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Abstract: Auxetic structures and materials expand laterally when stretched. It has been argued that
this property could be applied in the design of smart filters with tunable sieving properties. This work
analyses the filtration properties of a class of auxetic structures which achieve their auxeticity through
a rotating rigid unit mechanism, an archetypal mechanism known to be responsible for this behavior
in a number of crystalline materials. In particular, mathematical expressions are derived for the
space coverage of networks constructed from a variety of quadrilaterals, as well as the pore radius.
The latter is indicative of the particle size that can pass through when the particle dimension is
comparable to the pore size, whereas the space coverage is indicative of the rate of flow when the
particles are of a much smaller dimension than the pore size. The expressions suggest that these
systems offer a wide range of pore sizes and space coverages, both of which can be controlled through
the way that the units are connected to each other, their shape and the angle between them.
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1. Introduction

When a material is stretched it changes shape. The changes in dimensions that occur in the
Oxi-Oxj plane upon uniaxial stretching are quantified by Poisson’s ratio (νij) which is mathematically
defined by:

νij = −
ε j

εi
(1)

where εi is the strain along the loading direction and εj is the strain along a perpendicular direction.
For three dimensional isotropic materials, Poisson’s ratio may range between −1 ≤ ν ≤ +0.5 [1] while
for two dimensional isotropic materials, it may range between −1 ≤ ν ≤ +1 [2], with no upper or
lower bounds for anisotropic materials. Typical materials have a positive Poisson’s ratio and contract
laterally when a uniaxial tensile load is applied whereas materials with a negative Poisson’s ratio,
more commonly referred to as auxetic [3], expand laterally. This behaviour has been reported in simple
mechanical [4–6] and thermodynamic [7] models in the 1980s. Earlier, there were some isolated reports
of systems with negative Poisson’s ratios including ferromagnetic films [8] and fcc crystals [9]. To date
there is a vast range of known auxetic systems that span over a very wide length scale from the nano
up to the macro level [10–12], including amongst others, minerals [13–17], cubic materials [9,18–20],
carbon-based systems [3,21–26], systems of hard bodies [7,27–29], foams [30–35], polymers [36–39],
composites [40–49] and textiles [50–56].

The rotating rigid unit mechanism remains one of the archetypal mechanisms known to contribute
towards auxeticity [57–62]. In their most ideal form, systems that achieve negative Poisson’s ratios
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based on this mechanism consist of a network of rigid polygons or polyhedral units that are connected
at their vertices. Uniaxial stretching of the network causes these units to rotate relative to each other to
open up pores within the structure, an effect which could possibly lead to expansion in the transverse
direction and hence auxeticity.

One of the first to be rigorously studied in this class of structures was the rotating squares
geometry [57]. It has been shown that systems based on squares always exhibit an isotropic in-plane
Poisson’s ratio of −1. In later studies, this concept was generalised and extended further to include
other types of polygons, including rotating triangles, rectangles, rhombi and parallelograms [58–62],
as well as 3D polyhedra such as cubes, cuboids and tetrahedra [63–66]. These studies have generally
shown that by changing the shape, the mode of connection and the angle between the rotating rigid
units, a wide range of Poisson’s ratio from highly negative to highly positive could be achieved.

It has also been repeatedly suggested that this mechanism could play a significant role in
the auxetic behavior demonstrated by a number of materials including silicates [13,16,67–70],
zeolites [14,71] and foams [72,73]. Some of these rotating rigid unit models have also been incorporated
in the design of oesophageal stents [74,75], sports shoes and garments [76–78], textiles [53],
perforated sheets [79,80], and composites [81,82]. To mention a few examples, in their work
Hu et al. [53] incorporated a rotating rectangular [83] motif in a fabric produced through flat knitting
technology. Nike Inc. (Beaverton, OR, US) [76] developed auxetic soles that mimic a rotating triangle
mechanism [59] to achieve an auxetic effect. The expansion of the sole provides improved traction
when the wearer engages in activities such as running that puts the sole under tension. Under Armour
Inc. (Baltimore, MD, US) has also put forward designs of garments and apparel incorporating auxetic
geometries [77], including ones based on rotating units, for improved conformability to provide the
wearer with a comfort fit. In this respect, there has also been development in computational methods
for the interactive 3D design of garments [78] based on perforated flat sheets that mimic rotating
triangles [80].

In addition to these applications, systems made from rotating rigid units also have potential to
be used in filtration. Although structures like re-entrant honeycombs have been rigorously studied
vis-à-vis filtration [84–88], the properties of rotating rigid unit systems relating to porosity remain
largely unexplored. In view of this, the work presented here is a comparative study of the porosity and
Poisson’s ratios of networks made from various rotating rigid unit systems, namely, rotating squares,
rectangles, rhombi and parallelograms.

2. The Models

As illustrated in Figure 1, systems made from perfectly rigid squares connected together at their
vertices, and which rotate relative to each other when uniaxially stretched, have the ability to expand
laterally in a manner which preserves the aspect ratio. This behavior results in a constant Poisson’s
ratio of -1 irrespective of the size of the square, the direction of loading and the angles between the
squares. Whilst this has the advantage that this system is very robust vis-à-vis its auxetic potential,
it has the limitation that it cannot be modified easily so as to fine-tune its macroscopic properties to
make it achieve particular values of Poisson’s ratio. This limitation may be overcome if one had to
replace the squares (which only need one geometric variable to describe their shape and size, their side
length a) by more generic quadrilaterals having lower symmetry such as rectangles (which could be
considered as elongated squares, the shape and size of which are defined by two variables a × b),
rhombi (which could be considered as sheared squares, the shape and size of which are defined by two
variables: the side length a and the internal angle φ) or parallelograms (which could be considered as
elongated and sheared squares, the shape and size of which are defined by three variables: the side
lengths a, b and the internal angle φ). Furthermore, it has already been reported in previous work that,
for networks based on rectangles, there are two possible types of connectivity [62]. In the first type,
referred to as Type I, adjacent rectangles have their smaller sides connected to each other. In the second
type, referred to as Type II, each rectangle has its smaller sides connected to the longer side of adjacent
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rectangles. Similarly, there are also two types of connectivity for networks based on rhombi—the Type
α and Type β [60]. In Type α, the rhombi are connected such that the smaller angles of one rhombus
are connected to the larger angles of adjacent rhombi. In Type β, the smaller angles of the rhombi
are connected to smaller angles of adjacent rhombi. For parallelograms, which share characteristics
with both rectangles and rhombi, there are four types of connectivity: Type Iα, Type Iβ, Type IIα and
Type IIβ.
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Figure 1. A network of rigid squares connected at their corners through flexible hinges expands when
uniaxially stretched, preserving the aspect ratio in the process.

2.1. Geometrical Analysis

An analysis of the pore shape of these networks clearly suggests that any of the quadrilaterals
which have a Type I connectivity or are rhombic in shape (Type I rectangles, Type α and Type β rhombi,
Type Iα and Type Iβ parallelograms) have rhombic pores while those that have a Type II connectivity
(Type II rectangles, Type IIα and Type IIβ parallelograms) have parallelogram-shaped pores. Type α

connectivity or rectangular units (Type I and Type II rectangles, Type α rhombi, Type Iα and Type
IIα parallelograms) result in pores that are of similar shape i.e., all pores have equal internal angles,
while Type β connectivity (Type β rhombi, Type Iβ and Type IIβ parallelograms) results in two sets
of pores that have different internal angles at any given instant. Moreover, networks derivable from
Type α connectivity are also space filling as opposed to networks with a Type β connectivity which
even in their fully closed conformation still have space between the units. On the other hand, Type IIα
parallelograms and systems derivable from them (i.e., squares, Type II rectangles and Type α rhombi)
have pores that are identical in shape. This is summarised in Table 1.

Table 1. Comparison of pore shape and size for rotating rigid quadrilateral networks.

Quadrilateral Pore Shape Congruent Similar Space Filling

Squares
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Table 1. Cont.

Quadrilateral Pore Shape Congruent Similar Space Filling

Type β rhombi
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2.2. Pore Size and Surface Coverage

Characterization of a system in terms of its filtration and/or sieving properties requires an analysis
that looks at the shape and size of the pores and also their density. In particular, for any porous system,
one can define the pore size in terms of the radius of the largest particles that can pass through.
This analysis is by no means trivial as it depends on both the size and shape of the pore, and also on
the shape and size of the mobile particles that have to be filtered (see Figure 2). In fact, two scenarios
need to be considered: one where the mobile particles are of dimensions which are comparable to the
size of the pores (Figure 3a) and one where the particles are much smaller than the pores (Figure 3b).
In the case of the former, the problem to be studied is that of assessing which particles can physically
pass through the pores and which will not. To simplify the analysis, it shall be assumed that the mobile
particles are rigid and can all be modelled as units which have a circular cross-section with radius
r. Through such a description, a parameter rmax can also be defined as the threshold which defines
the sizes of particles that can be filtered: anything smaller than this radius will pass through the filter
while anything larger would be retained. This parameter depends, amongst other things, on the degree
of aperture of the systems.

In the case where the mobile particles are much smaller than the pores (e.g., a fluid passing
through mm sized pores), it would be more appropriate to look at the rate at which the process occurs,
in which case one should look at a different parameter, namely, the space coverage, which for the 2D
systems analysed here is given mathematically by:

Space coverage =
Area of pores
Unit cell area

(2)

For example, in the case of squares of side length a, the equation for the space coverage as a
function of the angle θ between the squares becomes:

Space coverage =
sin(θ)

sin(θ) + 1
(3)

Note that this ‘space coverage’ parameter quantifies the fraction of the area that the pores cover
out of the whole structure and is a quantity which in practice affects the rate of flow across the filter for
particles whose radius is much smaller than the pore size. Once again, space coverage is a parameter
which depends, amongst other things, on the degree of aperture of the systems; the more open the
structure the higher the pore coverage is and hence the higher the rate of flow of these particles.
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Figure 3. Comparison of different particles sizes as a rotating rigid unit system is stretched (i to iv),
illustrating the notion of (a) pore size and (b) space coverage.

2.3. Mathematical Modelling

In an attempt to obtain a better insight, both the pore size and the space coverage (assuming an
infinite network) were derived and expressed in terms of the measurable parameters a and b (the side
of the quadrilateral), φ (the internal angle of the quadrilateral) and θ (the degree of openness of the
pores) so that by varying θ, the size of the filtered particles can be controlled. Here, it should be noted
that under the assumption that the squares, rhombi, rectangles or parallelograms are rigid, for a given
structure the terms a, b and φ can be treated as constants, i.e., the pore size and the space coverage are
functions of the single variable θ, which can be made to change through, for example, uniaxial loading.

3. Results and Discussion

The expressions for the space coverage and pore radius are summarized in Table 2, together
with plots for their variation with the parameter θ (the degree of openness of the systems) and plots
of Poisson’s ratio as obtained from models developed in previous work derived at infinitesimal
strains [57,60–62,83]. These plots clearly show that the space coverage and pore radius of the systems
under consideration (i) have different profiles which depend on the system being modelled; and,
(ii) may be changed in a significant manner by changing the parameter θ (i.e., for example, as a result
of uniaxial loading), thus highlighting the versatility of these systems.

A feature that is immediately apparent, by visually examining the structures and considering their
space filling properties (see Table 1), is the ability of most of the networks (all except Type β systems)
to have a zero pore size when the system is in its most compact form. In contrast to this, irrespective
of the angle between the rigid quadrilaterals, the Type β systems, which are not space-filling, always
have open pores (a void space between the quadrilaterals).
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Moreover, from the unit cells provided in Table 2, networks based on squares, rectangles, rhombi,
Type Iβ parallelograms and Type IIα parallelograms can all be represented by a rectangular unit cell.
This unit cell remains rectangular even during deformation, a property which is very convenient if
such systems are to be used in filtration applications. Although the Type IIβ parallelograms have a
parallelogramic unit cell, their internal angle also remains unchanged during deformation. This is
in contrast to the Type Iα for which the unit cell is a parallelogram which shears throughout the
deformation process, a feature which might make it difficult to implement in practical applications.

Table 2. Expressions relating space coverage, pore radius (radius of circle inscribed in the pore) and
Poisson’s ratios to geometric parameters of the systems for cases where a > b. The vertical dashed line
in the plots of the Poisson ratios represents asymptotic behavior that occurs when the system is locked
in the loading direction.

System Squares [57] Type α Rhombi [60] Type β Rhombi [61]

Parameters of geometries
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Also interesting is the fact that, although it may be intuitive to associate the most open
configurations (i.e., the highest space coverage for a given system) with the largest allowable pore
radius, this may not always be true. In fact, this is only applicable in systems with a Type α connectivity.
Using the expressions for the space coverage and pore radius in Table 2, it is easy to show that for
Type α systems both space coverage and pore radius are at a maximum at θ = 90◦, whereas for
systems with Type β connectivity, the maximum pore radius occurs at θ = max(π/2, 2φ – π/2 while
the maximum space coverage occurs at θ = φ in Type β rhombi and Type IIβ parallelograms and
θ =φ + arctan((a2 − b2)/(a2 + b2)tan(φ)) in Type Iβ parallelograms. This means that for a given system,
a higher space coverage does not necessarily mean a better ability at filtering larger particles. This is
also true if one compares the different systems with each other. For example, if Type α rhombi are
compared with squares, it is apparent that although the Type α rhombi have a larger degree of space
coverage than the rotating squares, the maximum pore radius is the same in both cases, owing to the
fact that in both networks the pores have the same shape so that the difference in pore coverage is
merely reflected as a difference in the density of the filter (Type α rhombi have a smaller density which
becomes smaller as φ→ 0).

Furthermore, it is evident that systems with a Type α connectivity offer a larger range of pore
radii, anywhere between 0 in their closed configuration and a/2 for Type I connectivity or b/2 for Type
II connectivity. This is in contrast to what is observed with Type β systems, for which the range of
pore radius is much smaller and also highly dependent on φ. This is because the Type β systems are
not space-filling and irrespective of the value of θ there will always be some void space between the
rigid units. This empty space increases as φ deviates from 90◦. In other words Type β systems are
always porous even in their most closed configuration as opposed to Type α networks, unless φ = 90◦.
In fact, it can be easily shown that for a simple β system, such as the Type IIβ parallelograms, for cases
where a > b, the maximum pore radius is b/2 (at θ = 90◦, 2φ − 90◦) when φ ≥ 45◦ and in cases when
φ < 45◦ the maximum pore radius is b/2 at θ = 90◦. On the other hand, the smallest pore radius that the
Type IIβ system can afford is of 1/2bsin(φ) at θ = φ. The latter case is interesting because it represents a
point at which both pore types have the same radius and also represents a minimum so that increasing
or decreasing θ will lead to an increase in pore size, a characteristic which can only be exhibited by
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Type β systems. All this restricts the variability in the pore radius when compared to their respective
space filling Type α models.

Type IIβ parallelograms, together with Type β rhombi, Type II rectangles and squares offer the
most consistent Poisson’s ratios, making them perhaps the most ideal to use for filtration applications.
For these systems, the Poisson’s ratio is always negative and fixed at a value of −1, so that filters based
on these geometries retain their initial proportions. In this respect, it is important to note that auxeticity
does not necessarily imply that the pore size increases as the system is stretched, even though the
area of the system increases. In other words, in general, there can be no definite association between a
negative Poisson’s ratio and an increase in pore size. In fact, from Table 2, one may note that there are
ranges of θ over which the Poisson’s ratio is negative and the pore radius decreases on stretching (e.g.,
Type β rhombi and Type IIβ parallelograms). Such behaviour, however, is only possible because of
the presence of two different sets of pores which behave opposite to each other, i.e., as the structure
is stretched towards its fully opened configuration, one set of pores open up while the others close
down in such a way that the maximum pore radius decreases while the system itself expands in all
directions (see Figure 4). It is also interesting to note that in the fully open configuration of Type β

rhombi all pores have the same size so that more particles of that radius can pass through than in any
other configuration. This offers a way how to control the rate of flow of particles through the filter
allowing it to be set on two modes—a low transmission mode and a high transmission mode.

Before concluding, one should note that the work presented in this section is important not only
because it has been confirmed that the auxetic structures described here have excellent potential for
use in filtering systems that can be tuned for particular particle sizes, but also because expressions
which quantify the performance and characteristics of various filter geometries of this type have been
presented. In particular, it has been shown that the Type α systems in general can offer a wider range
of pore sizes than the Type β counterpart. The advantage of such tunability lies in the fact that such
filters need not be dismantled each time the size of the particles that need to be filtered is changed.
Here, it should be emphasized that the models presented are only considered from a purely geometric
perspective and assume that the filtered medium is a collection of rigid particles. In other words, it does
not consider any interactions that may be present between the filtered medium and the porous auxetic
structures and neglects properties pertaining to the filtered material such as isochoric deformations,
pressure and velocity of the fluid and viscosity. Thus, although the models give an insight vis-à-vis the
geometrical aspect of such filters, they may be inadequate to fully describe filtration behaviour of real
systems, which may be more complex.

Besides filtration, another interesting application for the use of such systems is in controlling
light intensity. Porous structures which are constructed from beam like elements rather than plates,
such as hexagonal honeycombs, may not be very suitable for such a purpose because of their high
porosity. In contrast, in rotating rigid units systems, the space coverage and therefore the amount
of light allowed to pass through can be easily controlled not only by varying θ but also by varying
parameters a, b and φ and the type of connectivity of the units. Thus, for example, one can use one
of the space filling structures to design a blind structure which can either partially or completely
obstruct light.

These systems could also be used for skin grafting applications where one could use smaller
grafts from donor sites that expand in both directions covering larger areas than grafts having the
more typical honeycomb motif. The fact that the rotating rigid units also allow for variability in pore
shapes and sizes could also have implications in healing time and extent of scarring.

As a final note, it is important to emphasize that the rotating rigid quadrilateral systems discussed
here are meant to complement the re-entrant filters studied by Alderson et al. [85] and Lim et al. [84],
where the advantages associated with auxetic filters have already been amply demonstrated. In fact,
the systems studied here share some similarities with re-entrant hexagonal honeycombs in the sense
that in general, their auxetic behavior can also be used to design filters with tunable porosity and
defouling properties. It is beyond the scope of this work to provide a full comparison of these two
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classes of systems particularly in view of the fact that this and the earlier work complement each
other. It is ultimately up to the end user to decide which systems is most amenable for their particular
needs as specific practical requirements may necessitate the use of one system rather than the other.
For example, if these systems had to be constructed as a membrane with slits, then the systems
presented here may lend themselves better as blueprints for their construction. On the other hand if a
system with a very high pore space coverage is required, the re-entrant filters might be more suitable
than the ones studied here.
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4. Conclusions

Systems based on rotating rigid units can offer a wide range of pore size and space coverage
properties that can be useful in applications such as sieving applications. This work suggests that the
range of pore size can be efficiently controlled by using different types of connectivity. In particular,
it has been shown that systems derivable from Type α parallelograms have a wider range of pore size
as opposed to Type β systems which could have a much more restricted range. Moreover, this work
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