0.5509 0.8295

FCGR + TACC K = 4, lag = 2 0.7560 0.6772 0.8361 0.5199 0.8247

FCGR + PCPseDNC K = 4, λ = 8, w = 0.5 0.8073 0.7797 0.8354 0.6162 0.8803
FCGR + PCPseTNC K = 4, λ = 8, w = 0.5 0.8057 0.7835 0.8284 0.6129 0.8769

All features 0.7510 0.6828 0.8204 0.5078 0.7987

ELM FCGR + DAC K = 2, lag = 2 0.7920 0.7779 0.8063 0.5847 0.8644

FCGR + TAC K = 2, lag = 2 0.7917 0.7807 0.8028 0.5839 0.8651

FCGR + DACC K = 2, lag = 2 0.7769 0.7617 0.7923 0.5544 0.8503

FCGR + TACC K = 2, lag = 2 0.7694 0.7735 0.7653 0.5391 0.8460

FCGR + PCPseDNC K = 2, λ = 8, w = 0.5 0.7896 0.7631 0.8165 0.5806 0.8651

FCGR + PCPseTNC K = 2, λ = 8, w = 0.5 0.7595 0.7341 0.7853 0.5206 0.8400

All features 0.7847 0.7810 0.7884 0.5700 0.8576

XGBoost FCGR K = 1 + 2 + 4 0.7976 0.7797 0.8158 0.5959 0.8725

FCGR + DAC K = 4, lag = 2 0.7873 0.7717 0.8032 0.5751 0.8613

FCGR + TAC K = 4, lag = 2 0.7877 0.7624 0.8133 0.5768 0.8647

FCGR + DACC K = 4, lag = 2 0.7724 0.7814 0.7632 0.5450 0.8532

FCGR + TACC K = 4, lag = 2 0.7824 0.7693 0.7958 0.5658 0.8542

FCGR + PCPseDNC K = 4, λ = 8, w = 0.5 0.7997 0.7824 0.8172 0.6001 0.8725

FCGR + PCPseTNC K = 4, λ = 8, w = 0.5 0.7988 0.7790 0.8190 0.5989 0.8775

All features 0.7951 0.7793 0.8112 0.5909 0.8718

Fig. 2 The histogram (a–c) shows the accuracy of using SVM, ELM and XGBoost with contributing rate of 
principal component = 0.95, 0.93, 0.9, 0.88, 0.85 for H. sapiens
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Comparison with other advanced methods

In addition to DLNN-5 and ZCMM models, there are some other advanced meth-
ods for nucleosome prediction in the same dataset. LeNup model utilizes improved 
convolutional neural networks, which adds inception modules and gated convolu-
tional networks [25]. 3LS is based on the linear regression model [22]. LeNup used 

Fig. 3 The histogram (a–c) shows the accuracy of using SVM, ELM and XGBoost with contributing rate of 
principal component = 0.95, 0.93, 0.9, 0.88, 0.85 for C. elegans

Fig. 4 The histogram (a–c) shows the accuracy of using SVM, ELM and XGBoost with contributing rate of 
principal component = 0.95, 0.93, 0.9, 0.88, 0.85 for D. melanogaster
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the 20-fold cross-validation and provided comparison data with 3LS for H. sapiens, C. 
elegans and D. melanogaster. Therefore, we utilized the results provided by LeNup for 
comparative analysis in Tables 12, 13 and 14.

LeNup has the best overall prediction effect. The accuracy of C. elegans is 0.9188, and 
the average accuracy of other species are also over 0.88. The prediction result of our 
method is relatively close to it on the H. sapiens dataset. For C. elegans, ELM with FCGR 
performs slightly worse than 3LS, ACC, Sp , MCC, AUC decreased by 0.29%, 3.44%, 
0.51%, 1.86% respectively.

Discussion
Firstly, the results in Table  1 and Fig.  1 clearly showed that the FCGR feature of the 
combined K value is better than the single K value, and the SVM output better predic-
tion results. When training CNN and MLP models, we utilized multi-channel mul-
tiple K-value input images, and the prediction accuracy had been improved. All these 
indicated that FCGR feature combinations with different K values can better express 
sequence features, thereby improving models’ prediction accuracy.

Secondly, we further integrated FCGR with other feature representations, and com-
bined three types of machine learning algorithms to compare prediction results 
(Tables  2, 3, 4). Besides, we performed PCA dimensionality reduction processing on 

Table 5 PCA dimensionality reduction results via 10‑fold cross‑validation for H. sapiens

“PCA%” means contributing rate of principal component

Best values are in bold

Method Feature Parameters PCA% ACC Sn Sp MCC AUC 

SVM FCGR K = 1 + 2 + 4 0.85 0.8758 0.8966 0.8552 0.7528 0.9288

FCGR + DAC K = 4, lag = 2 0.9 0.8749 0.8856 0.8644 0.7507 0.9314
FCGR + TAC K = 4, lag = 2 0.85 0.8752 0.8878 0.8626 0.7513 0.9306

FCGR + DACC K = 4, lag = 2 0.95 0.8410 0.8236 0.8583 0.6825 0.9138

FCGR + TACC K = 4, lag = 2 0.95 0.8369 0.8170 0.8565 0.6749 0.9099

FCGR + PCPseDNC K = 4, λ = 8, w = 0.5 0.88 0.8727 0.8896 0.8561 0.7463 0.9284

FCGR + PCPseTNC K = 4, λ = 8, w = 0.5 0.9 0.8719 0.8878 0.8561 0.7444 0.9281

All features 0.95 0.7746 0.6388 0.9087 0.5698 0.8906

ELM FCGR K = 1 + 2 + 4 0.88 0.8428 0.8636 0.8222 0.6866 0.9075

FCGR + DAC K = 4, lag = 2 0.88 0.8461 0.8724 0.8200 0.6936 0.9128

FCGR + TAC K = 4, lag = 2 0.85 0.8469 0.8698 0.8244 0.6952 0.9129
FCGR + DACC K = 4, lag = 2 0.9 0.8458 0.8763 0.8157 0.6936 0.9095

FCGR + TACC K = 4, lag = 2 0.88 0.8439 0.8808 0.8074 0.6902 0.9072

FCGR + PCPseDNC K = 4, λ = 8, w = 0.5 0.85 0.8454 0.8645 0.8265 0.6918 0.9107

FCGR + PCPseTNC K = 4, λ = 8, w = 0.5 0.88 0.8437 0.8627 0.8248 0.6882 0.9069

All features 0.88 0.8447 0.8843 0.8057 0.6923 0.9118

XGBoost FCGR K = 1 + 2 + 4 0.95 0.8513 0.8733 0.8296 0.7037 0.9175

FCGR + DAC K = 4, lag = 2 0.85 0.8537 0.8667 0.8409 0.7080 0.9172

FCGR + TAC K = 4, lag = 2 0.95 0.8859 0.9045 0.8674 0.7725 0.9491
FCGR + DACC K = 4, lag = 2 0.93 0.8364 0.8601 0.8130 0.6741 0.9014

FCGR + TACC K = 4, lag = 2 0.95 0.8395 0.8667 0.8126 0.6805 0.9050

FCGR + PCPseDNC K = 4, λ = 8, w = 0.5 0.95 0.8463 0.8711 0.8217 0.6937 0.9147

FCGR + PCPseTNC K = 4, λ = 8, w = 0.5 0.93 0.8498 0.8645 0.8352 0.7003 0.9155

All features 0.95 0.8423 0.8729 0.8122 0.6864 0.9051
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feature vectors to prevent high-dimensional features from causing overfitting (Tables 5, 
6, 7). Although the overall prediction quality has improved after the PCA dimensionality 
reduction processing with the integrated feature, superior results are obtained for using 
FCGR feature representation. These also further illustrated the advantages of FCGR fea-
tures representation.

Here we compared the results of the proposed method with other advanced algo-
rithms. Slightly superior results are achieved with our algorithm on H. sapiens and S. 
cerevisiae datasets, but there are gaps in the other two datasets. On the one hand, it 
explains the feasibility of our method; on the other, our work has room for improvement.

Conclusions
In this work, we used FCGR to represent the features of the DNA sequence and applied 
it to the nucleosome positioning. Our experiments have achieved positive results. Espe-
cially when multiple features are used in combination, the prediction quality can be 
improved. The advantage of this representation is that the time consumed in the pro-
cess of constructing features is shortened, and the features are clear and intuitive. The 
quality of integrating features representation is also acceptable. Particularly after we use 

Table 6 PCA dimensionality reduction results via 10‑fold cross‑validation for C. elegans

“PCA%” means contributing rate of principal component

Best values are in bold

Method Feature Parameters PCA% ACC Sn Sp MCC AUC 

SVM FCGR K = 1 + 2 + 4 0.88 0.8551 0.8960 0.8148 0.7130 0.9242

FCGR + DAC K = 4, lag = 2 0.9 0.8562 0.8870 0.8259 0.7142 0.9245
FCGR + TAC K = 4, lag = 2 0.93 0.8558 0.8824 0.8297 0.7132 0.9245
FCGR + DACC K = 4, lag = 2 0.95 0.8265 0.9147 0.7397 0.6642 0.9057

FCGR + TACC K = 4, lag = 2 0.95 0.8336 0.8079 0.8589 0.6682 0.9052

FCGR + PCPseDNC K = 4, λ = 8, w = 0.5 0.85 0.8543 0.8913 0.8179 0.7112 0.9236

FCGR + PCPseTNC K = 4, λ = 8, w = 0.5 0.95 0.8516 0.8929 0.8110 0.7064 0.9243

All features 0.95 0.8249 0.8029 0.8466 0.6513 0.8823

ELM FCGR K = 1 + 2 + 4 0.95 0.8535 0.8882 0.8194 0.7093 0.9193
FCGR + DAC K = 4, lag = 2 0.88 0.8489 0.8742 0.8240 0.6990 0.9124

FCGR + TAC K = 4, lag = 2 0.93 0.8500 0.8742 0.8263 0.7012 0.9157

FCGR + DACC K = 4, lag = 2 0.9 0.8476 0.8703 0.8252 0.6962 0.9159

FCGR + TACC K = 4, lag = 2 0.9 0.8537 0.8808 0.8271 0.7090 0.9183

FCGR + PCPseDNC K = 4, λ = 8, w = 0.5 0.95 0.8466 0.8777 0.8160 0.6951 0.9158

FCGR + PCPseTNC K = 4, λ = 8, w = 0.5 0.85 0.8452 0.8679 0.8229 0.6915 0.9160

All features 0.93 0.8505 0.8816 0.8198 0.7030 0.9183

XGBoost FCGR K = 1 + 2 + 4 0.90 0.8458 0.8870 0.8052 0.6946 0.9175

FCGR + DAC K = 4, lag = 2 0.90 0.8526 0.8831 0.8225 0.7068 0.9234
FCGR + TAC K = 4, lag = 2 0.95 0.8508 0.8738 0.8282 0.7028 0.9195

FCGR + DACC K = 4, lag = 2 0.85 0.8396 0.8570 0.8225 0.6800 0.9147

FCGR + TACC K = 4, lag = 2 0.95 0.8385 0.8621 0.8152 0.6782 0.9110

FCGR + PCPseDNC K = 4, λ = 8, w = 0.5 0.93 0.8456 0.8808 0.8110 0.6934 0.9200

FCGR + PCPseTNC K = 4, λ = 8, w = 0.5 0.90 0.8472 0.8835 0.8114 0.6967 0.9191

All features 0.95 0.8400 0.8613 0.8190 0.6812 0.9143
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PCA for dimensionality reduction, the prediction quality of H. sapiens dataset has been 

improved. This demonstrates the feasibility of the method.
In this paper, we also tried a simple CNN model with FCGR image and got mediocre 

results. Since deep learning is now increasingly used in bioinformatics. In the further 
research of nucleosome positioning, we will try to build a more efficient deep learning 
prediction model to achieve prediction of DNA represented in the form of images, such 
as FCGR image.

Table 7 PCA dimensionality reduction results via 10‑fold cross‑validation for D. melanogaster

“PCA%” means contributing rate of principal component

Best values are in bold

Method Feature Parameters PCA% ACC Sn Sp MCC AUC 

SVM FCGR K = 1 + 2 + 4 0.88 0.8108 0.7786 0.8435 0.6235 0.8785
FCGR + DAC K = 4, lag = 2 0.95 0.8070 0.7855 0.8288 0.6152 0.8768

FCGR + TAC K = 4, lag = 2 0.93 0.8115 0.7831 0.8404 0.6245 0.8766

FCGR + DACC K = 4, lag = 2 0.95 0.7809 0.7931 0.7684 0.5621 0.8343

FCGR + TACC K = 4, lag = 2 0.95 0.7678 0.6879 0.8491 0.5440 0.8363

FCGR + PCPseDNC K = 4, λ = 8, w = 0.5 0.9 0.8085 0.7752 0.8425 0.6190 0.8773

FCGR + PCPseTNC K = 4, λ = 8, w = 0.5 0.93 0.8097 0.7772 0.8428 0.6215 0.8761

All features 0.95 0.7593 0.70414 0.81544 0.52275 0.80283

ELM FCGR + DAC K = 2, lag = 2 0.95 0.7817 0.7690 0.7947 0.5642 0.8544

FCGR + TAC K = 2, lag = 2 0.95 0.7859 0.7735 0.7986 0.5723 0.8552

FCGR + DACC K = 2, lag = 2 0.9 0.7530 0.7524 0.7537 0.5064 0.8262

FCGR + TACC K = 2, lag = 2 0.95 0.7365 0.7472 0.7256 0.4733 0.8018

FCGR + PCPseDNC K = 2, λ = 8, w = 0.5 0.93 0.7837 0.7597 0.8081 0.5685 0.8587
FCGR + PCPseTNC K = 2, λ = 8, w = 0.5 0.88 0.7678 0.7283 0.8081 0.5379 0.8448

All features K = 2 0.95 0.7727 0.7714 0.7740 0.5455 0.8437

XGBoost FCGR K = 1 + 2 + 4 0.9 0.8037 0.7824 0.8253 0.6085 0.8772
FCGR + DAC K = 4, lag = 2 0.9 0.7877 0.7683 0.8074 0.5763 0.8630

FCGR + TAC K = 4, lag = 2 0.88 0.7930 0.7635 0.8232 0.5879 0.8671

FCGR + DACC K = 4, lag = 2 0.93 0.7741 0.7690 0.7793 0.5486 0.8506

FCGR + TACC K = 4, lag = 2 0.88 0.7654 0.7576 0.7733 0.5313 0.8461

FCGR + PCPseDNC K = 4, λ = 8, w = 0.5 0.88 0.7988 0.7769 0.8211 0.5987 0.8753

FCGR + PCPseTNC K = 4, λ = 8, w = 0.5 0.85 0.7974 0.7772 0.8179 0.5960 0.8727

All features 0.93 0.7647 0.7590 0.7705 0.5295 0.8406

Table 8 Comparison of our predictors with other models via 10‑fold cross‑validation for S. cerevisiae

Method ACC Sn Sp MCC AUC 

Deformation energy [20] 0.981 0.982 0.980 0.963  ~ 

FCGR‑SVM 1 1 1 1 1

FCGR‑ELM 1 1 1 1 1

FCGR‑MLP 1 1 1 1 1

FCGR‑CNN 0.9997 1 0.9994 0.9995 1
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Methods
Dataset descriptions

To compare the results of the predictors, the datasets of this work downloaded from two 
published papers [20, 21]. The first group of datasets involved H. sapiens, C. elegans and 
D. melanogaster from the paper by Guo et al. [21]. The length of each DNA sequence 
is 147  bp. The second dataset involved S. cerevisiae genome from the paper by Chen 
et al. [20]. The length of each DNA sequence is 150 bp. Both of the datasets contain two 
types of samples: nucleosome-forming sequences (positive data) and nucleosome-inhib-
iting sequences (negative data). And none of the sequences included has ≥ 80% pairwise 
sequence identity with any other. The details of the datasets are shown in Table 15.

DNA sequence feature representation

Except for the above mentioned, common DNA sequence representation methods 
include basic kmer (Kmer) [34], reverse complementary kmer (RevKmer) [35], etc. based 

Table 9 Comparison of our predictors with other models via 10‑fold cross‑validation for H. sapiens

The table shows the optimal results of each classifier, and the specific parameters are shown in the previous tables

Best values are in bold

Method Feature ACC Sn Sp MCC AUC 

DLNN‑5 [24] 0.8537 0.8834 0.8229  ~  ~ 

ZCMM [23] 0.7772 0.7487 0.8151 0.5600 0.8610

SVM FCGR 0.8758 0.8966 0.8552 0.7528 0.9288

FCGR + DAC 0.8749 0.8856 0.8644 0.7507 0.9314

FCGR + TAC 0.8752 0.8878 0.8626 0.7513 0.9306

FCGR + DACC 0.8537 0.8531 0.8544 0.7079 0.9208

FCGR + TACC 0.8415 0.8319 0.8509 0.6837 0.9113

FCGR + PCPseDNC 0.8727 0.8896 0.8561 0.7463 0.9284

FCGR + PCPseTNC 0.8719 0.8878 0.8561 0.7444 0.9281

All features 0.8137 0.7518 0.8748 0.6322 0.8996

ELM FCGR 0.8428 0.8636 0.8222 0.6866 0.9075

FCGR + DAC 0.8461 0.8724 0.8200 0.6936 0.9128

FCGR + TAC 0.8469 0.8698 0.8244 0.6952 0.9129

FCGR + DACC 0.8458 0.8763 0.8157 0.6936 0.9095

FCGR + TACC 0.8439 0.8808 0.8074 0.6902 0.9072

FCGR + PCPseDNC 0.8454 0.8645 0.8265 0.6918 0.9107

FCGR + PCPseTNC 0.8437 0.8627 0.8248 0.6882 0.9069

All features 0.8447 0.8843 0.8057 0.6923 0.9118

XGBoost FCGR 0.8585 0.89309 0.8244 0.71934 0.9197

FCGR + DAC 0.8537 0.8667 0.8409 0.708 0.9172

FCGR + TAC 0.8859 0.9045 0.8674 0.7725 0.9491
FCGR + DACC 0.8423 0.86583 0.8191 0.68588 0.9127

FCGR + TACC 0.8395 0.8667 0.8126 0.6805 0.905

FCGR + PCPseDNC 0.8559 0.88913 0.823 0.71396 0.9207

FCGR + PCPseTNC 0.8498 0.8645 0.8352 0.7003 0.9155

All features 0.8472 0.87374 0.8209 0.69581 0.917

MLP FCGR 0.8565 0.8768 0.8365 0.7144 0.9186

CNN FCGR 0.8585 0.8746 0.8426 0.7185 0.9214
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on deoxyribonucleic acid composition, and some are based on the correlation between 
nucleotide physical and chemical indicators, such as dinucleotide-based autocovariance 
(DAC), trinucleotide-based autocovariance (TAC) [29], etc. and pseudo k-tuple nucleo-
tide composition (PseKNC) [21] based on pseudo deoxyribonucleic acid composition. 
These feature representation methods have specific calculation formulas and iterative 
functions, and some calculations are more complex and require a long time. This paper 
will mainly use a simple and intuitive feature representation.

Chaos game representation (CGR) is a graphical representation method of gene 
sequence based on chaos theory proposed by Jeffrey in 1990 [36]. The method is as fol-
lows: The four nucleotides {A, T, G, C} are located at the four vertices of the plane coor-
dinate system, and the position of each nucleotide in the DNA sequence in the plane is 
Pi . According to formula (2) draw the coordinate point of each nucleotide:

(2)Pi = 0.5 · (Pi−1 + Ni), i = 1, . . . , L and P0 = (0.5, 0.5)

Table 10 Comparison of our predictors with other models via 10‑fold cross‑validation for C. elegans

The table shows the optimal results of each classifier, and the specific parameters are shown in the previous tables

Best values are in bold

Method Feature ACC Sn Sp MCC AUC 

DLNN‑5 [24] 0.8962 0.9304 0.8634  ~  ~ 
ZCMM [23] 0.8534 0.7880 0.8410 0.6200 0.9120

SVM FCGR 0.8603 0.8948 0.8263 0.7229 0.9295

FCGR + DAC 0.8574 0.8863 0.8290 0.7164 0.9283

FCGR + TAC 0.8561 0.8824 0.8302 0.7137 0.9272

FCGR + DACC 0.8471 0.8777 0.8171 0.6961 0.9122

FCGR + TACC 0.8470 0.8641 0.8301 0.6949 0.9179

FCGR + PCPseDNC 0.8576 0.8921 0.8236 0.7176 0.9275

FCGRPCPseTNC 0.8539 0.8839 0.8244 0.7096 0.9275

All features 0.8431 0.8461 0.8401 0.6867 0.9139

ELM FCGR 0.8754 0.8944 0.8566 0.7515 0.9421

FCGR + DAC 0.8707 0.8863 0.8555 0.7421 0.9355

FCGR + TAC 0.8696 0.8890 0.8505 0.7400 0.9359

FCGR + DACC 0.8684 0.8831 0.8539 0.7376 0.9358

FCGR + TACC 0.8680 0.8917 0.8447 0.7371 0.9329

FCGR + PCPseDNC 0.8624 0.8847 0.8405 0.7258 0.9318

FCGR + PCPseTNC 0.8557 0.8847 0.8271 0.7132 0.9262

All features 0.8597 0.8863 0.8336 0.7210 0.9271

XGBoost FCGR 0.8487 0.8797 0.8182 0.6995 0.9202

FCGR + DAC 0.8526 0.8831 0.8225 0.7068 0.9234

FCGR + TAC 0.8508 0.8738 0.8282 0.7028 0.9195

FCGR + DACC 0.8462 0.8703 0.8225 0.6938 0.917

FCGR + TACC 0.8417 0.8676 0.8163 0.6848 0.9162

FCGR + PCPseDNC 0.8456 0.8808 0.811 0.6934 0.92

FCGR + PCPseTNC 0.8493 0.8789 0.8202 0.7004 0.9178

All features 0.8481 0.8695 0.8271 0.6973 0.9195

MLP FCGR 0.8537 0.8613 0.8462 0.7092 0.9225

CNN FCGR 0.8495 0.8839 0.8156 0.702 0.9181
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Among them, P0 is the given starting point, L is the length of the DNA sequence, 
and Ni represents the corresponding coordinate of the i-th nucleotide, where A = (0,0), 
T = (1,0), G = (1,1), C = (0,1). This method draws a corresponding image of a DNA 
sequence through the iterative function and makes the nucleotides in the sequence cor-
respond to the points on the image one by one [36–40]. From Fig. 5, we can see the CGR 
graphical representation of the two types of sample sequences in the H. sapiens dataset.

Divide the CGR image into 2K × 2K  sub-blocks and calculate the number of points 
appearing on each sub-block, we can determine the frequency of K nucleotide combina-
tions, and then convert the CGR image into a 2K × 2K  matrix, which is called frequency 
chaos game representation (FCGR) [39]. For example, we divided the CGR graph of 
Fig. 5a into a 23 × 23 matrix and calculated the number of occurrences of the midpoint 
of each sub-block, and obtain the frequency matrix shown in Table 16.

FCGR can be used not only as a numerical matrix, but also as a grayscale image. The 
original CGR image is divided into 4K  sub-blocks. The darker the sub-block, the more 

Table 11 Comparison of our predictors with other models via 10‑fold cross‑validation for D. 
melanogaster

The table shows the optimal results of each classifier, and the specific parameters are shown in the previous tables

Best values are in bold

Method Feature ACC Sn Sp MCC AUC 

DLNN‑5 [24] 0.8560 0.8781 0.8333  ~  ~ 

ZCMM [23] 0.9362 0.9226 0.7964 0.7000 0.9110
SVM FCGR 0.8113 0.7831 0.84 0.6241 0.8791

FCGR + DAC 0.8089 0.7835 0.8347 0.619 0.8747

FCGR + TAC 0.8115 0.7831 0.8404 0.6245 0.8766

FCGR + DACC 0.7809 0.7931 0.7684 0.5621 0.8343

FCGR + TACC 0.7678 0.6879 0.8491 0.544 0.8363

FCGR + PCPseDNC 0.8085 0.7752 0.8425 0.619 0.8773

FCGR + PCPseTNC 0.8097 0.7772 0.8428 0.6215 0.8761

All features 0.7593 0.70414 0.81544 0.52275 0.80283

ELM FCGR 0.791 0.7648 0.8175 0.5833 0.8595

FCGR + DAC 0.792 0.7779 0.8063 0.5847 0.8644

FCGR + TAC 0.7917 0.7807 0.8028 0.5839 0.8651

FCGR + DACC 0.7769 0.7617 0.7923 0.5544 0.8503

FCGR + TACC 0.7694 0.7735 0.7653 0.5391 0.846

FCGR + PCPseDNC 0.7896 0.7631 0.8165 0.5806 0.8651

FCGR + PseTNC 0.7678 0.7283 0.8081 0.5379 0.8448

All features 0.7847 0.781 0.7884 0.57 0.8576

XGBoost FCGR 0.8037 0.7824 0.8253 0.6085 0.8772

FCGR + DAC 0.7877 0.7683 0.8074 0.5763 0.863

FCGR + TAC 0.793 0.7635 0.8232 0.5879 0.8671

FCGR + DACC 0.7741 0.769 0.7793 0.5486 0.8506

FCGR + TACC 0.7824 0.7693 0.7958 0.5658 0.8542

FCGR + PCPseDNC 0.7997 0.7824 0.8172 0.6001 0.8725

FCGR + PseTNC 0.7988 0.779 0.819 0.5989 0.8775

All features 0.7951 0.7793 0.8112 0.5909 0.8718

MLP FCGR 0.8117 0.8000 0.8235 0.6238 0.8848

CNN FCGR 0.8108 0.8014 0.8204 0.6228 0.8854
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dots appear in the sub-blocks; the lighter sub-blocks, indicates that the number of dots 
in the color block is small, and the pixel value of the image is between 0 and 255 [39]. 
From Fig. 6, we can see the FCGR image of the sample sequence with K = 3, 4 and 5, 
respectively.

Support vector machine

Support vector machine (SVM) is a commonly used two-class classification model. 
Compared with other classification algorithms, it has a good classification effect and 
strong generalization ability on small data sets. It can also handle nonlinear classification 
problems through nuclear techniques. Thus, support vector machines have also been 
widely used in the field of bioinformatics [19, 21, 23]. Its basic idea is to map the sample 
from the original low-dimensional space to a high-dimensional space, so that the sam-
ple can find a partitioning hyperplane with the largest interval in the feature space, and 
separate samples of different categories.

Table 12 Comparison of our predictors with other advanced models via 20‑fold cross‑validation for 
H. sapiens

Best values are in bold

Method Feature ACC Sn Sp MCC AUC 

LeNup [25] 0.8889 0.9212 0.8562 0.7906 0.9412

3LS [22] 0.9001 0.9169 0.8835 0.8006 0.9588
SVM FCGR 0.8760 0.8940 0.8583 0.7535 0.9288

FCGR + DAC 0.8751 0.8874 0.8630 0.7513 0.9310

FCGR + TAC 0.8754 0.8869 0.8639 0.7519 0.9318

FCGR + DACC 0.8563 0.8544 0.8583 0.7138 0.9217

FCGR + TACC 0.8423 0.8337 0.8509 0.6858 0.9114

FCGR + PseDNC 0.8736 0.8883 0.8591 0.7481 0.9294

FCGR + PseTNC 0.8740 0.8905 0.8578 0.7491 0.9280

All features 0.8154 0.7545 0.8757 0.6355 0.8998

ELM FCGR 0.8456 0.8702 0.8213 0.6931 0.9092

FCGR + DAC 0.8469 0.8707 0.8235 0.6952 0.9087

FCGR + TAC 0.8478 0.8750 0.8209 0.6974 0.9142

FCGR + DACC 0.8500 0.8772 0.8230 0.7017 0.9054

FCGR + TACC 0.8454 0.8865 0.8048 0.6941 0.9104

FCGR + PseDNC 0.8476 0.8640 0.8313 0.6968 0.9111

FCGR + PseTNC 0.8439 0.8702 0.8178 0.6893 0.9111

All features 0.8474 0.8909 0.8044 0.6980 0.9141

XGBoost FCGR 0.8602 0.897 0.8239 0.7235 0.9237

FCGR + DAC 0.8561 0.8627 0.8496 0.7130 0.9186

FCGR + TAC 0.8865 0.9035 0.8696 0.7734 0.9394

FCGR + DACC 0.8439 0.8667 0.8213 0.6894 0.9136

FCGR + TACC 0.8406 0.8711 0.8104 0.6831 0.9046

FCGR + PseDNC 0.8563 0.8931 0.82 0.7152 0.9208

FCGR + PseTNC 0.8504 0.8712 0.8300 0.7029 0.9185

All features 0.8511 0.8755 0.827 0.7039 0.9193

MLP FCGR 0.8579 0.8839 0.8322 0.7172 0.9186

CNN FCGR 0.8616 0.8746 0.8487 0.7239 0.9222
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In this paper, we will use the python package (Scikit-learn 0.23), which can be down-
loaded from https ://sciki t-learn .org/stabl e/index .html. This package contains the SVM 
module, and the implementation is based on libsvm. We will train the SVM with the 
radial basis function (RBF) kernel, meanwhile two parameters will be considered: pen-
alty parameter C and kernel coefficient Gamma. In the training process, we used the grid 
optimization method to determine the best values of the two parameters.

Extreme learning machine

Extreme learning machine (ELM) was proposed by Guang-Bin Huang. The algorithm is 
a new machine learning algorithm based on single hidden layer feedforward neural net-
works (SLFNs). Compared with traditional algorithms, ELM has a faster learning speed 
while maintaining learning accuracy. The core idea is to randomly select the input layer 
weight and hidden layer bias of the network, and get the corresponding hidden node 
output [41]. The network structure of ELM model is shown in Fig. 7.

Table 13 Comparison of our predictors with other advanced models via 20‑fold cross‑validation for 
C. elegans

Best values are in bold

Method Feature ACC Sn Sp MCC AUC 

LeNup [25] 0.9188 0.9339 0.9041 0.8444 0.9663
3LS [22] 0.8786 0.8654 0.8921 0.7576 0.9605

SVM FCGR 0.8623 0.8946 0.8304 0.7268 0.9301

FCGR + DAC 0.8578 0.8882 0.8278 0.7173 0.9274

FCGR + TAC 0.8564 0.8804 0.8328 0.7143 0.9234

FCGR + DACC 0.8483 0.8703 0.8266 0.6982 0.9170

FCGR + TACC 0.8481 0.8726 0.824 0.6975 0.9201

FCGR + PseDNC 0.8585 0.8948 0.8228 0.7198 0.9278

FCGR + PseTNC 0.8551 0.8859 0.8248 0.7133 0.9285

All features 0.8450 0.8359 0.8539 0.6900 0.9210

ELM FCGR 0.8757 0.8940 0.8577 0.7525 0.9419

FCGR + DAC 0.8715 0.8882 0.8551 0.7444 0.9371

FCGR + TAC 0.8711 0.8878 0.8547 0.7433 0.9356

FCGR + DACC 0.8715 0.8901 0.8532 0.7442 0.9374

FCGR + TACC 0.8692 0.8948 0.8439 0.7400 0.9342

FCGR + PseDNC 0.8678 0.8875 0.8486 0.7369 0.9348

FCGR + PseTNC 0.8563 0.8851 0.8279 0.7144 0.9293

All features 0.8614 0.8921 0.8312 0.7251 0.9299

XGBoost FCGR 0.8520 0.8831 0.8213 0.7060 0.9207

FCGR + DAC 0.8541 0.8855 0.8232 0.7108 0.9223

FCGR + TAC 0.8537 0.8757 0.8321 0.709 0.9195

FCGR + DACC 0.8465 0.8671 0.8255 0.694 0.9161

FCGR + TACC 0.8471 0.8702 0.8244 0.6959 0.9188

FCGR + PseDNC 0.8487 0.8781 0.8198 0.6996 0.9204

FCGR + PseTNC 0.8501 0.8804 0.8202 0.7022 0.9224

All features 0.8518 0.8851 0.8190 0.7059 0.9188

MLP FCGR 0.8589 0.8864 0.8318 0.7206 0.9281

CNN FCGR 0.8529 0.8778 0.8284 0.7076 0.9181

https://scikit-learn.org/stable/index.html
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Table 14 Comparison of our predictors with other advanced models via 20‑fold cross‑validation for 
D. melanogaster

Best values are in bold

Method Feature ACC Sn Sp MCC AUC 

LeNup [25] 0.8847 0.8974 0.8713 0.7828 0.9401
3LS [22] 0.8341 0.8407 0.8274 0.6682 0.9147

SVM FCGR 0.8117 0.7841 0.8396 0.6251 0.8782

FCGR + DAC 0.8094 0.7876 0.8316 0.6201 0.8783

FCGR + TAC 0.8118 0.8073 0.8163 0.6252 0.8863

FCGR + DACC 0.7866 0.7997 0.7733 0.5738 0.8384

FCGR + TACC 0.7767 0.7128 0.8418 0.5593 0.8412

FCGR + PseDNC 0.8095 0.7992 0.8199 0.6209 0.8843

FCGR + PseTNC 0.8108 0.8034 0.8183 0.6234 0.8848

All features 0.7602 0.7014 0.8200 0.5255 0.8059

ELM FCGR 0.7912 0.7651 0.8204 0.5842 0.8601

FCGR + DAC 0.7924 0.7752 0.8098 0.5862 0.8689

FCGR + TAC 0.7932 0.7776 0.8091 0.5877 0.8619

FCGR + DACC 0.7793 0.7710 0.7877 0.5599 0.8537

FCGR + TACC 0.7697 0.7686 0.7709 0.5403 0.8456

FCGR + PseDNC 0.7910 0.7659 0.8165 0.5837 0.8648

FCGR + PseTNC 0.7691 0.7455 0.7930 0.5395 0.8433

All features 0.7878 0.7859 0.7899 0.5763 0.8637

XGBoost FCGR 0.8037 0.7821 0.8257 0.6088 0.8771

FCGR + DAC 0.7891 0.7741 0.8042 0.5791 0.8648

FCGR + TAC 0.7948 0.7762 0.8137 0.5910 0.8690

FCGR + DACC 0.7814 0.7790 0.7839 0.5634 0.8540

FCGR + TACC 0.7706 0.7648 0.7765 0.5417 0.8508

FCGR + PseDNC 0.8010 0.7786 0.8239 0.6036 0.8728

FCGR + PseTNC 0.8074 0.7958 0.8193 0.6165 0.8831

All features 0.7979 0.7745 0.8218 0.5972 0.8739

MLP FCGR 0.8127 0.8003 0.8253 0.6272 0.8893

CNN FCGR 0.8116 0.8036 0.8198 0.6252 0.8854

Fig. 5 CGR of DNA sequences: a H. sapiens nucleosome‑inhibiting sample and b H. sapiens 
nucleosome‑forming sample
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The experiment reference used David Lambert’s Python version of ELM resources, 
which can be downloaded from the ELM web portal (https ://www.ntu.edu.sg/home/
egbhu ang/). The code can be found on https ://githu b.com/dclam bert/Pytho n-ELM.

Extreme gradient boosting

Extreme gradient boosting (XGBoost) is an open source machine learning project devel-
oped by Tianqi Chen et al. [42]. It is one of the boosting algorithms, which has the char-
acteristics of high efficiency, flexibility, high accuracy, and strong portability. It is applied 
in the field of biomedicine [43].

The idea of XGBoost algorithm is to continuously add trees and perform feature split-
ting to complete the construction of a tree. In the whole process, each addition of a tree 
is learning a new function to fit the residual of the previous prediction. When the train-
ing is completed, K trees will be obtained. If we want to predict the score of a sample, 
according to the features of this sample, each tree will fall to a corresponding leaf node, 

Table 15 The quantity composition of the four species datasets

N-f indicates nucleosome-forming sequences (positive data) and N-i indicates nucleosome-inhibiting sequences (negative 
data)

Species N‑f N‑i Total

H. sapiens 2273 2300 4573

C. elegans 2567 2608 5175

D. melanogaster 2900 2850 5750

S. cerevisiae 1880 1740 3620

Table 16 The frequency matrix of CGR image on H. sapiens nucleosome‑inhibiting sample

1 3 1 1 0 0 0 0

3 1 4 1 1 0 2 3

3 2 0 1 1 2 2 0

4 4 3 4 7 0 2 2

5 1 0 4 2 3 0 0

3 7 2 2 5 1 2 0

8 4 5 0 4 0 4 1

12 2 2 1 3 2 2 2

Fig. 6 FCGR image of H. sapiens nucleosome‑inhibiting sample with different K: a K = 3, b K = 4 and c K = 5

https://www.ntu.edu.sg/home/egbhuang/
https://www.ntu.edu.sg/home/egbhuang/
https://github.com/dclambert/Python-ELM
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and each leaf node corresponds to a score. Finally, we only need to add up the scores 
corresponding to each tree to get the predicted value of the sample.

In this experiment, we used the python package (xgboost 1.2.0), which can be down-
loaded from https ://githu b.com/dmlc/xgboo st.

Multilayer perceptron

Multilayer perceptron (MLP) is also called deep neural networks (DNNs) [44]. MLP is 
based on the extension of perception. Multiple hidden layers are introduced between the 
input layer and the output layer, and the neurons between the layers are fully connected. 
So, both the hidden layer and the output layer in MLP are fully connected layers.

For the MLP, we used the AI Studio (https ://aistu dio.baidu .com/aistu dio/index ) 
experimental platform and PaddlePaddle (https ://www.paddl epadd le.org.cn/) deep 
learning framework provided by Baidu (https ://www.baidu .com/) to implement the 
experimental model with python (https ://www.pytho n.org/). MLP has three hidden 
layers with Relu activation function [45], each layer contains 50 neurons, the output 
layer uses a softmax activation function. Besides, MLP is trained by 5 epchos, with 
Adamax optimizer a learning rate of 0.001. Adamax algorithm is a variant of Adam 
algorithm based on infinite norm, which makes the algorithm of learning rate update 
more stable and simple [46]. We use cross entropy as our loss function.

Convolutional neural network

Convolutional Neural Network (CNN) is a representative algorithm of deep learning. 
It has demonstrated extraordinary advantages in the field of computer vision and has 
also been widely used in bioinformatics [47, 48]. Convolutional neural networks can 
automatically extract features from input data. Compared with fully connected neural 
networks, it can simplify model complexity and effectively reduce model parameters 
[49]. Convolutional neural networks are applied to the general framework of image 

Fig. 7 Basic architecture of ELM

https://github.com/dmlc/xgboost
https://aistudio.baidu.com/aistudio/index
https://www.paddlepaddle.org.cn/
https://www.baidu.com/
https://www.python.org/
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mode, mainly composed of convolutional layers, activation function, pooling layers 
and fully connected layers [49, 50].

Owing to the limitation of the sample data volume, during the training process, we 
need to prevent the over-fitting problem faced by CNN, so we add a batch normaliza-
tion (BN) layer [51] after the convolutional layer and add a dropout layer [52] after 
the fully connected layer. In our network, the convolutional layer uses a 3 × 3 convo-
lution kernel, the number of filters in the first layer is 64, and the second is 32. The 
pooling layer use the maximum pooling of 2 × 2, with stride = 2. The first fully con-
nected layer neurons’ number is 100, and the second is 50. Then, the dropout prob-
ability of the subsequent dropout layer is 0.5. Except the softmax activation function 
used in the output layer, the activation function in the other layers is Relu. CNN is 
training by 20 epchos, with Adamax optimizer a learning rate of 0.001. The loss func-
tion is cross entropy. Like MLP, we also used the AI Studio experimental platform and 
PaddlePaddle deep learning framework provided by Baidu to implement the experi-
mental model in python. The specific network structure is shown in Fig. 8.
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