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Background: Ninety-day hometime, the number of days a patient is living in the community in the first 90 after
stroke, exhibits a non-normal bucket-shaped distribution, with lower and upper constraints making its analysis
difficult. In this proof-of-concept study we evaluated the performance of random forests regression in the analysis

Methods: Using administrative data we identified stroke hospitalizations between 2010 and 2017 in Ontario,
Canada. We used random forests regression to predict 90-day hometime using 15 covariates. Model accuracy was
determined using the r-squared statistic. Variable importance in prediction and the marginal effects of each

Results: We identified 75,745 eligible patients. Median 90-day hometime was 59 days (Q1: 2, Q3: 83). Random
forests predicted hometime with reasonable accuracy (adjusted r-squared 0.3462); no implausible values were
predicted but extreme values were predicted with low accuracy. Frailty, stroke severity, and age exhibited inverse non-
linear relationships with hometime and patients arriving by ambulance had less hometime than those who did not.

Conclusions: Random forests may be a useful method for analyzing 90-day hometime and capturing the complex
non-linear relationships which exist between predictors and hometime. Future work should compare random forests
to other models and focus on improving the accuracy of predictions of extreme values of hometime.

Background

Stroke is a leading cause of morbidity and mortality
worldwide. Assessing patient outcome after stroke is im-
portant for clinical research and quality improvement
initiatives. Post-stroke recovery is commonly determined
using scales or questionnaires delivered via structured
interview. There are several common scales available to
measure outcomes after stroke, the most common being
the modified Rankin Scale. However, scales such as this
are subject to issue with rater bias, inter-observer variabil-
ity, social desirability bias in self-reporting, and attrition
bias [1]. Additionally, these scales require prospective
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evaluation by trained experts and as such are not com-
monly collected outside the clinical trial environment,
meaning they cannot be used for population based studies
nor for retrospective observational studies. Ninety-day
hometime, defined as the total number of days a patient is
living in the community (and not in a healthcare institu-
tion) in the first 90 days after stroke [2], is a new stroke
outcome metric shown to be correlated with disability
after stroke [3-7]. Hometime is objective and does not
suffer from inter/intra-rater reliability issues or any issues
related to self-reporting. Hometime can be obtained from
administrative data, enabling population-based analyses
[5]. Hometime is graded, with longer home-time being as-
sociated with higher post-stroke disability [2—6], unlike
other outcomes available in administrative data such as
mortality. Finally, home-time is meaningful to patients
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because they value reintegration into the community after
stroke as well as policy-makers because this metric is in-
tuitively associated with healthcare costs [8—10].

In prior studies, a substantial range of statistical
methods have been used to analyze hometime including
negative binomial regression, ordinal logistic regression,
median regression, linear regression, Spearman rank cor-
relation, t-test and chi-square analyses, propensity score
matching, and categorizing hometime into quartiles [3—
7, 11-13]. While this diversity may be due to the indi-
vidual study objectives, it may also reflect unique statis-
tical properties of hometime, which make its analysis
problematic. Indeed, typical parametric statistical
methods may have limited utility for analyzing home-
time because it follows a highly non-normal bucket
shaped distribution with spikes at or near its lower and
upper limits (by design, 90-day hometime is constrained
to lie between 0 and 90) [5, 6] Further, the lower and
upper limits themselves cause additional difficulty with
applying traditional regression methods to predict home-
time, as they may result in non-plausible estimated values,
such as estimating a negative hometime or extrapolating
beyond 90 days.

Given these challenges, random forests regression, a
popular method from the machine learning literature,
may be a more suitable method for the analysis of home-
time. We aimed to study the use of random forests regres-
sion for modelling 90-day hometime in a population-
based cohort of stroke patients, and to determine the rela-
tive importance of several covariates in the prediction of
hometime using random forests regression. We have fo-
cused this paper solely on random forests regression as a
proof of concept illustrating the utility of random forests
for hometime. We do not compare the use of random for-
ests to other regression methods in this paper. We have
structured this article in the following way: first, we de-
scribe random forests regression and its advantages for
analyzing hometime. Second, we apply random forests re-
gression to predict 90-day hometime in a population-
based cohort of stroke patients and discuss the model’s
performance. Third, we highlight the relative importance
of several clinically relevant covariates in the prediction of
hometime using this method.

Random forests

Overview of random forests

Classification and regression trees (CART) are a simple
tool for prediction and classification. Unlike linear re-
gression, CART is not based on a parametric regression
model, but rather data are split along the predictor axes
into groups (nodes). A node is split on the variable that
results in the two resultant sub-nodes being as homoge-
neous as possible [14]. This process is then repeated re-
cursively with each of the two resultant sub-nodes.
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Predictors can be categorical or continuous (using a
data-driven cut-off value for the split); outcomes can
also be categorical or continuous. Random forests is a
regression method based on the aggregation of a large
number of these trees which has been shown to produce
more accurate results than just a single tree [15]. A ran-
dom forest is a variation of bootstrap aggregating (bag-
ging) where several hundred trees are created from the
same dataset and their results averaged. The training
data for each tree is created from a bootstrapped sample
of the full dataset, meaning that approximately one third
of the observations will not be used in the training data-
set. Each time a split is considered, a random sample of
the predictors (among the full set of predictors) are
chosen as candidates for the split. This allows multicolli-
nearity to be handled as not all predictors are considered
at each split [15]. Trees are grown to maximum size
without pruning. The predictions for each observation
obtained from each tree are averaged.

There are several advantages to this methodology.
First, single trees can be prone to overfitting and are
very sensitive to small changes in the training data [16].
Second, through bagging, there are data points which do
not end up in the bootstrapped sample for any given tree
(out-of-bag observations); this allows for a statistically
efficient process where the random forest can be fit in
one sequence with cross validation being performed
along the way [16]. Finally, this methodology allows the
model to capture complex interaction structures within
the data in with relatively low bias [15].

One disadvantage is that this method does not pro-
duce regression coefficients which allow for the direct
interpretation of each variable’s impact on the outcome
of interest [17]. However, by measuring the effect of
variable permutation on the model’s accuracy (measured
using out-of-bag error estimation) and node homogen-
eity (measured using the Gini index), random forests
allow for a variable importance measure to be deter-
mined for each predictor. As a result, one can tell, rela-
tive to the other predictors, each variable’s importance
in prediction of the outcome. We have provided more
information on the procedures for assessing variable im-
portance in the supplemental materials. There are also
other model-agnostic interpretation methods, such as
partial dependence, which allow for examining the mar-
ginal effects of each variable (one or two at a time) on
the model’s predictions.

Advantages of random forests for the analysis of
Hometime

One of the biggest advantages of random forests is that
they do not make any distributional assumptions about
underlying data structures, meaning they can be used on
data which exhibiting highly unusual distributions, such
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as those in hometime. One property of regression trees,
sometimes discussed as a limitation, is that they cannot
perform extrapolation. The estimates produced are con-
strained to averages of the observed data; meaning pre-
dictions which are less than the minimum or greater
than the maximum outcome value which appears in the
dataset on which the model was trained cannot be ob-
tained [17]. In the setting of 90-day hometime, this is an
advantage, as the random forest cannot produce non-
plausible estimated values of hometime (those <0 or >
90 days).

Methods

Cohort identification

Using the Canadian Institute for Health Information
(CIHI) Discharge Abstract Database (DAD) we identified
all patients with a main diagnosis of stroke (ischemic or
intracerebral hemorrhage) admitted to an acute care
hospital in Ontario between April 1, 2010 and December
31, 2017. Nonresidents of Ontario, those <18 or > 105
years of age, strokes occurring in-hospital, patients dis-
charged from the emergency department without in-
patient hospitalization, patients with history of prior
stroke, and patients in long-term care at baseline were
excluded.

Covariates

Covariates of interest included age, sex, arrival by ambu-
lance, stroke type, treatment with thrombolysis, stroke
unit care, frailty (measured using the Hospital Frailty
Risk Score, a continuous score from 0 to 99 derived
from administrative data where scores <5 indicate low
risk of frailty, scores 5-15 indicate moderate risk of
frailty and scores > 15 indicate high risk of frailty) [18],
stroke severity (measured using the Passive Surveillance
Stroke seVerity Indicator (PaSSV) where scores < 4 indi-
cate severe stroke, scores 4—8 indicate moderate stroke
severity, and scores >8 indicates mild stroke severity)
[19], rural vs. urban home location, quintile of median
neighbourhood income, and the following comorbidities:
atrial fibrillation, diabetes, hypertension, myocardial in-
farction. A 5-year lookback window was used for all co-
morbidities. Covariates were identified using linked data
from the DAD, the Ontario Health Insurance Plan Data-
base, the Ontario Diabetes Dataset [20, 21], the Ontario
Hypertension Dataset [22, 23], the Ontario Myocardial
Infarction Dataset [24], and the Canadian Census (case
definitions are given in Table A.1). Patients with missing
data were excluded from the analyses.

Ninety-day Hometime calculation

We calculated 90-day hometime using linked data from
the following sources: DAD (inpatient hospitalization),
National Ambulatory Care Reporting System (emergency
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department), the National Rehabilitation Reporting Sys-
tem (rehabilitation), the Continuing Care Reporting Sys-
tem (complex continuing care or long-term care), and
the Ontario Registered Persons Database (mortality
data). Data linkage occurred through unique encoded
identifiers at ICES; these datasets have been validated
extensively for research purposes [25].

For patients who survived to day 90, 90-day hometime
was calculated as 90 minus the sum of length(s) of stay
in ED, acute care, rehabilitation, and long-term care. For
example, a patient whose sum of lengths of stay in
healthcare institutions = 20 days would have a hometime
of 70 days. Patients who died prior to day 90 could still
accumulate hometime days for each day spent alive and
out of healthcare institutions prior to death. For ex-
ample, a patient with whose sum of lengths of stay in

Table 1 Baseline characteristics of patients hospitalized with
acute stroke between April 1, 2010 and December 31, 2017 and
included in the study cohort

Characteristic Complete Case Analysis

Cohort (n =75,475)

Female (%) 47 44
Median Age (Q1, Q3) - years 75 (64, 84)
Arrived by Ambulance (%) 7119
Stroke Type (%)

Intra-cerebral hemorrhage 12.87

Ischemic Stroke 87.12
Diabetes (%) 3661
Atrial Fibrillation (%) 14.18
Hypertension (%) 82.76
Myocardial Infarction (%) 9.19
Neighbourhood Income Quintile (%)

Quintile 1 (lowest) 23.60

Quintile 2 21.99

Quintile 3 19.70

Quintile 4 17.75

Quintile 5 (highest) 16.96
Home Location (%)

Rural 1240

Urban 87.60
Median Frailty Score® (Q1, Q3) 42 (0.8,9.1)
Median PaSSV Score® (Q1, Q3) 7.7 (65, 87)
Received Thrombolysis (%) 13.36
Received Stroke Unit Care (%) 56.01

Q1: first quartile; Q3: third quartile; PaSSV: Passive Surveillance Stroke

seVerity indicator

A continuous score ranging from 0 to 99 where scores < 5 indicate low risk of
frailty, scores from 5 to 15 indicate intermediate risk of frailty, and scores > 15
indicate high risk of frailty [18]

PA continuous score where < 4 indicates severe stroke, 4-8 indicates moderate
stroke severity, and > 8 indicates mild stroke severity [19]
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Fig. 1 Left: Histogram of 90-day hometime across the cohort of 75,475 stroke patients. Right: Histogram of predicted 90-day hometime across
75475 patients using a random forests model with 15 clinically relevant covariates
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healthcare institutions =20 days and died on day 70
would have a hometime of 50 days. Patients who died
during the index admission have, by definition, home-
time of 0days. Hometime accumulation does not have
to be continuous. For example, a patient with an acute
care admission who was discharged to home and then
re-admitted within 90 days of index event would have
both admission lengths of stay subtracted for the 90-day
hometime calculation.

Statistical methods

We used random forests regression to model 90-day
hometime. A random forest consisting of 500 trees was
grown, using p/3 candidate predictors at each split
(where p=total number of predictors) in accordance
with recommendations made by Breiman [15]. All trees

were grown using a minimum node size of 5 and no re-
strictions on tree depth or number of terminal nodes
were imposed. Model fit was assessed using adjusted R-
squared.

Using both out-of-bag error estimation and node
homogeneity, the relative importance of each co-variate
in predicting hometime was determined. The marginal
effects that each co-variate had on the predicted out-
come were illustrated using partial dependence plots.
These plots show how predicted values partially depend
on the values of one or more co-variates. These graphs
plot the change in average predicted outcome value as a
co-variate is varied over its marginal distribution [26].
These plots are post-hoc methods of model interpret-
ation, they do not reveal the inner workings of the
model, but rather reveal how the model behaves as a
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Fig. 2 Variable importance plots for random forest model using 15 covariates to predict hometime in a cohort of 75,475 stroke patients. Four
among the top five most important variables (bold face) were the same across both methods
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result of changing inputs. One-way partial dependence
plots were generated for each co-variate. Two-way par-
tial dependence plots were generated to depict the inter-
action between pairs of variables that displayed high
importance for hometime. All analyses were performed
using R (v3.3.0).

Ethics and data availability statement

This study was approved by the Sunnybrook Health Sci-
ences Centre Research Ethics Board. The use of data in
this project was authorized under section 45 of Ontario’s
Personal Health Information Protection Act. The data
sets used for this study were held securely in a linked,
de-identified form and analyzed at ICES. While data
sharing agreements prohibit ICES from making the data
set publicly available, access may be granted to those
who meet pre-specified criteria for confidential access,
available at www.ices.on.ca/DAS.

Results

Patient characteristics

From 109,842 acute admissions for stroke, we identified
a cohort of 75,475 patients with complete data who
met all inclusion criteria. The cohort selection flow chart
is presented in Figure Al. We removed 202 observations
with small cell counts upon cross tabulation of baseline
characteristics to avoid potential re-identification of in-
dividuals as per ICES policy; aggregate demographics of
these patients are given in Table A.2. Baseline character-
istics of the final cohort are given in Table 1. At Day 90,
68.54% of patients were home and 17.49% of patients
had died. The distribution of 90-day hometime across
the entire cohort of patients is displayed in Fig. 1. The
median 90-day hometime across the cohort was 59 days
(Q1: 2, Q3: 83). The pairwise correlation between all co-
variates is given in Table A.3. Some of the predictors ex-
hibited moderate correlation with the highest magnitude
being between PaSSV score and admission via ambu-
lance (p = - 0.45); however, as random forests regression
is robust to multicollinearity all variables were included
as candidates in the model.

Using random forests regression to predict 90-day
Hometime

The random forests model predicted 90-day hometime
with reasonable accuracy (adjusted r-squared = 0.3462).
The distribution of predicted hometime across the co-
hort is displayed in Fig. 1. Extreme values of hometime,
both low and high, were predicted with the least accur-
acy. Low hometime values were systematically over-
estimated and high hometime values were systematically
under-estimated (Figure A.2). All predicted values for
hometime were plausible (minimum: 0 days; maximum:
87.39 days).
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Interpretation of random forests model

Whether determining variable importance using model ac-
curacy (out-of-bag error estimation) or node purity (Gini
index), four of the top five ranked variables were the same:
frailty, stroke severity, age, and ambulance use (Fig. 2). The

Table 2 Marginal estimate of hometime for variables with lower
relative importance on predicted hometime

Variable Predicted 90-day hometime (days)
Sex

Female 488

Male 48.7
Stroke Type

Intra-cerebral Hemorrhage 400

Ischemic Stroke 500
Diabetes

Yes 47.7

No 493
Atrial Fibrillation

Yes 48.5

No 488
Hypertension

Yes 488

No 483
Myocardial Infarction

Yes 49.3

No 487
Neighbourhood Income Quintile

Quintile 1 (lowest) 479

Quintile 2 486

Quintile 3 49.2

Quintile 4 49.0

Quintile 5 (highest) 492
Home Location

Rural 478

Urban 49.0
Received Thrombolysis

Yes 48.5

No 485
Received Stroke Unit Care

Yes 49.7

No 475
Fiscal Year Group

2010-2011 454

2012-2013 46.8

2014-2015 496

2016-2017 51.1
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two top predictors, frailty and stroke severity, were the
same for both methods of ranking variable importance and
on a relative scale these variables were far more important
than the other 13 covariates in predicting hometime.

Influence of individual covariates on Hometime
predictions
Using both one and two-way partial dependence plots, we
examined the relationships between the four co-variates
ranked of high importance in predicting hometime. These
partial dependence plots are interpreted as the relationship
between the predictor variable(s) and 90-day hometime
after averaging out the effects of all other predictors. The
partial dependence estimates of the other 11 variables of
relatively lower importance are summarized in Table 2.
Frailty and stroke severity were the top predictors of
hometime, and the associations were non-linear. For pa-
tients with low or moderate risk of frailty (scores <15),
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as frailty increased predicted hometime decreased; how-
ever, for patients at high risk of frailty (scores >15),
there was little change in predicted hometime as frailty
score increased (Fig. 3). Predicted hometime increased
as stroke severity decreased, but there was less variability
in predicted hometime for those with high or low
stroke severity compared to those with moderate
stroke severity (Fig. 3). There was an interaction be-
tween frailty and stroke severity; the rapid decrease in
hometime with increasing frailty was only seen when
stroke severity was low (Fig. 4). For higher stroke se-
verity, estimated hometime remained relatively con-
stant regardless of frailty.

Patients who arrived by ambulance had lower pre-
dicted hometime than those who did not (45.9 vs.
53.1days) (Fig. 3). Arrival by ambulance did not
change the nature of the association between home-
time and frailty or stroke severity, but it created a

y hometime

Predicted 90-da

2 4o )
Frailty
(higher scores indicate greater risk of frailty)

yhom%tlme

Predicted 90-da

2 Y 7s 100
Age (years)

stroke severity [19]

Fig. 3 Partial dependence plots illustrating the effect of frailty (top left), stroke severity (measured using the PaSSV score) (top right), age (bottom
left), and ambulance use (bottom right) on predicted 90-day hometime averaging out the effects of all other predictors. Frailty score is a
continuous score from 0 to 99 derived from administrative data where scores < 5 indicate low risk of frailty, scores 5-15 indicate moderate risk of
frailty and scores > 15 indicate high risk of frailty [18]. Passive Surveillance Stroke seVerity Indicator (PaSSV) score is a continuous score calculated
from administrative data where scores < 4 indicate severe stroke, scores 4-8 indicate moderate stroke severity, and scores > 8 indicates mild
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axis. The bottom plot displays this relationship using a two-dimensional contour plot. All three plots use the same color scale to represent
predicted 90-day hometime where darker colors indicate less hometime. Frailty scores range from 0 to 99 with higher scores indicating greater
risk of frailty (scores < 5 indicate low risk of frailty, scores 5-15 indicate moderate risk of frailty and scores > 15 indicate high risk of frailty) [18].
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indicate moderate stroke severity, and scores > 8 indicates mild stroke severity [19]

downward shift as patients arriving by ambulance
overall had less predicted hometime than those who
did not (Fig. 5).

Age displayed a non-linear relationship with home-
time, with predicted hometime decreasing with increas-
ing age, especially beyond age 45 (Fig. 3). The rapid
decrease and then plateau in hometime as frailty in-
creased held true across all ages (Fig. 6). The S-shaped
relationship between hometime and stroke severity also
persisted across all ages (Fig. 7). Patients presenting via

ambulance had less hometime than those who did not
across all ages, but the difference in predicted hometime
between the two groups increased with age (Fig. 4).

Discussion

We found that a random forests regression model pre-
dicts hometime with reasonable accuracy without pre-
dicting implausible values. The random forests model
allowed for the capturing and describing complex non-
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linear relationships between predictors and hometime,
such as for frailty and stroke severity.

However, patients with extreme values of hometime
were systematically under predicted, especially those
with 0-hometime. This could be because there are two
distinct groups of patients with hometime of 0 days: 1)
those who did not survive the initial stroke admission
and 2) those who survived with severe disability and
remained institutionalized for the full duration of the 90
days. The characteristics of these two groups may be dif-
ferent and using a single model to predict these out-
comes may not be ideal. Interestingly, the model also
systematically under predicted hometime values for pa-
tients with high hometime. Unlike 0-hometime, high
hometime only has one interpretation, that the patient
was sufficiently well for early discharge to home. An-
other potential reason for the suboptimal prediction of
the extreme values of hometime is that our set of

potential covariates did not include variables which
could be associated with both going home quickly and
not returning home at all, such as marital status, living
situation, lifestyle factors, social support, and indicators
of quality of care, as these are not available in adminis-
trative data.

We found that the most important variables for pre-
dicting hometime were frailty, stroke severity, age, and
ambulance use. Our findings are consistent with prior
work showing that frailty [27], stroke severity, [12, 13]
and age [6, 12, 13] are associated with disability after
stroke, but the association between these variables and
hometime specifically is not yet well understood.

Our findings of patient location (rural vs. urban) being
relatively unimportant was consistent with previous litera-
ture [6, 12]. We found that patients with intracerebral
hemorrhage had 10.0 fewer days of hometime than pa-
tients with ischemic stroke, also consistent with previous
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literature [6, 13]. Sex was not associated with hometime,
which has been previously reported by some studies [5]
but not others [6, 12]. We did not see a difference in
hometime based on thrombolysis use in this study. Prior
work has shown patients receiving thrombolysis have in-
creased hometime [3]; however, this previous study fo-
cused on patients with acute ischemic stroke who were
eligible for thrombolysis whereas our study included
hemorrhagic stroke patients and ischemic stroke patients
who may not have been eligible for thrombolysis. Individ-
ual vascular comorbidities (atrial fibrillation, diabetes,
myocardial infarction, hypertension) were not associated

with hometime, suggesting that multi-morbidity, as
captured by the frailty score, is likely more important
in predicting outcomes after stroke than any specific
comorbidity. This is consistent with our understand-
ing of the effects of multi-morbidity on stroke out-
comes [28, 29].

There are limitations to using random forests. Random
forests are complex, consisting of hundreds of regression
trees. This means that 1) a large amount of computation
power and time are needed to generate them, and 2)
they don’t produce readily interpretable coefficients like
those produced in linear regression or other parametric
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Fig. 7 Two-way partial dependence plots depicting the relationship between stroke severity, age, and predicted 90-day hometime. The top two
plots depict this relationship in a three-dimensional plot viewed from two different perspectives with predicted hometime displayed on the z-axis. The
bottom plot displays this relationship using a two-dimensional contour plot. All three plots use the same color scale to represent predicted 90-day
hometime where darker colors indicate less hometime. Stroke severity is measured using the Passive Surveillance Stroke seVerity Indicator (PaSSV)
where scores < 4 indicate severe stroke, scores 4-8 indicate moderate stroke severity, and scores > 8 indicates mild stroke severity [19]

models. We have used variable importance and partial
dependence plots to assist in model interpretability and
assess the marginal effects of each covariate. There are
other methods available to assess variable importance and
marginal effects of covariates including SHAP plots, LIME
plots, and global surrogates which were not explored in
this paper [30]. Finally, it is important to be aware that
random forests cannot perform extrapolation. While this
is an advantage for a bounded outcome like hometime, as
they will not generate implausible predictions, it can be a

limitation if the range of outcome values in the test set is
larger than that in the training set.

Conclusion

Random forests regression may be a useful analytic
method for predicting 90-day hometime, a bounded vari-
able with a highly non-normal distribution. The random
forests regression model was able to capture complex
non-linear relationships as well as interactions between
many important covariates and hometime. Predictive
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accuracy was lowest for extreme values of hometime
which may warrant future study. Future work should also
focus on the comparison of random forests to other
models.
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