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In order to achieve flexible and smooth walking, we must accomplish subtasks (e. g.,

loading response, forward propulsion or swing initiation) within a gait cycle. To evaluate

subtasks within a gait cycle, the analysis of muscle synergies may be effective. In the

case of walking, extracted sets of muscle synergies characterize muscle patterns that

relate to the subtasks within a gait cycle. Although previous studies have reported that the

muscle synergies of individuals with disorders reflect impairments, a way to investigate

the instability in the activations of muscle synergies themselves has not been proposed.

Thus, we investigated the local dynamic stability and orbital stability of activations of

muscle synergies across various walking speeds using maximum Lyapunov exponents

and maximum Floquet multipliers. We revealed that the local dynamic stability in the

activations decreased with accelerated walking speeds. Contrary to the local dynamic

stability, the orbital stability of the activations was almost constant across walking speeds.

In addition, the increasing rates of maximum Lyapunov exponents were different among

the muscle synergies. Therefore, the local dynamic stability in the activations might

depend on the requirement of motor output related to the subtasks within a gait cycle. We

concluded that the local dynamic stability in the activation of muscle synergies decrease

as walking speed accelerates. On the other hand, the orbital stability is sustained across

broad walking speeds.

Keywords: maximum lyapunov exponents, maximum floquet multipliers, electromyography, non-negative matrix

factorization, central nervous system, motor control, nonlinear analysis

INTRODUCTION

We can easily walk under various conditions; controlling flexible and smooth walking is a necessary
factor for daily life. To achieve flexible and smooth walking, we must achieve subtasks within
a gait cycle (e.g., loading response, forward propulsion or swing initiation) within a gait cycle
(Winter, 1987). Walking is achieved by controlling subtasks at appropriate times within a gait
cycle. Dysfunctions in subtasks within a gait cycle are directly associated with impairments in
walking ability. For example, elderly adults frequently cause the co-activation between the ankle
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plantar flexor and the ankle dorsiflexor muscles during the
forward propulsion (Schmitz et al., 2009). Moreover, post-stroke
individuals with hemiparetic walking induce the co-contraction
between the hip flexor and the hip extensor muscles during the
stance phase (Den Otter et al., 2007). Because the assessment
of walking ability is a critical factor in rehabilitation, effective
evaluation of subtasks within a gait cycle may be beneficial for
clinicians. Such evaluation of subtasks within a gait cycle may
be achieved via analysis of muscle synergies. Many previous
studies have revealed that the central nervous system (CNS)
may modularly organize movements via the muscle synergies
that control several muscles (Tresch et al., 1999; d’Avella et al.,
2003; Hagio and Kouzaki, 2014; Hagio et al., 2015; Kubo et al.,
2017; Nishida et al., 2017; Kibushi et al., 2018). The activation
of muscle synergies may reflect the control signal from the CNS.
During walking, sets of extracted muscle synergies characterize
muscle patterns that are related to subtasks within a gait cycle
(e.g., loading response phase, late stance phase or swing phase;
Neptune et al., 2009; McGowan et al., 2010; Allen and Neptune,
2012). In addition to walking, muscle synergies are observed
during running, sidestepping, backward walking and perturbed
walking (Chvatal and Ting, 2013; Oliveira et al., 2013; Zelik
et al., 2014; Yokoyama et al., 2016; Nishida et al., 2017). Thus,
muscle synergies characterize coordination patterns of muscles
that relate to subtasks in various locomotor behaviors. When
the walking speed changes, constructions of muscle synergies are
relatively consistent. However, activations of muscle synergies
are affected by the walking speed. Our previous study showed
that construction of muscle synergies was relatively consistent
among walking speeds (Kibushi et al., 2018). On the other
hand, the timing of intense activation within one gait cycle of
muscle synergies shifts depending on walking speeds. Moreover,
peak activation of muscle synergies becomes larger as walking
speed increases (Ivanenko et al., 2004; Yokoyama et al., 2016).
Hence, activation of muscle synergies depends on walking
speed. To evaluate impairments in subtasks within a gait cycle,
analysing the activation of muscle synergies may be effective.
Allen et al. (2013) revealed that merged temporal patterns of
synergies during hemiparetic walking reflect impairments in
subtasks within a gait cycle. Although many researchers have
investigated how the impairments in the CNS affect muscle
synergies, it has not been proposed a way to evaluate instability
of activation of muscle synergies themselves. We considered that
direct analysis of instability in the activation of muscle synergies
might characterize instability of neural input signal from the
CNS.

The time-series of joint angle or muscle activity during
walking is periodic, and the attractor or limit cycle is constructed
from the time-series data during walking (Kuo, 2002; Dingwell
and Kang, 2007). Because the activation of muscle synergies
during walking is also periodic (Ivanenko et al., 2004; Kibushi
et al., 2018), we considered that stability of attractor or limit
cycle that produces the activation of muscle synergies may
reflect the stability of the control signal from the CNS. Stability
of attractor or limit cycle has been investigated in the fields
of engineering, robotics, and computer simulation for walking
(Bruijn et al., 2011; Huang et al., 2014, 2017). In these

stability analyses, the stability of time-series data is evaluated by
investigating characteristics of an attractor that is reconstructed
in a state space. Recently, the maximum Lyapunov exponent and
maximum Floquet multiplier were applied in human walking
to evaluate stability of attractor that was produced by the time-
series data of walking (Dingwell and Marin, 2006; Dingwell and
Kang, 2007; England and Granata, 2007; Kang and Dingwell,
2008; Lockhart and Liu, 2008; Bruijn et al., 2009; Santuz
et al., 2018). Maximum Lyapunov exponents quantify how
the system’s states respond to very small local perturbations
continuously (Dingwell and Kang, 2007). On the other hand,
maximum Floquet multipliers quantify the tendency of the
system’s states to return to the periodic limit cycle orbit after
small perturbations (Dingwell and Kang, 2007). In summary,
local dynamic stability is quantified by the maximum Lyapunov
exponents, and orbital stability is quantified by the maximum
Floquet multipliers. Thus, maximum Lyapunov exponents and
maximum Floquet multipliers are quantify different aspect of
dynamical stability, respectively. We expected that stability of
attractor that was constructed by activation of muscle synergies
by investigating maximum Lyapunov exponents and maximum
Floquet multipliers.

Previous studies have shown that large motor outputs are
required with accelerated walking speeds. For example, the peak
ankle plantar flexion moment or the activation of tibialis anterior
and medial gastrocnemius muscles increased with acceleration
of walking speed (Warren et al., 2004; Pires et al., 2014). For
these requirement for large motor outputs, fast walking cannot
be persist for a long time. We considered that requirement for
large motor output may cause lower local dynamic stability of
activation of muscle synergies. Then, we hypothesized that the
maximum Lyapunov exponents of activation of muscle synergies
increase with acceleration of walking speed. On the other hand,
we can achieve periodic walking among widely walking speed.
Hence, we supposed that the orbital stability of activation of
muscle synergies may be sustained among the walking speed.

The purpose of this study was identifying the local dynamic
stability and orbital stability of activation of muscle synergies
that relate to subtasks within a gait cycle among various walking
speeds. To achieve this purpose, we investigated the maximum
Lyapunov exponents and the maximum Floquet multipliers in
activation of muscle synergies among various walking speeds.

METHODS

Experimental Setup and EMG Procedures
We recruited 10 healthy men (age: 23.3 ± 0.9 years, height:
171.1 ± 3.44 cm, and weight: 64.1 ± 0.63 kg) for this study.
Subjects provided written informed consent to participate in
the study after receiving a detailed explanation of the purposes,
potential benefits, and risks associated with participation. The
experimental procedures were conducted in accordance with
the Declaration of Helsinki and were approved by the Local
Ethics Committee of the Graduate School of Human and
Environmental Studies, Kyoto University (Approval number
26-H-22). We instructed the subjects to walk naturally on a
treadmill (Adventure 3 PLUS, Horizon, Johnson Health Tech
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Japan Co., Tokyo, Japan) at 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0, 6.5, 7.0, 7.5, and 8.0 km/h, in a randomized order. Subjects
walked on the treadmill over 50 gait cycles at each walking
speed. We recorded surface electromyograms (EMG) from 12
muscles in the right lower limb and trunk: the gastrocnemius
medialis (MG), gastrocnemius lateralis (LG), soleus (SOL),
tibialis anterior (TA), vastus lateralis (VL), rectus femoris (RF),
biceps femoris (BF), tensor fasciae latae (TFL), adductor longus
(AL), gluteus medius (Gmed), gluteus maximus (Gmax), and
erector spinae (ERE). The electrode placements were carefully
chosen to minimize crosstalk from the adjacent muscles by using
an ultrasonic device, and we placed EMG electrodes based on
suggestions from SENIAM (seniam.org), the European project
on surface EMGs. The EMG signals were amplified (SX230-
1000, Biometrics, Gwent, UK) and bandpass filtered between
20 and 450Hz (Kouzaki and Shinohara, 2010). All electrical
signals were stored at a sampling frequency of 1,000Hz on
the hard disk of a personal computer using a 16-bit analog-
to-digital converter (PowerLab/16SP; AD Instruments, Sydney,
Australia). To record the heel contact timing, subjects wore
shoes that were implemented switches. We defined 1 gait cycle
as the start of one right heel contact to the moment before
the next right heel contact. We analyzed 30 gait cycles within
the sampled EMGs from each subject. It has been revealed that
the kinematics of initial walking differs from that of steady
walking (Mbourou et al., 2003; Bus and de Lange, 2005).
Therefore, we excluded the initial 10 gait cycles from analysis.
Based on similar reason, we excluded the last 10 gait cycle
from analysis. During the experiment, subjects took adequate
rest between the tasks (rest time was changed in accordance
with situations) to reduce the fatigue. Moreover, time for
achieving a gait task is 40–100 s, and all tasks (including rest
time) were finished within 1 h. We inquired whether subject
felt fatigue during experiment, no subjects claimed fatigue.
Therefore, we expect the fatigue did not affect results. Before
extraction of the muscle synergies, the EMGs were high-pass
filtered (40Hz) with a zero lag fourth-order Butterworth filter,
full-wave rectified, low-pass filtered (10Hz) with a zero lag
fourth-order Butterworth filter, and time-interpolated over 100
points (Cappellini et al., 2006; Clark et al., 2010). Using these
procedures, we provided a 12 muscles × 30 gait cycles-sized
matrix (12 muscles × 3000 time steps) for each subject. The
EMG matrix was normalized to the peak activity of the EMGs
for all muscles (Torres-Oviedo and Ting, 2007; Hagio and
Kouzaki, 2014). After this normalization, the EMG matrix was
normalized to the standard deviation of each muscle to have unit
variance (Torres-Oviedo and Ting, 2007; Hagio and Kouzaki,
2014).

Extraction of the Muscle Synergy
The muscle synergies were extracted by using a non-negative
matrix factorization (NMF) algorithm (Lee and Seung, 1999;
Cheung et al., 2005). The NMF approximately decomposes a
matrix into two non-negative matrixes by minimizing an error
between the original matrix and a reconstructed matrix. The
particular muscle activation pattern for a given walking speed is

represented by the following equation:

M =
∑N

i=1Wi Ci + ε Wi ≥ 0 Ci ≥ 0 (1)

where N is the number of synergy, Wi is the muscle weighting
in a muscle synergy i, Ci denotes an activation that involves a
relative contribution of the muscle synergy, ε is the residual. Wi

is 12× 1 vector (number of muscles× number of synergies), and
Ci is 1× 3000 vector (number of synergies× phase points). Each
component of Wi represents the contribution of one particular
muscle to that muscle synergy, and an individual muscle may
contribute to multiple muscle synergies. The composition of the
muscle synergy Wi does not change within a walking speed,
but the activation Ci does change within a walking speed. The
weighting of each muscle synergy and activation coefficient were
normalized, such that the individual muscle weighting vector was
a unit vector.

Selection of the Number of Muscle
Synergies
We extracted the muscle synergy and activation coefficient from
the EMG data matrix for each walking speed. The muscle
synergies were extracted between 1 and 12. We performed cross-
validation to obtain consistent muscle synergies. Construction
or activation of muscle synergies are slightly different among
repetition of extraction, because results by the NMF depend
on initial states. In addition, we need to extract invariant
muscle synergies within a walking speed. This concept based
on the assumption that muscle synergies invariant among gait
cycles. Therefore, we considered that the cross-validation would
support extracting consistent muscle synergies. To perform
cross-validation, we divided the EMG data (30 gait cycles) into
60% of the EMG (18 gait cycles) data, and 40% of the EMG
(12 gait cycles) data from each walking speed (Torres-Oviedo
and Ting, 2007). The muscle synergies were extracted from
60% of the EMG data to 40% of the EMG data. For updating
the weightings and activations in 40% of the EMG data, the
activations of the muscle synergies were updated, whereas the
weightings of the muscle synergies were fixed by the weightings
of 60% of the EMG data (Cheung et al., 2005; Torres-Oviedo
and Ting, 2007). This cross-validation was repeated 10 times
(Kibushi et al., 2018). In order to determine the appropriate
number of muscle synergies, we verified the goodness of fit
between the original and reconstructed EMG data matrixes.
The original EMG data denotes filtered and normalized EMG
data, and reconstructed EMG data indicates the EMG matrix
that was reconstructed by ΣWiCi. We defined the number of
muscle synergies as the smallest number of synergies that resulted
in an adequate reconstruction of the original EMG data. The
variability accounted for (VAF) was calculated as a coefficient
of determination, which was based on the entire dataset (global
VAF) and each muscle (muscle VAF) for each subject (Torres-
Oviedo et al., 2006; Hagio and Kouzaki, 2014). The VAF was
calculated using the following equation:

VAF = [1− (EMGo − EMGr)
2/EMGo

2]× 100 (2)
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where EMGo represents an EMG data matrix before performing
the NMF, and EMGr denotes the EMG matrix that was
reconstructed by ΣWiCi. The term of (EMGo – EMGr)

2 and
EMG2

o were the sum of squared. The global VAF and the VAF
of each of the 12 muscles were calculated in 40% of the EMG
data. The global VAF matrix and 12 muscle VAF matrixes were
averaged across repetitions. In addition, the 95% confidence
interval (CI) for the VAF matrix at each synergy number (1–
12) was calculated. The synergy number (1–12) indicates that
synergy number ranged 1–12 because we calculated variability
accounted for (VAF) at all number of muscle synergies (ranges
1–12). The number of synergies underlying each dataset was
defined as the minimum number of synergies at which the lower
bound of the 95% CI exceeded 90% of the global VAF and 75%
of the muscle VAF (Clark et al., 2010; Hagio and Kouzaki, 2014;
Sawers et al., 2015). We rounded the median number of synergies
across subjects, and we determined that the number of synergies
were 4 (2.0–4.0 km/h) and 5 (4.5–8.0 km/h). To confirm that
the muscle synergies extracted by the NMF algorithm were due
to the inherent organization of the muscle activation based on
neurophysiological evidence rather than on artifacts produced
by the NMF method, the VAF levels were compared to the
VAF values of the muscle synergies that were extracted from the
shuffled datasets. For the shuffled procedure, the data for each
muscle were shuffled independently; therefore, this shuffled data
matrix contained the same values, range and variance for each
muscle, whereas the relationships among the muscle activations
were removed (Chvatal and Ting, 2013; Hagio and Kouzaki,
2014). The results of the VAF and shuffled VAF are shown in
Figure 1. In all cases, the VAF values for the reconstruction of the
original data using the identified muscle synergies were clearly
higher than the VAF of the shuffled datasets.

Calculation of Maximum Lyapunov
Exponents and Maximum Floquet
Multipliers
We calculated the maximum Lyapunov exponents and the
maximum Floquet multipliers of the activations of the muscle
synergies. To calculate the maximum Lyapunov exponents
and maximum Floquet multipliers, we selected a time-delayed
coordinate approach (Dingwell and Cusumano, 2000; Dingwell
and Marin, 2006; Dingwell and Kang, 2007; Labini et al., 2012).
In the construction of the time-delayed coordinate system,
the state space was constructed from single-dimensional time
series measurements and its time-delayed copies. The embedding
theorem of Takens (1981) ensures the validity of the time-delayed
coordinate approach. We constructed the state space from the
activation of muscle synergies. The number of data point of the
activation of muscle synergies were 3,000. The general form of
the state space is:

S (t) =
[

q (t) , q (t + τ) , . . . , q(t + (dE − 1)τ )
]

(3)

where S(t) is the state space, q(t) denotes the original single-
dimensional data, τ is the selected time delay, and dE is
the embedding dimension. It has been recommended that
the embedding dimension be unified across the subjects (van

Schooten et al., 2013). Therefore, we unified the embedding
dimension of the activation of eachmuscle synergy. To determine
the unified embedding dimension, we searched the appropriate
embedding dimensions in each measurement by using a Global
False Nearest Neighbor (FNN) analysis (Kennel et al., 1992). We
determined the embedding dimension when the number of false
neighbors on the reconstructed trajectory were minimized. The
calculated embedding dimensions were averaged across walking
speeds, subjects and activations of the muscle synergies. As a
result, we defined the embedding dimension in the activation
of the muscle synergies as 6. We determined the time delays by
calculating the first minimum of the average mutual information
function (Fraser and Swinney, 1986). The time delays of the
activations of the muscle synergies were 23 ± 2.1, 23 ± 1.9, 20
± 2.6, 21± 2.9, and 20± 2.5% of gait cycle, respectively.

We were able to quantify the average exponential rate of
divergence of neighboring trajectories in the state space using
the maximum Lyapunov exponent (Rosenstein et al., 1993). The
maximum Lyapunov exponent (λ1) for a dynamical system can
be defined using:

d (t) = Deλ1t (4)

where d(t) is the mean displacement between neighboring
trajectories in state space at time t, D is the initial separation
between neighboring points. The finite-time Lyapunov
exponents are distinguished from true Lyapunov exponents
(λ1), which are strictly defined only in the dual limit as D→ 0
and t→ ∞ in (4). The true Lyapunov exponents cannot be
computed reliably because it is difficult to approach limits in the
experimental data. Then, Rosenstein et al. (1993) provided the
method that estimates of finite-time Lyapunov exponents (λ∗)
for each embedded time series. Taking the log transform of both
sides of (4), λ∗ was defined from

ln
[

dj (i)
]

≈ λ∗ (i1t) + ln
[

Dj

]

(5)

where dj(i) is the Euclidean distance between the jth pair of
nearest neighbors after i discrete time steps. Euclidean distances
between neighboring trajectories in state space were calculated as
a function of time and averaged over all original pairs of nearest
neighbors. The λ∗ were estimated from the slopes of linear fits to
curves defined by

λ (i) =

〈

ln
[

Dj (i)
]〉

1t
(6)

where Dj (i) is the Euclidean distance between the jth pair of
nearest neighbors after i discrete time steps, t is the sampling
period of the time series data and

〈

ln
[

Dj (i)
]〉

denotes the average
of ln

[

Dj (i)
]

across all values of j. MaximumLyapunov exponents
were estimated from the slopes of the linear fits to the curve.
We defined the maximum Lyapunov exponent from the slopes
of the linear fits to the divergence curve between 0 and 1
stride (Dingwell and Marin, 2006). When a maximum Lyapunov
exponent is negative, the analyzed attractor is stable. On the
other hand, the analyzed attractor is unstable when a maximum
Lyapunov exponent is positive.
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FIGURE 1 | The global VAF values at 2.0, 4.0, 6.0, and 8.0 km/h. The average global VAF values across subjects are illustrated as black lines, and dark gray lines

denote the global VAF value for each subject. Thick gray lines represent the average shuffled VAF across subjects, and thin gray lines denotes the shuffled VAF for

each subject.

The maximum Floquet multipliers were calculated as
eigenvalues of the Jacobian of the Poincaré map. A set of points
that are generated by passing through the section of an attractor
is called the Poincaré map. We defined the Poincaré map at each
percent of the gait cycle (1–100%) (Kang and Dingwell, 2009).
Therefore, 100 Poincaré maps were defined for each walking
speed. The state space Sk for each gait cycle k at that Poincaré
section evolved to a state in the following gait cycles Sk+1. This
was according to the Poincaré map:

Sk+1 = F (Sk) (7)

We defined the limit cycle trajectory as the average trajectory
across all strides within a walking speed. The limit cycle trajectory
produces a single fixed point S∗ in each Poincaré map.

S∗ = F(S∗) (8)

For our walking data, we defined the fixed points at each Poincaré
map by the average trajectory across all strides within a walking
speed. The maximum Floquet multiplier that estimated the
effects of small perturbations away from the fixed points was
calculated by using a linearized approximation

[

Sk+1 − S∗
]

≈ J (S∗) [Sk − S∗] (9)

where J(S∗) defined the Jacobian matrix for the system at each
Poincaré section. The Floquet multipliers are the eigenvalues of
J(S∗). Any deviation away from the fixed point is multiplied by
the Floquet multiplier from the subsequent cycle. Thus, for a
limit cycle to be orbitally stable, these complexly valued Floquet
multiplier must have a magnitude <1.

Now, we summarize analysis of maximum Lyapunov
exponents and maximum Floquet multipliers. For local
dynamic stability, we defined maximum Lyapunov exponents
by evaluating values of the slopes of linear fits to the
divergence curve between 0 and 1 strides. This is called
short-term maximum Lyapunov exponents in gait analysis.
For orbital stability, maximum Floquet multipliers by
calculating the eigenvalues derived from the Jacobian of
the Poincaré map. The Floquet multipliers and Lyapunov
exponents exhibit the same concept of stability, if a maximum
Lyapunov exponent is estimated by adequately long time-
series of divergence curve and its linear fitting is valid.
However, we defined maximum Lyapunov exponents
for “short” time-series (0–1 strides) of divergence curve.
Hence, the short-term maximum Lyapunov exponents and
maximum Floquet multipliers might exhibit discrepant
stability state simultaneously in our analysis (e.g., unstable
state of local dynamic stability and stable state of orbital
stability).

Statistics
A one-way repeated measures ANOVA was used to test whether
outcome measures of interest were significantly influenced by
a change in walking speeds. Tukey’s post hoc analysis was
used when the ANOVA indicated a significant main effect. To
investigate changes in the increasing rates of the maximum
Lyapunov exponents between slower walking speeds (2.0–
5.0 km/h) and faster walking speeds (5.5–8.0 km/h), we verified
the significance level of the increasing rate of the maximum
Lyapunov exponents using Student’s paired t-tests. It has been
revealed that the energy cost during walking is minimized around
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FIGURE 2 | Example time courses of the muscle activities at 2.0, 4.0, 6.0, and 8.0 km/h. (A) Representative examples (selected one subject) of the muscle activities

within one gait cycle are illustrated. These EMGs were high-pass filtered at 40Hz, rectified, and demeaned. Vertical dotted lines represent start or end of the gait cycle.

The horizontal axis values were based on the time for achieving one gait cycle in representative subject. Blue, red, and green dotted lines indicate a timing of left toe

off, left heel contact, and right toe off, respectively. In normal walking, timing of left toe off, left heel contact, and right toe off roughly correspond to 10, 50, and 60% of

gait cycle, respectively. The abbreviations represent the gastrocnemius medialis (MG), gastrocnemius lateralis (LG), soleus (SOL), tibialis anterior (TA), vastus lateralis

(VL), rectus femoris (RF), biceps femoris (BF), tensor fasciae latae (TFL), adductor longus (AL), gluteus medius (Gmed), gluteus maximus (Gmax), and erector spinae

(ERE). (B) Different walking phases are shown with stick-pictures. In this figure, one gait cycle is defined from right heel contact to the next right heel contact. Right

legs are colored black, and left legs are colored gray.

the preferred walking speed (Cavagna et al., 1963). We expected

that changes of maximum Lyapunov exponents and maximum

Floquet multipliers also different between slower walking and

faster walking. Before performing Student’s paired t-test, we used

the Shapiro-Wilk test to evaluate whether the data were normally

distributed. All results from this test for the data (P > 0.05)

show that the null hypothesis (sample is taken from a population

with normal distribution) should not be rejected; therefore these

data are normally distributed. The significance level was set at
p= 0.05.

RESULTS

Characteristics of Muscle Activity
We measured electromyograms (EMG) from the right limb and
trunk muscles. The time series of muscle activity is illustrated
in Figure 2A, and illustration of walking phases is shown in
Figure 2B. Timing of muscle activation within one gait cycle or
changes of muscle activities were consistent with previous reports
(Neumann, 2002). The ankle plantar flexors (MG, LG, SOL) were
mainly activated during the propulsion phase (40% of gait cycle),
and their peak activation increased as the walking speeds became
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faster. This results consistent with previous studies (Warren et al.,
2004). The ankle dorsi-flexor (TA) was mainly activated from just
before the heel contact phase to the loading response (10% of
gait cycle). At slow walking speeds, the TA inactivated during the
loading response. At fast walking speeds, the TA was exceedingly
activated during the swing phase (60–100% of gait cycle). The
knee extensor (VL) was mainly activated during the loading
response. The bi-articular muscle that connects with the knee
and hip joint (RF) was activated during the loading response and
swing phase. Although the activation of the RF was small at slow
walking speeds, muscle activation during the pre-swing phase
(around 50% of gait cycle) was considerably high at fast walking
speeds. This intensive activity of RF during fast walking speeds
was reported in previous studies (Prilutsky and Gregor, 2001).
The biceps femoris was activated from just before heel contact
and until the loading response. The hip flexor muscle (TFL)
was mainly activated during the single support phase (about 10–
40% of gait cycle) at slow and moderate walking speeds. At fast
walking speeds, the activation of the TFL during the pre-swing
phase was extremely high. The hip adductor muscle (AL) was
mainly activated during the double support phase (around 50%
of gait cycle) until the swing initiation (60% of gait cycle). The
hip abductor muscle (Gmed) was mainly activated during the
single support phase. The activity of the hip extensor muscle
(Gmax) was similar to that of the BF. The trunk stabilizer muscle
(ERE) was mainly activated in the double support phase and the
post-swing phase (80–100% of gait cycle).

Extracted Muscle Synergies
Typical examples of the extracted muscle synergies are illustrated
in Figure 3. TheWi is the muscle weighting in amuscle synergy i,
the Ci denotes an activation that involves a relative contribution
of the i th muscle synergy. The weighting of Synergy1 (W1)
mainly consisted of the knee extensor (VL), hip adductor (Gmed)
and hip extensor (Gmax), which were recruited during the
single support phase (10–50% of gait cycle) for the loading
response (0–10% of gait cycle) and body support. The activation
of Synergy1 (C1) contributed to body support. The weighting
of Synergy2 (W2) dominated the plantar flexors (MG, LG,
SOL), and main peak activation of Synergy2 (C2) was located
in forward propulsion phase (40% of gait cycle). Therefore,
Synergy2 contributed to the generation of forward propulsion.
The weighting of Synergy3 (W3) was constructed by the hip
abductor (AL), hip flexor (TFL) and trunk stabilizer (ERE)
muscles. The activation of Synergy3 (C3) was related to the swing
initiation and acceleration of the swing leg. The weighting of
Synergy4 (W4) mainly dominated the ankle dorsiflexor (TA) and
hip flexor (RF) muscles, and Synergy4 were activated during
the mid-swing phase (around 85% of gait cycle). The activation
of Synergy4 (C4) was related to the swing leg. Synergy4 was
absent between 2.0 and 4.0 km/h. The weighting of Synergy5
(W5) mainly consisted of the ankle dorsiflexor (TA) and hip
extensor (BF) muscles. This synergy was recruited during the
late-swing phase (around 80–100% of gait cycle) to perform ankle
dorsiflexion and to decelerate the swing of the leg. The activation
of Synergy5 (C5) related to the late swing phase.

The Maximum Lyapunov Exponent and
Maximum Floquet Multiplier During
Activation of the Muscle Synergy
In all of the activations, the maximum Lyapunov exponents
were positive (Figure 4). It means that the attractor in
activations of the muscle synergies indicate local instability.
We compared differences in the maximum Lyapunov exponents
among walking speeds (Figure 4). The maximum Lyapunov
exponents of the activation that contributed to body support
(C1) and the activation that dominated the late swing
phase (C5) at 2.0 km/h were significantly smaller than the
Lyapunov exponents over 6.0 km/h (p < 0.01). Significant
differences in the maximum Lyapunov exponents were
observed between 2.0 km/h and 5.0 km/h in the activation
that generated forward propulsion (C2) (p < 0.01). The
maximum Lyapunov exponents in C2 gradually increased
at slow and moderate walking speeds, and the maximum
Lyapunov exponents in the C2 considerably increased at
fast walking speeds. In the activation that related to the
swing phase (C3), significant differences were shown between
2.0 and over 4.5 km/h (p < 0.01). As we mentioned in
the Introduction section, fast walking speeds require large
motor outputs. Therefore, the requirement for large motor
output that was due to the fast walking speeds may be a
main factor in the high maximum Lyapunov exponents of
activations.

Maximum Floquet multipliers of the activations
were illustrated in Figure 4. The averaged maximum
Floquet multipliers in the muscle synergies were >1.
We verified significant difference of maximum Floquet
multipliers in the activations among walking speeds.
Although the maximum Lyapunov exponents in the
muscle synergies increased as walking speeds got
faster, the maximum Floquet multipliers were relatively
consistent with the changes in walking speed (p >

0.05).
We noticed that an increasing rate of maximum Lyapunov

exponents were high among the fast walking speeds. Therefore,
we verified the significance level of the increasing rate of
the maximum Lyapunov exponents. We expected that the
differences in the local dynamic stability in the muscle
synergies could be observed in increasing rate of maximum
Lyapunov exponents. We compared the increasing rate of
maximum Lyapunov exponents between slower walking
speeds (2.0–5.0 km/h) and faster walking speeds (5.0–
8.0 km/h) (Figure 5). Because synergy4, which contributed
to swing initiation (60% of gait cycle), was absent between
2.0 and 4.0 km/h, we did not calculate the increasing rate
of maximum Lyapunov exponent at the slower walking
speeds (2.0–5.0 km/h) in the C4. As a result, we found that
the increasing rate in the maximum Lyapunov exponents
at faster walking speeds were significantly higher than
slower walking speeds (p < 0.05). This result indicated that
the maximum Lyapunov exponents in activations rapidly
increased at fast walking speeds. In addition, we found
that the increasing rate of the C1, which related to the
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FIGURE 3 | Representative muscle synergies and their activations at 2.5, 3.5, 4.5, 6.7, and 7.5 km/h. The weightings of the muscle synergies (W) are shown as

colormaps. Warm color indicates high weightings, and cold color is low weightings. Correspondence between colormap and muscles is described in the lower right of

this figure. The activations of the muscle synergies (C) within one gait cycle are shown as waveforms. The horizontal axis indicates % of gait cycle, and vertical axis

means amplitude of activation. Black lines denote the average activation over 30 gait cycles, and the gray-shaded area denotes the standard deviation of the

activation. We performed functional sorting of the muscle synergies by using cosine similarity (Hagio et al., 2015; Kibushi et al., 2018). Initial functional sorting was

performed by grouping the muscle synergies based on the values of cosine similarity compared to that of an arbitrary reference subject. When cosine similarities of W

or C were over 0.71 (p < 0.01), the muscle synergies were sorted as similar muscle synergies. If two muscle synergies within one walking speed were grouped into

the same muscle synergy group, we defined a pair of muscle synergies with the highest correlation as the same group of muscle synergies (Torres-Oviedo and Ting,

2007; Hagio et al., 2015; Kibushi et al., 2018). After initial sorting, we averaged muscle synergies among subjects and those muscle synergies were sorted again. In

this second sorting, reference muscles synergies were set as average muscle synergies. The values of cosine similarities between average muscle synergies and other

muscle synergies were indicated at right upper side of plots in the activation. Average muscle synergies were represented in Supplementary Figure 1.

loading response, at faster walking speeds was relatively
low. This implied that the local dynamic stability decreased
almost linearly in the C1 only. Other maximum Lyapunov
exponents in the activation of muscle synergies C2 (forward
propulsion), C3 (swing phase), and C5 (leg deceleration)
rapidly increased at faster walking speeds. This difference in
the increasing rate of maximum Lyapunov exponents might
have been associated with differences in the requirements
for motor output that related to subtasks within a gait
cycle.

DISCUSSION

To identify the local dynamic stability and orbital stability
of the activation of the muscle synergies, we investigated
the maximum Lyapunov exponents and maximum Floquet
multipliers across various walking speeds. We revealed that the
maximum Lyapunov exponents of the activations were positive,
and they increased with accelerated walking speeds. Moreover,
we found a difference in the increasing rate of the maximum
Lyapunov exponents among the muscle synergies that related to
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FIGURE 4 | Maximum Lyapunov exponents (upper red) and maximum Floquet multipliers (below green) of the activations of muscle synergy. Gray circles indicate the

results of maximum Lyapunov exponents in each subject. Red circles denote the average maximum Lyapunov exponents across all subjects. Black lines represent the

average regression lines across the subjects, and gray lines indicate the regression lines for each subject. To detect differences in the increasing rates between slower

(2.0–5.0 km/h) and faster walking speeds (5.0–8.0 km/h), the average maximum Lyapunov exponents were regressed separately. The results of R2 are shown in the

lower side of each plot. The left R2 represents slower walking speeds, and the right R2 represents faster walking speeds. Upper horizontal lines denote significant

differences in the maximum Lyapunov exponents (p < 0.01). Green circles show the average maximum Floquet multipliers across the subjects.

FIGURE 5 | Increasing rate of the maximum Lyapunov exponents in response to the activation of a muscle synergy. Blue bars denote the average increasing rate of the

maximum Lyapunov exponents at slower walking speeds (2.0–5.0 km/h). Red bars represent average the increasing rate of the maximum Lyapunov exponents during

faster walking speeds (5.0–8.0 km/h). Error bars denote standard deviations among subjects. Significance levels are illustrated as asterisks (*p < 0.05, ***p < 0.01).

subtasks within a gait cycle. Contrary to the maximum Lyapunov
exponents, the maximum Floquet multipliers of the activations
were almost constant across walking speeds.

Although we found slight differences among the composition
of the muscle synergies and the analyzed number of gait cycles,
the number of synergies and functions of the muscle synergies
were similar to the muscle synergies that were extracted in
previous studies (Ivanenko et al., 2004; Neptune et al., 2009;

Chvatal and Ting, 2013). We observed that the maximum
Lyapunov exponents of the activations increased with accelerated
walking speeds (Figure 4). In contrast, the maximum Floquet
multipliers of the activation of muscle synergies did not depend
on walking speeds. These results indicated that the maximum
Lyapunov exponents among the activations of the muscle
synergies was high; on the other hand, the maximum Floquet
multipliers of the activations of the muscle synergies was
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sustained during walking. If the dynamical system based on
the deterministic system, the maximum Lyapunov exponents
should be same among different variables. However, our results
did not exhibit same maximum Lyapunov exponents among
walking speeds. This may indicate that the dynamical system
during walking is constructed by some different systems. In
the previous studies, the maximum Lyapunov exponents and
maximum Floquet multipliers of experimental data (joint angle
or muscle activities) during walking were investigated, and it
was reported that maximum Lyapunov exponents were positive
although the maximum Floquet multipliers were >1 (Hurmuzlu
and Basdogan, 1994; Ali and Menzinger, 1999; Dingwell and
Kang, 2007; Su and Dingwell, 2007). This means that attractors
during walking can simultaneously exhibit both locally stable
and locally unstable regions and still remain orbitally stable (Ali
and Menzinger, 1999; Dingwell and Kang, 2007). In addition,
Hausdorff et al. (1995) proposed that the variability of stride
intervals during walking exhibit aperiodic fractallike fluctuations.
Thus, attractor or limit cycle that was produced by experimental
walking data may be influenced by some different systems.
We suggested that different maximum Lyapunov exponents
were observed in this study because different system affected
producing the attractor or limit cycle.

We supposed that walking speed may be an important
factor for the local dynamic stability and orbital stability
in the activations of the muscle synergies. Therefore, we
mainly discussed the speed-dependent changes that affected
the maximum Lyapunov exponents and maximum Floquet
multipliers of the activations.

The Maximum Lyapunov Exponents in the
Activation of Muscle Synergies During Fast
Walking Speeds
We extracted the muscle synergies that related to the loading
response (Synergy1) (Figure 3). Synergy1 mainly comprised the
VL, Gmed and Gmax. It has been reported that the muscles of
the VL, Gmed and Gmax contribute to the loading response (Liu
et al., 2008; Neptune et al., 2008; Correa et al., 2010; Allen and
Neptune, 2012). In addition, the peak knee flexion moment and
peak knee power absorption of the loading response increased
(Lelas et al., 2003). Thus, the output of the loading response
increased with the acceleration in walking speeds. We considered
that the requirement of large loading responses might have
affected the increasing maximum Lyapunov exponents in the
activations related to the loading response (C1).

The maximum Lyapunov exponents in Synergy2, which
mainly comprised the ankle plantar flexor muscles (MG, LG,
SOL), were higher at faster walking speeds (5.0–8.0 km/h) than
those at slower walking speeds (2.0–5.0 km/h) (Figure 5). At
normal walking speeds, the ankle plantar flexors perform near-
isometric contractions during the stance phase (0–60% of gait
cycle) via near-optimal fascicular length; this indicated that the
muscle work required for stance is extremely small (Fukunaga
et al., 2001; Lichtwark et al., 2007; Arnold et al., 2013). This
energy-saving during stance contributes to the efficiency of
walking. However, fascicular length shortened at fast walking

speeds, and the fascicle shortening velocities increased (Arnold
et al., 2013; Lai et al., 2015). Following this, the muscle
work increased with the accelerated walking speeds. Moreover,
Lai et al. (2015) compared changes in fascicular lengths and
shortening velocities between walking and running during gait
transition speeds; they revealed that changes in fascicular length
and shortening velocities in walking were higher than in running.
This result suggested that a large muscle force from the ankle
plantar flexors was needed during the stance in case of fast
walking speeds. Because of this, the requirement of a large muscle
force during the stance might affect the Lyapunov exponents of
the activation related to forward propulsion (C2).

In addition to the maximum Lyapunov exponents in C2, the
maximum Lyapunov exponents of the activation in Synergy3 and
synergy4might be influenced by the requirement of a largemotor
output. Synergy3 were constructed by AL, TFL and ERE, and
Synergy4 comprised the RF and TA (Figure 3). Both Synergy
3 and Synergy4 were related to the swing leg (60–100% of gait
cycle). For normal walking speeds, a simple inverted pendulum
model achieves walking without muscle activity during the swing
phase (Srinivasan and Ruina, 2006); in addition, the energy
cost of the swing leg was found to be small (Gottschall and
Kram, 2005). These studies suggest that the swing leg is achieved
by small activations of muscles. However, the contributions of
the swing leg increase at fast walking speeds, and it has been
reported that the metabolic work of swing legs increased at
high frequencies (Doke et al., 2005). Moreover, activation of
the RF during the swing phase while walking was higher than
the activation during running when treadmill speeds were over
gait transition speeds (Prilutsky and Gregor, 2001). They also
reported average gait transition speed was 2.1 ± 0.2 m/s. This
gait speed is too fast for achieving comfortable walking because
very fast swing leg is required. Therefore, the muscle activity
during the swing phase is exceedingly high in cases of fast walking
speeds. We supposed that the maximum Lyapunov exponents of
Synergy3 and Synergy4 were high when the swing leg motion
was extremely large. Moreover, Synergy5, which was related to
leg deceleration, also might be affected by large swing leg motion.
Because the swing leg speed is fast during fast walking speeds,
a large amount of effort is required to decelerate the swing leg
during fast walking speeds. Therefore, the increasing maximum
Lyapunov exponents in activations of Synergy3, Synergy4, and
Synergy5 at faster walking speeds might relate to fast swing leg
motion.

The Maximum Lyapunov Exponents in the
Activation of Muscle Synergies During
Slow Walking Speeds
We observed that the maximum Lyapunov exponents of the
activations were small at slow walking speeds (Figure 4).
This indicates that the maximum Lyapunov exponents of the
activations were small at slow walking speeds. Walking speeds
have been found to be frequently reduced in individuals with
disorders of the CNS (Balasubramanian et al., 2007; Clark
et al., 2010; Steele et al., 2015). Moreover, many studies have
represented that walking speeds in elderly adults are reduced
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(Judge et al., 1996; Kerrigan et al., 1998; Lockhart and Liu, 2008).
Thus, walking speed is frequently reduced due to the effect of
disorders of the CNS or aging. These reductions in walking speed
may reflect disabilities of walking. However, we supposed that
slow walking speeds may have advantages for the patients who
have disorders of the CNS or elderly adults because themaximum
Lyapunov exponents of the activations are small at slow walking
speeds. It has been revealed that the maximum Lyapunov
exponents of kinematic data in individuals with cerebellar ataxia
(Hoogkamer et al., 2015), Parkinson disease (Kurz et al., 2010),
and a history of falls (Lockhart and Liu, 2008) were higher
than those of healthy or young adults. For these individuals, the
maximum Lyapunov exponents of the kinematics were high and
were needed to stabilize walking. We supposed that one of the
strategies for the stabilization of walking was to reduce walking
speed. Because the maximum Lyapunov exponents of activation
were small at walking speeds, slow walking may be advantageous
for the patients with cerebellar ataxia or Parkinson’s disease and
elderly adults. Therefore, we need to investigate the maximum
Lyapunov exponents of activation between healthy adults and
elderly or patients with CNS disorders as the future studies.

The Maximum Floquet Multipliers in the
Activation of Muscle Synergies
We observed that the maximum Floquet multipliers of the
activations did not depend on the walking speed (Figure 4).
It has been revealed that the maximum Floquet multipliers
in the trunk are relatively invariant with changes in walking
speeds (Kang and Dingwell, 2008). In addition, there were
less relationships between the maximum Floquet multipliers
and fall-risks (Bruijn et al., 2011). From this evidence, it is
thought that the motion of walking is considerably stable in
terms of orbital stability. We supposed that the maximum
Floquet multipliers of the activations may contribute to
periodic walking motions among widely walking speed.
Although the maximum Floquet multipliers were invariant
with changes in walking speeds, the maximum Floquet
multipliers increased due to the effect of added mass
(Arellano et al., 2009) or surface perturbations (Sinitksi
et al., 2012). These results suggest that the maximum Floquet
multipliers are affected by large external forces. Therefore,
we might be able to evaluate the orbital stability under
the disturbance response rather than at various walking
speeds.

We should describe a limitation of present study that
evaluating both of Floquet multipliers and Lyapunov exponents.
For the deterministic system, both of Lyapunov exponents
and Floquet multipliers should be same characteristics. In
other words, the Lyapunov exponents should be negative if
the Floquet multipliers >1. However, our results did not
indicate this characteristics. This discrepancy is one of the
limitation in the present study. We considered that discrepancy
was derived from the point that the finite-time Lyapunov
exponents might reflect the natural variability and intrinsic
biological noise in the system. Dingwell and Marin (2006)
also referred “the local divergence curves would always exhibit

positive divergence reflecting the natural variability and intrinsic
biological noise in the system.” Therefore, it is compromised
point that we cannot observe the correspondence between
the Lyapunov exponents and Floquet multipliers. To estimate
the Lyapunov exponent more effectively, we might need to
provide appropriate method for computing the finite-time
Lyapunov exponents that can be correspond to the Floquet
multipliers.

Similarity of Muscle Synergies
We performed functional sorting of muscle synergies
based on the cosine similarities between average
muscle synergies and other muscle synergies. In the
representative example of Figure 3, the muscle synergy 5
at 7.5 km/h was looks like different from other Synergy 5.
However, weighting and activation of this muscle synergy
(Synergy 5 at 7.5 km/h) were similar to average muscle
synergies among subjects. This indicate that Synergy 5 at
7.5 km/h was similar to common muscle synergy among
subjects. Average muscle synergies were indicated in
Supplementary Figure 1.

Although there are some ways to perform functional sorting
of muscle synergies, we set the present criterion of sorting (r
of W or C > 0.71) by trial and error to analyse common
muscle synergies among subjects. We have tried various criteria
for sorting or set various reference muscle synergies (e.g., r
of W > 0.71, r of C > 0.71, or setting the reference muscle
synergies as preferred walking speeds). In case we used these
criteria, many subject-specific muscle synergies were provided.
We cannot investigate the common characteristics of muscle
synergies, if there are too many subject-specific muscle synergies.
Because of such problems, we set the present criteria (r of W or C
> 0.71).

SUMMARY AND CONCLUSION

In summary, this study investigated the maximum Lyapunov
exponents and maximum Floquet multipliers in activations of
muscle synergies across various walking speeds to identify the
local dynamic stability and orbital stability in the activations
of muscle synergies that relate to subtasks within a gait
cycle. We revealed that the maximum Lyapunov exponents
increased with accelerations in walking speeds. Contrary to
the maximum Lyapunov exponents, the maximum Floquet
multipliers of the activations remained almost constant across
the different walking speeds. Although the requirement of
a large motor output may cause a great deal of maximum
Lyapunov exponents in the activations of muscle synergies,
the activations of the muscle synergies were stable in terms
of orbital stability. In addition, the increasing rates of the
maximum Lyapunov exponents were different among the
muscle synergies. Therefore, the local dynamic stability in
the muscle synergies might depend on the requirement of
motor output related to subtasks within a gait cycle. We
concluded that the local dynamic stability in the muscles
synergies decreases with accelerations in walking speed. On
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the other hand, the orbital stability is sustained across walking
speeds.
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