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Dimerization and auto-processing induce caspase-11
protease activation within the non-canonical
inflammasome
Connie Ross, Amy H Chan, Jessica Von Pein, Dave Boucher*, Kate Schroder*

Caspase-11 is a cytosolic sensor and protease that drives innate
immune responses to the bacterial cell wall component, LPS.
Caspase-11 provides defence against cytosolic Gram-negative
bacteria; however, excessive caspase-11 responses contribute
to murine endotoxic shock. Upon sensing LPS, caspase-11 as-
sembles a higher order structure called the non-canonical
inflammasome that enables the activation of caspase-11 protease
function, leading to gasdermin D cleavage and cell death. The
mechanism by which caspase-11 acquires protease function is,
however, poorly defined. Here, we show that caspase-11 di-
merization is necessary and sufficient for eliciting basal caspase-
11 protease function, such as the ability to auto-cleave. We
further show that during non-canonical inflammasome signalling,
caspase-11 self-cleaves at site (D285) within the linker connecting
the large and small enzymatic subunits. Self-cleavage at the D285
site is required to generate the fully active caspase-11 protease
(proposed here to be p32/p10) that mediates gasdermin D
cleavage, macrophage death, and NLRP3-dependent IL-1β pro-
duction. This study provides a detailed molecular mechanism
by which LPS induces caspase-11–driven inflammation and cell
death to provide host defence against cytosolic bacterial
infection.
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Introduction

Caspase-11 is a key mediator of the murine innate immune re-
sponse to cytosolic Gram-negative bacterial pathogens, by allowing
the recognition of bacterial LPS (Hagar et al, 2013; Kayagaki et al,
2013; Shi et al, 2014). Cytosolic LPS engages the non-canonical
pathway of inflammasome activation, whereby active caspase-11
cleaves its substrate gasdermin D (GSDMD) to generate a GSDMD-
p30 fragment that forms pores in the plasma membrane (He et al,

2015; Kayagaki et al, 2015; Shi et al, 2015; Aglietti et al, 2016; Ding et al,
2016; Liu et al, 2016). In many cells, GSDMD pores trigger an in-
flammatory form of cell lysis termed pyroptosis (He et al, 2015;
Kayagaki et al, 2015; Shi et al, 2015; Aglietti et al, 2016; Ding et al, 2016;
Liu et al, 2016), whereas in neutrophils, these pores allow the ex-
trusion of neutrophil extracellular traps (Chen et al, 2018a). GSDMD
pores also indirectly activate the NLRP3 inflammasome to generate
active caspase-1 (Ruhl & Broz, 2015), which cleaves pro-IL-1β to
its mature form that is secreted (Schroder & Tschopp, 2010;
Monteleone et al, 2018). Although the signalling pathways up- and
downstream of non-canonical inflammasome assembly are in-
creasingly well understood, the molecular events required for
caspase-11 activation within the non-canonical inflammasome are
unclear. LPS is proposed to be a direct ligand for caspase-11,
wherein LPS interaction with the caspase-11 CARD domain facili-
tates activation of the protease domain (Shi et al, 2014), via an
undetermined mechanism.

Caspase-11 belongs to the caspase family of cysteine-aspartate
proteases that are involved in diverse cell death signalling path-
ways. Caspase-11 is most closely related to the other murine in-
flammatory caspase, caspase-1. Caspase-11 functions as a signal
initiator; similar to caspase-1, and the apoptotic caspases, caspase-
8 and -9. The proteolytic activities of caspase-1, -8, and -9 are
governed by two interrelated molecular processes, dimerization
and linker processing (Boatright et al, 2003; Broz et al, 2010; Oberst
et al, 2010; Boucher et al, 2018). These caspases are initially pro-
duced as monomeric zymogens that are recruited to multimeric
signalling complexes via their N-terminal domains (Pop et al, 2006;
Boucher et al, 2018). Caspase clustering within these structures
facilitates dimerization of the enzymatic subunits, leading to ac-
quisition of basal proteolytic function (Pop et al, 2006; Boucher et al,
2018). Autoproteolysis of caspase-1, -8 and -9 can then occur either
within the linker that connects the protease to its N-terminal re-
cruitment domain (e.g., the caspase-1 CARD-domain linker [CDL]) or
the linker that connects the two catalytic subunits (interdomain
linker [IDL]). The impact of caspase-1, -8, and -9 linker processing on
protease activity and substrate repertoire varies depending on the
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caspase (Pop et al, 2006; Oberst et al, 2010; Pop et al, 2011; Boucher
et al, 2018). For caspase-1 and caspase-8, IDL auto-processing
broadens the substrate repertoire of these proteases, whereas
auto-cleavage of the caspase-1 CDL, or caspase-9 IDL, promotes
enzyme dissociation from the signalling complex and protease
deactivation (Malladi et al, 2009; Boucher et al, 2018). Murine
caspase-11, and its human orthologues caspase-4 and caspase-5,
are activated within the non-canonical inflammasome complex,
which has a number of unusual features compared to canonical,
caspase-1-activating inflammasomes. First, caspases-4/5/11 di-
rectly bind to LPS without requiring a traditional receptor or sig-
nalling adaptor. Second, non-canonical inflammasome assembly is
proposed to generate caspase-11/4/5 oligomers (Shi et al, 2014), as
compared with caspase-1 dimers elicited by canonical inflamma-
somes in macrophages (Boucher et al, 2018). For these reasons, the
mechanisms regulating activation of caspase-11/4/5 protease
function within the non-canonical inflammasome are suggested to
follow a distinct mechanism from that of caspase-1; for example
caspase-11 activation may require the formation of oligomers
rather than dimers. The stoichiometry of the caspase-11-LPS
complex is not defined and it remains unclear whether the
higher order caspase-4/5/11 structures induced by LPS are true
oligomers, or represent multiple caspase dimers binding to single
LPS molecule or LPS aggregate. Caspase-11 harbours multiple
candidate sites for auto-cleavage or processing by other caspases
(e.g., caspase-1), but the functional impact of cleavage at these sites
is poorly defined. Three forms of caspase-11 can be detected by
immunoblot using an antibody which detects the large enzymatic
subunit: (i) a full-length (43 kD) form; (ii) a shorter (36 kD) form
thought to arise from an alternative start codon (methionine 61)
within the CARD domain (Kang et al, 2000) that appears unable to
bind LPS (Shi et al, 2014); and (iii) a shorter caspase-11 fragment of
unknown nature and function, generated during non-canonical
inflammasome signalling in macrophages (Kang et al, 2002;
Kayagaki et al, 2011).

This study investigates the molecular basis for caspase-11
activation, which is central to non-canonical inflammasome
signalling. We demonstrate that caspase-11 dimerization is suf-
ficient for inducing basal caspase-11 activity, such as the ability to
self-cleave. IDL, but not CDL, auto-processing of caspase-11 di-
mers is then required to generate the fully active protease that can
cleave GSDMD and thereby mediate non-canonical inflammasome
signalling to provide host defence against cytosolic bacterial
infection.

Results

Caspase-11 is processed to p32 independently of the NLRP3
inflammasome and caspase-1

Cytosolic LPS in macrophages activates caspase-11, leading to
pyroptotic cell death and “non-canonical” NLRP3 signalling (Hagar
et al, 2013; Kayagaki et al, 2013; Shi et al, 2014). Caspase-11 activity
is associated with generation and cellular release of a ~30 kD
caspase-11 fragment (hereafter called p32) that is detected with an

antibody against the large subunit, and is presumed to be a product
of caspase-11 self-cleavage at undetermined site(s). Cleavage of
caspase-11 within either the CDL or IDL at a number of candidate
cleavage sites could generate caspase-11 fragments around this
size (Fig 1A). It is unclear whether p32 forms part of an active or
inactive caspase-11 species. To examine the timing of caspase-11
cleavage and signalling, we first primed WT versus Casp11-deficient
bone marrow macrophages (BMMs) with Pam3CSK4 to upregulate
caspase-11 expression, and then transfected the cells with ultra-
pure K12 E. coli LPS. Non-canonical inflammasome responses were
measured by LDH assay for cell lysis, ELISA for IL-1β secretion, and
Western blotting for cleaved caspase-11, caspase-1, and IL-1β over a
24-h time-course. Consistent with other reports (Kayagaki et al, 2011;
Shi et al, 2014), LPS transfection induced cell death and IL-1β
release in a caspase-11–dependent manner (Fig 1B and C). The
kinetics of non-canonical inflammasome signalling was slow, oc-
curring over 6–24 h rather than the more rapid kinetics standard
for the canonical NLRP3 inflammasome (Boucher et al, 2018).
Primed BMMs were also exposed to the NLRP3-specific inhibitor,
MCC950 (Coll et al, 2015) before LPS transfection. NLRP3 inhibition
did not affect caspase-11–dependent cell death, but abrogated IL-
1β secretion (Fig 1B and C). LPS-induced, caspase-11–dependent cell
death and IL-1β secretion was temporally associated with caspase-
11 cleavage (Fig 1B–D). LPS transfection promoted the release of
both uncleaved (full length and p36) and cleaved (p32) forms of
caspase-11 into the cell culture media, and caspase-11 p32 gen-
eration occurred concomitant to non-canonical inflammasome
signalling outputs (Fig 1B–D). Caspase-11 cleavage to p32 was not a
consequence of NLRP3 signalling; p32 generation was not blocked
by MCC950, nor was it suppressed in Casp-1C284A BMMs in which the
catalytic cysteine of this protease is mutated to disable caspase-1
activity (Fig 1D and E). These data indicate that non-canonical
inflammasome activation, and resultant caspase-11 signalling,
temporally coincides with the cleavage of caspase-11 to p32, a
cleavage fragment that encompasses the caspase-11 large enzy-
matic subunit. Caspase-11 cleavage to p32 is not mediated by
NLRP3, caspase-1, or their downstream pathways, suggesting that
p32 may be generated by caspase-11 auto-cleavage during early
signalling events within the noncanonical inflammasome.

Caspase-11 auto-processing between the enzymatic subunits is
required for non-canonical inflammasome signalling

We next sought to determine the caspase-11 cleavage site(s) that
generate p32, and whether caspase-11 protease activity mediated
cleavage at these sites. E. coli-expressed recombinant caspase-11
auto-cleaves at several sites to generate a variety of proteolytic
fragments, and D80 and D285 were previously proposed as can-
didate auto-processing sites within the CDL or IDL, although this
was not verified experimentally (Wang et al, 1996); and indeed an
E. coli protease may also process a site within the CARD domain
(Ramirez et al, 2018). We identified two further IDL sites, E266 and
D277, as potential alternative sites for self-cleavage (Fig 1A). We
retrovirally reconstituted caspase-11 expression in Casp11-deficient
BMMs, using “CDL-uncleavable” (CDLuncl, D80A) or “IDL-uncleavable”
(IDLuncl, E266A/D277A/D285A) mutants bearing alanine mutations of
the putative cleavage sites within either the CDL or the IDL (Fig 1A),
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and compared these with WT caspase-11 and a C254A mutant that
renders the protease inactive. Equivalent caspase-11 expression
was confirmed in lysates of Pam3CSK4-primed BMM by Western blot
(Fig 2A). Pam3CSK4-primed BMMs were transfected with LPS to
activate caspase-11, and caspase-11 cleavage was monitored 6 h
later. CDL mutation failed to block caspase-11 cleavage to p32
(Fig 2B), suggesting that caspase-11 cleavage at this CDL site is

dispensable for caspase-11 signalling. Instead, LPS transfection
failed to induce caspase-11 processing to p32 in BMMs expressing
the IDLuncl or enzyme-dead caspase-11 mutants (Fig 2B). This in-
dicates that the p32 cleavage fragment arises from p43 self-
cleavage at the IDL. We cannot exclude the possibility that IDL
auto-cleavage occurs in tandem with self-processing at D59 to
generate a smaller p26 fragment (Wang et al, 1996; Lee et al, 2018),

Figure 1. LPS-induced caspase-11 processing is
independent of the NLRP3 and caspase-1
inflammasome.
(A) Domain structure of caspase-11 showing potential
caspase cleavage sites, the CDL, IDL and the catalytic
cysteine (C254), and the relative predicted molecular
weights of caspase-11 fragments. (B–E) BMMs were
primed for 12 h with Pam3CSK4 (1 μg/ml) and then
transfected with ultrapure K12 E. coli LPS (10 μg/ml)
using FuGene HD. MCC950 (10 μM) was added to cells
30 min before transfection. Supernatants and cell
extracts were collected at 8 h post-transfection, or over
a time course as indicated. (B) Cell death was assessed
by quantifying lactate dehydrogenase (LDH) release
into the culture medium, compared with a full lysis
(Triton X100) control. (C) Secretion of mature IL-1β into
the culture medium was assessed by ELISA. Data in
(B–C) are themean + SEM of three biological replicates,
and significance was assessed by two-way ANOVA
using the Pam3CSK4+LPS transfection sample as a
reference. (D) WT BMM or (E) WT versus caspase-1
enzyme-dead (C284A) BMM were analysed by
immunoblot of the cell culture medium (SUP) and cell
extracts (XT). Western blots are representative of three
biological replicate experiments.
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but we feel this is unlikely, as D59 is buried within the CARD domain.
To determine the impact of caspase-11 linker cleavage on protease
activity, caspase-11-expressing BMM were transfected with LPS and
monitored for non-canonical signalling outputs. Cells were also
exposed to the canonical NLRP3 agonist, nigericin, where they
showed equivalent caspase-11–independent responses, as ex-
pected (Fig 2C and D). CDL mutation did not affect the capacity of
LPS-activated caspase-11 to drive cell death, or NLRP3-dependent
caspase-1 and IL-1β cleavage or IL-1β secretion (Fig 2B–D). By
contrast, IDL mutation blocked caspase-11–induced cell death,
secretion of mature IL-1β and LPS-induced caspase-1 cleavage
(Fig 2B–D). As IDL cleavage was necessary for p32 generation
and noncanonical inflammasome signalling, this suggests that
caspase-11 requires auto-cleavage at the IDL to generate a fully
active p32/p10 species (CARD-LS/SS) that cleaves GSDMD to drive
downstream cell death and NLRP3 inflammasome activation.

Dimerization activates caspase-11

Caspase-1 requires proximity-induced dimerization upon canonical
inflammasomes for catalytic activity, and indeed, dissociation from
this platform inactivates caspase-1 (Boucher et al, 2018). Dimer-
ization is similarly critical for the acquisition of basal proteolytic
activity for the apoptotic initiator caspases, caspase-8 and -9
(Boatright et al, 2003). As cellular caspase-11 requires interaction
with LPS via its CARD domain for protease activation (Shi et al, 2014),
we hypothesised that LPS binding enables caspase-11 clustering,
leading to dimerization of the catalytic subunits and the acquisition
of basal proteolytic activity, such as the ability to auto-cleave at the
IDL. To test this hypothesis, we used the DmrB system to precisely
control homodimerization of caspase-11 enzymatic domains, in-
dependently of their interactions with LPS. ΔCARD_Caspase-11 was
N-terminally fused to the DmrB domain (Fig 3A), and dimerization

Figure 2. Caspase-11 requires IDL but not CDL
processing for inducing cell death and IL-1β release.
Caspase-11 WT, catalytic mutant (C254A), CDL mutant
(CDLuncl), or IDL mutant (IDLuncl) were retrovirally
expressed in Casp11−/− BMM. Cells were primed for 12 h
with Pam3CSK4 or 4 h with LPS, and transfected with
ultrapure K12 E. coli LPS 10 μg/ml for 6 h or exposed to
5 μM nigericin for 2 h. (A) Western blot assessed
expression of caspase-11 mutants in cell extracts
of Pam3CSK4-primed, untransfected BMM. (B)
Immunoblot detected mature IL-1β and the caspase-11
or caspase-1 large subunits in the culture medium
(SUP) and cell extracts (XT) of Pam3CSK4-primed BMMs
transfected with LPS for 6 h. (C) Cell death and (D) IL-1β
secretion was assessed 6 h after LPS transfection
or 2 h after nigericin exposure. Western blots are
representative of three biological replicate
experiments. Graphs are mean + SEM of four biological
replicate experiments, with significance assessed
using a Mann–Whitney test.
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was induced by AP20187 to mimic CARD-driven clustering by LPS.
DmrB-caspase-11 constructs were expressed in HEK293T cells and
caspase-11 activity was measured on peptidic (AcLEHD-afc) and
native (V5-GSDMD) substrates. AP20187-induced dimerization of
WT, but not C254A, DmrB-caspase-11 triggered caspase-11 auto-
cleavage, LEHD-ase activity, and processing of GSDMD to GSDMD-
p30 (Fig 3B and C). Dimerization thus induces caspase-11 basal
activity, triggering AcLEHD-afc cleavage and self-processing at the
IDL. This suggests that LPS induces caspase-11 activity during non-
canonical inflammasome signalling by promoting caspase-11 di-
merization and IDL auto-processing. It further indicates that while
LPS may induce the formation of caspase-11 oligomers, dimers are

both necessary and sufficient for caspase-11 to acquire basal pro-
teolytic activity.

Caspase-11 auto-processing at D285 is required for substrate
cleavage

We next sought to identify the cleavage site(s) within the IDL that
generate the p32 fragment during caspase-11 auto-processing.
Three single point mutants at candidate sites were thus created
within DmrB-caspase-11 (E266A, D277A, and D285A), in addition to
the triple mutant (IDLuncl) previously shown to abrogate caspase-11
self-cleavage and signalling in macrophages (Fig 2). These con-
structs were expressed in HEK293T cells, to which AP20187 was
added to induce caspase-11 dimerization. The catalytic activity and
self-processing of these mutants was then examined. E266A mu-
tation did not affect caspase-11 LEHDase activity, whereas mutation
of the catalytic cysteine ablated activity (C254A, Fig 4A and B).
Unexpectedly, D277 mutation caused an increase in caspase-11
LEHDase activity (Fig 4A and B), indicating that this mutation
may render caspase-11 hyperactive. Mutation of the D285 residue,
either as a single mutant (D285A) or within compound mutants
(D277A/D285A, IDLuncl), markedly diminished but did not ablate
caspase-11 LEHDase activity (Fig 4A and B). C254A and D285A mu-
tation suppressed AP20187-induced caspase-11 cleavage (Fig 4B),
indicating that D285 is a critical auto-processing site. The D285A
mutant was also unable to cleave V5-GSDMD (Fig 4B). Caspase-11
E266A and D277A mutation did not prevent self-processing or
GSDMD cleavage (Fig 4B). Together, these data suggest that un-
processed caspase-11 dimers exhibit basal activity, such as the
ability to modestly cleave AcLEHD-afc and autoprocess the IDL.
Herein, D285 is cleaved first, and is the only cleavage event es-
sential for caspase-11 to process GSDMD. This, however, does not
exclude the possibility that E266 and D277 may be cleaved after
D285 to further “trim” the IDL, as such small changes to caspase-11
fragment size may not be readily observed by our methods. Such
sequential processing has been reported in caspases previously
(Boucher et al, 2011). Thus, dimerization is sufficient to induce
caspase-11 auto-catalytic activity, but is alone insufficient for in-
ducing the full spectrum of caspase-11 activities, such as GSDMD
proteolysis. The latter requires caspase-11 to be both dimeric and
auto-cleaved within the IDL, at residue D285.

The proteolytic activity of caspase-11 dimers unable to
self-cleave at the IDL can be rescued by cleavage in trans

To confirm the differential requirements for dimerization and IDL
cleavage in caspase-11 activities, we generated an engineered form
of DmrB-caspase-11 (IDLthr) in which two of the candidate cleavage
sites (D277A and D285A) were mutated, and a thrombin consensus
cleavage site (LVPR/GS) was inserted (Fig 5A). This allowed us to
precisely control dimerization and IDL cleavage to p32 separately,
with AP20187 and thrombin, respectively. This engineered form of
caspase-11 was expressed in HEK293T cells and monitored for self-
processing and the capacity to cleavage substrates. As seen with
the D285A mutation, caspase-11 IDL mutation (IDLthr) blocked self-
processing to p32 (Fig 5D). Intriguingly, dimerization of caspase-11

Figure 3. Caspase-11 dimerization is necessary and sufficient for
auto-cleavage to the p32/p10 species, and protease activity.
HEK293T cells were transiently transfected with pEF6-DmrB-Caspase-11 constructs
depicted in (A) to mimic the p43 dimers and p32/p10 species of caspase-11 (actual
predictedmolecular weights of DmrB fusions are 46 kD and 35/10 kD, respectively).
Transfected HEK293T cells were pre-incubated with the dimerizer drug, AP20187,
for 30 min before substrate addition. (B) Cleavage of AcLEHD-afc by DmrB-
Caspase-11 in digitonin-lysed HEK293T cells was monitored over 30 min. Data are
mean of technical quadruplicates, and are representative of at least three
biological replicate experiments. (C) HEK293T cells expressing DmrB-Caspase-11
were incubated with AP20187 for 30 min to induce dimerization. Cells were lysed
with digitonin, and incubated with lysates from HEK293T expressing V5-GSDMD for
1 h at 37°C. Samples were precipitated and analysed using an immunoblot. Data
are representative of three biological replicate experiments.
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IDLthr triggered some processing to a minor, shorter fragment (Fig
5D). This is likely a consequence of the hyper-activity of p43 dimers
due to D277A mutation, leading to E266 cleavage and generation
of a p30/p10 species. This caspase-11 p30/p10 species, however,
appeared to be inactive, as it did not cleave AcLEHD-afc (Fig 5C) or
GSDMD (Fig 5D). Dimerized IDLthr did not induce V5-GSDMD or
AcLEHD-afc cleavage unless it was first incubated with thrombin,
whereas thrombin did not affect the activities of WT or C254A
caspase-11 (Fig 5B–D). Addition of thrombin without AP20187 pre-
incubation lead to a modest increase in caspase-11 IDLthr LEHDase

activity (Fig 5B), suggesting that IDL cleavagemay facilitate caspase-
11 proteolytic activity, possibly by promoting the dimerization of
caspase-11 monomers. Together, these results support a model
whereby caspase-11 dimerization induces basal proteolytic activity
such as the ability to self-cleave, whereafter IDL processing is both
necessary and sufficient to generate the fully active p32/p10
species of caspase-11 dimer, leading to cleavage of GSDMD and
non-canonical inflammasome signalling.

Discussion

Inflammatory pathways of the innate immune system provide
defence against microbial infection. Innate immune cells require
mechanisms which rapidly detect and respond to cytosolic bac-
teria, while limiting indiscriminate collateral damage. Caspase-11
provides important surveillance of the host cytosol in macro-
phages, dendritic cells, neutrophils and epithelia (Hagar et al, 2013;
Kayagaki et al, 2013; Knodler et al, 2014; Oficjalska et al, 2015; Zanoni
et al, 2016). Although the signalling events leading up to and fol-
lowing caspase-11 activation are well understood, the precise
molecular mechanisms governing caspase-11 activation and sub-
strate repertoire remain unclear. Here we use inducible systems to
control caspase-11 dimerization and cleavage, and demonstrate
that both dimerization and IDL auto-cleavage at residue D285 are
required for caspase-11 to cleave GSDMD and thus drive cell
death (pyroptosis, NETosis) during non-canonical inflammasome
signalling.

During the preparation of this manuscript, the D285 residue
within the caspase-11 IDL was identified as important for caspase-11
function in vivo (Lee et al, 2018). This study supports our conclu-
sions that caspase-11 is cleaved at D285 and that this is critical for
non-canonical inflammasome signalling ouputs. Lee et al (2018)
did not investigate the function of other candidate self-cleavage
sites within the IDL or CDL, or elucidate the mechanism by which
caspase-11 acquires basal activity. Lee et al (2018) proposed
that active caspase-11 contains a p26 large subunit fragment
generated by auto-cleavage of both D59 and D285 sites, or alter-
natively, by D285 auto-cleavage of p36, a short form of caspase-11
derived from an M61 alternative start site that is lacking most of the
LPS-interacting CARD domain. While the precise identity of the
caspase-11 cleavage fragment encompassing the LS (p32 versus
p26) that is observed in both studies is not resolved in either study,
we believe that the active species of caspase-11 is likely to be p32/
p10 rather than p26/p10, because: (i) caspase-11 p36 cannot bind
LPS (Shi et al, 2014), so p36 caspase-11 would not be expected to
dimerize or acquire the capacity to auto-cleave at the IDL to
generate p26/p10. By contrast, p43 can bind LPS and so become
activated to generate p32/p10; and (ii) the D59 cleavage site pro-
posed by Lee et al (2018) is located within an α helix of the CARD (Fig
S1), and so is unlikely to be a target of auto-cleavage, as caspases
prefer to cleave in flexible loop regions (Timmer et al, 2009).

Our data give new insight into the molecular events underlying
activation of caspase-11 protease activity by intracellular LPS. We
propose a model in which LPS interaction allows caspase-11 to
cluster, leading to proximity-induced dimerization of the catalytic

Figure 4. The MEA/D (D285) cleavage site within the IDL is critical for caspase-11
auto-processing and full protease activity.
HEK293T cells were transfected with either DmrB alone (empty vector, EV) or
DmrB-caspase-11 mutants: WT, C254A (catalytic mutant), IDLuncl (IDL triple
cleavage mutant; E266A/D277A/D285A), and single IDL mutants: E266A, D277A, and
D285A. Cells were exposed to 500 nM AP20187 for 30 min and lysed with digitonin
for quantification of proteolytic activity, either by (A) kinetics of AcLEHD-afc
cleavage over 20 min, or (B) reaction rate (upper), and incubation with full-length
GSDMD-V5 to assess the extent of cleavage to p30 after 1 h (lower). Data in
(B upper) are mean + SEM of four biological replicates. Data were analysed for
normality using the Shapiro–Wilk normality test, and tested for significance using
parametric paired t tests (two-sided). All other data are representative of at least
three biological replicates.
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subunits. This dimer of full-length caspase-11 (p43) has basal ac-
tivity (for example, it can self-cleave) but a restricted substrate
repertoire, as it cannot process GSDMD. Dimerization-induced auto-
proteolysis at the IDL generates the fully active species of caspase-
11 dimer (which we propose to be p32/p10) that can cleave GSDMD
to initiate cell death (Fig 5E). It is likely that caspase-11 p32/p10 also
cleaves additional substrates with important functions in cell death
and host defence. Caspase-4 is similarly cleaved to generate a p32
fragment upon exposure to cytosolic LPS or Gram-negative bacteria
(Casson et al, 2015), suggesting the caspase-11 signalling mecha-
nism we describe here is also conserved during non-canonical
inflammasome signalling in humans.

This proposed mechanism for caspase-11 activation has par-
allels to the mechanism by which caspase-1 is activated upon
canonical inflammasomes. Caspase-1 is recruited to canonical
inflammasomes via CARD–CARD interactions and caspase-1 clus-
tering upon this complex leads to proximity-induced dimerization

(Boucher et al, 2018). The uncleaved (p46) species of caspase-1 can
initiate GSDMD-dependent cell death (Broz et al, 2010). By contrast,
caspase-11 requires both dimerization and IDL processing to
generate the fully active caspase-11 species able to cleave GSDMD
and drive cell death. The differing substrate repertoires of the
p43 versus p32/p10 species of caspase-11 is reminiscent of both
caspases-1 and -8, where signalling outcomes are altered if IDL
cleavage fails to occur (Broz et al, 2010; Oberst et al, 2010). For
instance, caspase-1 p46 dimers induce cell death without matu-
ration of IL-1β and IL-18 (Broz et al, 2010). The future identification of
caspase-11 substrates that can be processed by “uncleaved,” yet
dimerized caspase-11 will be of great interest. Our data using a
small peptidic caspase-11 substrate (AcLEHD-afc) indicate that
caspase-11 p43 dimers may be intrinsically less catalytically active
and therefore less able to cleave “suboptimal” cleavage sites within
potential substrates. It is also possible that caspase-11 p43 dimers
are relatively unstable, as IDL cleavage of other caspases stabilizes

Figure 5. Cleavage of the IDL in trans promotes
caspase-11 cleavage of GSDMD and AcLEHD-afc.
HEK293T cells were transiently transfected with
constructs containing DmrB-Caspase-11, WT, C254A,
and IDLthr, in which a thrombin cleavage site replaces
the caspase-11 IDL auto-processing site, as depicted in
(A), to allow generation of unprocessed dimers
(analogous to caspase-11 p43; actual predicted weight
for the DmrB-caspase-11 fusion, ~46 kD) and IDL-
cleaved dimers (analogous to caspase-11 p32/p10,
actual predicted weight 35/10 kD). (B) Cells were
incubated with AP20187 (500 nM) for 30 min, and then
AcLEHD-afc cleavage was measured with and without
the addition of thrombin (20 U/ml) to the reaction. Data
are mean + SEM of four biological replicates. Data were
analysed for normality using the Shapiro–Wilk
normality test, and tested for significance using
parametric paired t tests (two-sided). (C) AcLEHD-afc
kinetic trace of AP20187-treated cells expressing DmrB-
Caspase-11 WT versus IDLthr, in the presence and
absence of thrombin (20 U/ml) in the reaction.
(D) HEK293T expressing the DmrB-Caspase-11
constructs were exposed to AP20187 for 30 min, and
then lysed and incubated for 15 min with thrombin
(20 U/ml) before the addition of V5-GSDMD for 1 h.
(E) Model for LPS-induced caspase-11 dimerization,
auto-processing, and activation.
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their active sites and substrate binding pockets (Fuentes-Prior &
Salvesen, 2004; Boucher et al, 2011). Alternatively, IDL cleavage may
expose important recognition sites for interaction with particular
protein substrates, to alter substrate specificity. The impact of
caspase-11 auto-processing on substrate repertoire may be par-
ticularly important when considering that some ligands of caspase-
11, such as oxPAPC, do not induce caspase-11 cleavage or pyroptosis
(Zanoni et al, 2016).

Over-expressed caspase-11 is reported to cleave at the CDL
(Kayagaki et al, 2011; Wang et al, 1996). We expressed caspase-11 in
macrophages or HEK293T at near-physiological concentrations, and
did not find evidence for CDL auto-cleavage at any site, including
the candidate D80 residue between the CARD domain and the linker
sequence to the protease domain. Importantly, D80 mutation to
prevent processing at this site did not suppress macrophage non-
canonical inflammasome signalling. A structural model for the
caspase-11 CARD domain suggests that the D80 putative cleavage
site is located within the terminal region of the final α helix,
abutting the CDL (Fig S1). D59 was recently proposed to be sensitive
to self-proteolysis, but this residue is located within the CARD
domain, and so is also likely to be inaccessible for auto-cleavage
(Fig S1). It is thus unlikely that caspase-11 auto-processes at D59 or
D80 under physiological conditions. By contrast, caspase-1 does
auto-cleave at the CDL, leading to the release of caspase-1 dimers
from the inflammasome and terminating protease activity. Given
that caspase-11 signalling is not limited by CDL auto-cleavage, this
suggests that caspase-11 activity may be physically confined to the
LPS-complex, which may restrict substrate availability, as sub-
strates would require recruitment to the non-canonical inflam-
masome for processing. This also raises the question of whether
caspase-11 activity may be modulated by CDL cleavage in trans, by
other proteases. Cathepsin G and granzyme B both cleave caspase-
11, although the precise cleavage sites have not been identified
(Wang et al, 1996; Schotte et al, 1998; Chen et al, 2018b). If these
proteases target the CDL they could mediate caspase-11 in-
activation, by analogy to caspase-1 deactivation mechanisms
(Boucher et al, 2018). Alternatively, if these proteases target the IDL,
they may support caspase-11 activity. For example, caspase-8
processing by cathepsin D promotes caspase-8 dimerization and
subsequent activity in neutrophils (Conus et al, 2012).

In summary, caspase-11 processing is often monitored as a proxy
for caspase-11 activation. Here, we confirm that caspase-11 is
autoprocessed at D285 to generate the fully active protease species.
Our data indicate that caspase-11 gains activity within the non-
canonical inflammasome via a two-step mechanism involving first
dimerization and then IDL auto-processing. Such a mechanism
ensures controlled and appropriate caspase-11 activation during
cytosolic Gram-negative bacterial infection.

Materials and Methods

Mice

All mice were housed in specific pathogen-free facilities at the
University of Queensland. Casp11−/− (Kang et al, 2002) mice were

backcrossed at least 10 times to C57BL/6. The Casp1C284A/C284A line,
in which the catalytic cysteine is mutated to render caspase-1
enzymatically inactive, was generated via CRISPR/Cas9 gene edit-
ing of C57BL/6 mice at the University of Queensland Facility for
Advanced Genome Editing. Mice were used as a source of primary
bone marrow progenitors. The University of Queensland’s Animal
Ethics Committee approved all experimental protocols.

Murine macrophage inflammasome assays

WT (C57BL/6), Casp11−/− or Casp1C284A murine BMMs were differ-
entiated from bone marrow progenitors as previously described
(Schroder et al, 2012). BMM were plated at a density of 1 × 106 cells/
ml in complete macrophage media (RPMI-1640, 10% fetal bovine
serum, 1× Glutamax, and 150 ng/ml endotoxin-free recombinant
CSF-1), and were primed for 12 h with 1 μg/ml Pam3CSK4. The
medium was then replaced with Opti-MEM replete with 150 ng/ml
CSF-1, before cells were transfected with 10 μg/ml ultrapure K12
E. coli LPS (0.25% FuGENE HD Transfection Reagent; Promega) for the
indicated times. To activate the NLRP3 inflammasome, BMM were
first primed for 4 h with 100 ng/ml K12 ultrapure LPS, before the
mediumwas replaced with CSF-1-replete Opti-MEM containing 5 μM
Nigericin Sodium salt (Sigma-Aldrich). IL-1β secretion into the cell
culture medium was assessed by ELISA (eBioscience IL-1β Ready-
SET-Go!), according to manufacturer’s instructions. Cell cytotoxicity
was measured using the CytoTox96 Non-radioactive Cytotoxicity
Assay (Promega) and expressed as a percentage of total cellular
LDH (100% lysis control). Cell extracts and methanol/chloroform-
precipitated supernatants were analysed by Western blot using
standard methods (Gross, 2011), using antibodies against the caspase-
11 large subunit (EPR18628, 1:1,000; Abcam), mIL-1β (polyclonal goat
antibody, 1:1,000; R&D Systems), caspase-1 large subunit (casper-1, 1:
1,000; Adipogen), V5 (SV5-Pk1, 1:2,000; AbD Serotec), α-tubulin (B5-1-2, 1:
2,000; Sigma-Aldrich), and GAPDH (polyclonal rabbit antibody, 1:5,000;
BioScientific).

Retroviral transduction

The coding sequence of caspase-11 was cloned into a replication
defective mouse stem cell construct (pMSCV). Caspase-11 mutants
were generated by PCR mutagenesis. The PlatE cell line was used
to produce and package the retrovirus. PlatE cells were trans-
fected with pMSCV vectors using Lipofectamine 2000, and in-
cubated for 48 h at 32°C and 5% CO2 for virus production. PlatE
supernatants were filtered (0.45 μm), supplemented with 6 μg/ml
polybrene, 20 mM Hepes and 150 ng/ml CSF1, and used to spin-
infect Casp11−/− bone marrow progenitors on day 2 of their CSF-1-
directed differentiation.

HEK-293T transfection and caspase-11 dimerization

The DmrB-ΔCARD-caspase-11 mutants were cloned into the pEF6
vector. HEK293T cells (ATCC CRL-3216) were transfected with
these constructs using lipofectamine, and cells were reseeded at
1 × 106 cells/ml. Transfected cells were then incubated in opti-MEM
containing the 500 nM of the B/B Homodimerizer (AP20187; Clon-
tech) for 30 min. The medium was then replaced with caspase
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activity buffer (200 mM NaCl, 50 mM Hepes pH 8.0, 50 mM KCl,
100 μg/ml digitonin, 10 mM DTT) supplemented with 100 μM
AcLEHD-afc or V5-GSDMD-expressing HEK293T cell extract. For ex-
periments in which caspase-11 was cleaved with thrombin, 20 U/ml
bovine thrombin (Sigma-Aldrich) was added to the caspase ac-
tivity buffer 15 min before V5-GSDMD addition, or the same time
as AcLEHD-afc addition. Hydrolysis of the caspase-11 substrate
AcLEHD-afc was monitored at 37°C at regular time intervals using
the M1000 TECAN spectrofluorometer (400 nm excitation, 505 nm
emission). V5-GSDMD cleavage was monitored after 2 h or as in-
dicated. Cell extracts and supernatants were precipitated using
methanol/chloroform and analysed by immunoblotting using
standard procedures (Gross, 2011).

Data analysis and statistics

Statistical analysis was performed using GraphPad Prism 6.0
software. Data were analysed for normality using the Shapiro–Wilk
normality test, and tested for statistical significance using para-
metric paired t tests (two-sided), nonparametric Mann–Whitney
tests, or two-way ANOVA (for time course analysis). LEHDase activity
curves were analysed by linear regression on the linear portion of
the kinetic traces, to determine the slope (relative fluorescent
units/second). The relative fluorescent units/second was then
converted to reaction rate (nM/s) using an AFC standard curve.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201800237.
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