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ABSTRACT: The theoretical prediction of molecular electronic spectra by means of
quantum mechanical (QM) computations is fundamental to gain a deep insight into
many photophysical and photochemical processes. A computational strategy that is
attracting significant attention is the so-called Nuclear Ensemble Approach (NEA),
that relies on generating a representative ensemble of nuclear geometries around the
equilibrium structure and computing the vertical excitation energies (ΔE) and
oscillator strengths ( f) and phenomenologically broadening each transition with a line-
shaped function with empirical full-width δ. Frequently, the choice of δ is carried out
by visually finding the trade-off between artificial vibronic features (small δ) and over-
smoothing of electronic signatures (large δ). Nevertheless, this approach is not
satisfactory, as it relies on a subjective perception and may lead to spectral inaccuracies
overall when the number of sampled configurations is limited due to an excessive computational burden (high-level QM methods,
complex systems, solvent effects, etc.). In this work, we have developed and tested a new approach to reconstruct NEA spectra,
dubbed GMM-NEA, based on the use of Gaussian Mixture Models (GMMs), a probabilistic machine learning algorithm, that
circumvents the phenomenological broadening assumption and, in turn, the use of δ altogether. We show that GMM-NEA
systematically outperforms other data-driven models to automatically select δ overall for small datasets. In addition, we report the
use of an algorithm to detect anomalous QM computations (outliers) that can affect the overall shape and uncertainty of the NEA
spectra. Finally, we apply GMM-NEA to predict the photolysis rate for HgBrOOH, a compound involved in Earth’s atmospheric
chemistry.

■ INTRODUCTION
The accurate and reliable prediction of absorption and emission
spectra of molecular compounds by means of quantum
mechanical (QM) computations is fundamental for the
understanding and discovery of many photophysical and
photochemical processes in which an experimental determi-
nation becomes unfeasible and/or cannot provide insights into
the underlying physics.1−9 The simulation of spectral shapes
from first principles taking into account all relevant broadening
mechanisms is an extremely challenging task, both from
theoretical and computational points of view, as it entails the
simulation of excited-state quantum molecular dynamics and
subsequent calculation of the auto-correlation function between
the ground-state wave function and the time-dependent excited-
state one.10−12 Amore affordable (time-independent) strategy is
the so-called Nuclear Ensemble Approach (NEA).13,14 This
method relies on generating a representative ensemble of
nuclear geometries around the equilibrium structure and
computing (to the desired QM accuracy) their vertical
excitation energies (ΔE) and oscillator strengths ( f) for all
pertinent states. Each of these transitions is phenomenologically
broadened by assigning a Gaussian or Lorentzian line shape
centered at ΔE, with an empirical full-width δ and with an area
proportional to the corresponding f. The average of these
multiple Gaussians builds up the electronic spectrum (see details

below). In this sense, the larger the number of geometries is, the
more accurate the spectrum reconstruction becomes. This
method has attracted significant attention in the last decade,
as it allows to predict reliable electronic absorption and emission
spectra without a prohibitive computational burden.15−29

Unfortunately, the total number of sampled geometries onto
which to perform QM computations may be limited to a few
hundred, in the best cases, in situations requiring an expensive
computational power, for example, when resorting to high-level
QM methods (EOM-CCSD, CASSCF/CASPT2, etc.) and/or
treating with more complex systems (large number of excited
electronic states, spin−orbit coupling, large molecules, solvent
effects, etc.). This limitation in the amount of data may lead to
inaccuracies in the reconstructed spectra if the line-width δ for
each of the Gaussians is not chosen properly. In this sense, it
should be chosen so that a trade-off between artificial vibronic
features (small δ) and over-smoothing of electronic signatures
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(large δ) is attained. Frequently, the choice of empirical line-
width δ is carried out by trial and error through the visual
inspection of the reconstructed spectra and finding the
compromise between under- and over-smoothing. Nevertheless,
this approach is not satisfactory, as it relies on a subjective
perception. Accordingly, there is an effervescent interest in
finding objective criteria to adequately reconstruct the electronic
NEA spectra for small datasets.23,27,28,30,31 In this sense, two
different schools of thought, both based on data-drivenmethods,
can be currently found: either training a supervised machine
learning (ML) algorithm with the available geometries to later
predict ΔE and f for a large amount of sampled geometries so
that the choice of δ is not so critical as long as it is sensibly
chosen30,31 or resorting to unsupervised ML models to
extremely fine tune δ.23,27,28

The last years have witnessed a surge in the application of ML
and deep learning (DL) techniques to solve problems in excited-
state chemistry with high success.32,33 For the prediction of
electronic spectra, in particular, an ML or DL algorithm is
trained to act as a surrogate for the function mapping the
molecular structure space to the ΔE and/or f spaces. In other
words, the ML/DL models are used as non-linear regression
functions relating a molecular input, X, to a quantum chemical
output, Y. In such a way, when themodel is presented with a new
geometry, it can predict the values for ΔE and/or f without
resorting to expensive QM computations. Neural networks
(NNs) such as SchNet34−36 have shown great potential in
predicting absorption spectra, even enabling transferability in
the chemical space (training the NN with a set of molecules,
predicting the properties for a different set).37 A notorious
drawback of NNs in general, and SchNet in particular, is that
they usually require thousands of training instances (e.g.,
sampled geometries for the NEA spectra),37−39 precluding its
use for small datasets. In these cases, ML kernel-based methods
have been proposed as suitable alternatives to NNs.32,33 In this
family of algorithms, the molecular input features (X) are
mapped, by means of a non-linear function (kernel), into a
higher-dimensional space where the transformed features are
linearly related to the quantum chemical output Y (ΔE and/or f
for NEA spectra). Among them, the KREG model has been
successfully used to reconstruct NEA spectra when the number
of quantum chemical computations is limited.30,31 This ML
model relies on Kernel Ridge Regression with a Gaussian kernel
function and ridge regularization and uses the normalized
inverted internuclear distances as molecular features/descrip-
tors (X).40 A few hundreds of training instances (Wigner
sampled geometries) suffice to train the KREG model, enabling
the prediction of ΔE and f for thousands of unseen geometries
without additional computational burden, thus affording
satisfactory NEA spectral reconstructions.30,31

A different paradigm in ML is the so-called unsupervised
learning, where the algorithm is not a non-linear regression
function relatingX to Y but amodel that looks for data structures
hidden within a dataset (X or Y). As with supervised ML,
unsupervised ML has been already applied to the assessment of
excited-state chemistry problems.32,33 The approaches which
reconstruct the electronic NEA spectra for small datasets
extremely fine tuning the bandwidths δ are based on this
paradigm.23,27,28 Focusing exclusively on the available computed
ΔE and f, these studies infer the optimal δ for each transition
applying conventional techniques on Kernel Density Estimation
(KDE), a nonparametric model to estimate the probability
density function (PDF) underlying a random variable.41 In this

case, both the sample size n (number of geometries) and the
distribution of the pairs {ΔEi,f i}i=1,...,n determine the optimal δ.
One of the advantages of this approach with respect to the
KREGmodel or NNs is that first, it renders a different optimal δ
for each transition and, second, that it performs well even for
datasets with less than a hundred of geometries. In fact, it has
been recently shown that the optimal choice of the nuclear
ensemble geometries used for the quantum chemistry
calculations enables the reliable reconstruction of NEA spectra
with just a few tens of geometries.23

Although both approaches to improve the reconstruction of
NEA spectra lead to broadly satisfactory results, all the models
reported to date still rely on the use of the phenomenological
broadening for each of the transitions underpinning the NEA
approach. To eliminate this dependency and the selection of a
bandwidth altogether, we report in this article a new approach
based on the use of Gaussian Mixture Models (GMMs), an
unsupervised ML algorithm commonly used for clustering,
classification, and density estimation tasks.42,43 We compare the
performance of this model with that of the automatic δ selection
models based on KDE and the regression-based KREG model.
With this aim, we introduce a new metric to make spectral
reconstruction comparisons and propose its use as a stopping
criterion in an active learning strategy. In addition, we report, for
the first time, the use of an algorithm to detect anomalous QM
computations (outliers) that can affect the overall shape and
uncertainty of the NEA spectra. Finally, we apply the newmodel
to the prediction of the photolysis rate for a compound of
interest in atmospheric chemistry.

■ METHODOLOGY

NEA Spectra, Discrete Version. The theoretical frame-
work for the generation of absorption spectra is based on a
semiclassical description of the light/matter interaction, where
the electromagnetic fields are treated as classical quantities,
obeyingMaxwell’s equations, whereas the matter is described by
means of QM averages.44 Within time-dependent perturbation
theory, under the electric dipole and Born−Oppenheimer
approximations and the application of a Monte Carlo (MC)
nuclear ensemble sampling, the absorption cross section for a
single transition (σabs,n(E)) as a function of photon energy E is
given by14
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where e and m are the charge and mass of the electron,
respectively, c is the speed of light in vacuum, ℏ is the reduced
Planck constant, ϵ0 is the vacuum permittivity, nr is the refractive
index at the spectral region of the transitions (no optical
dispersion assumption), and Ng is the number of sampled
geometries. For each sampled geometry with nuclear
coordinates Rj, f n and ΔEn are, respectively, the oscillator
strength and the vertical energy of the transition from the
ground state to the n-th excited state. The transition line-shape
g(E − ΔEn(Rj), δn) is given by using a normalized Gaussian
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where δn is the full-width and is usually determined
phenomenologically. The full NEA spectrum cross-section
(σabs(E)) is constructed through the incoherent contribution
(sum) of all possible excited states Ns as

∑σ σ=
=

E E( ) ( )
n

N

nabs
1

abs,

s

(3)

The statistical error (confidence intervals, CIs) associated to
the MC sampling can be inferred either using directly the
standard error (assuming asymptotic normality)14,25 or using a
re-sampling technique such as bootstrap.26 As normality is not
granted either on ΔE or on f (see Figure S1), it is statistically
more robust to use a bootstrap re-sampling.45 In this procedure,
a large number B of new samples (bootstrap replicas) are
generated by randomly sampling with replacement Ng pairs
{ΔEn, f n} from theNg available ones. For each bootstrap replica,
the NEA spectrum for each state is computed using eq 1.
Accordingly, for each energy/wavelength, there will be a
distribution of cross sections (σ̂n*(E)). Assuming a percentile
bootstrap, the lower (l) and upper (u) CIs are obtained as

δ σ σ σ

δ σ σ σ

= − ̂*

= + ̂*
α

α−

E E E

E E

( ) ( ) ( )

( ) ( )

n n n

u n n n

l abs, abs, ; /2

abs, abs, ;1 /2 (4)

where σ̂α/2* and σ̂1−α/2* are the quantiles α/2 and 1 − α/2,
respectively, with α the confidence level of the distributions σ̂*.
In this article, we have selected a 95% CI (α = 0.05), and thus,
the lower and upper CIs are given by the quantiles 2.5 and
97.5%, respectively. Finally, the lower and upper CIs for the full
NEA spectrum are given by
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Automatic Selection of Empirical Broadening (auto-δ).
Let = { }x x, ..., n1 be a set of n-independent and identically
distributed (iid) events of a p-dimensional random variable X =
(X1, ..., Xp) drawn from an unknown, unobservable joint PDF
f X(x). Finding an estimate fX̂(x) from sample is of paramount
importance in statistics and probability theory.46

KDE is a nonparametric model to estimate f X(x) that makes
almost no assumptions about the underlying distribution. In
KDE, each observation in the sample contributes locally to the
PDF through a smooth symmetric function (Kernel).
Restricting ourselves to the univariate case (p = 1), the KDE
estimator is given by46,47

∑̂ = −
=
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wherew(·) is a weight function, andK(·) is a kernel function, the
characteristic bandwidth h of which controls the estimate
smoothness. If all observations have the same weight, thenw(Xi)
= 1/n, and one recovers the standard KDE.46 A common choice
for the kernel function is the normalized Gaussian
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The bandwidth h should be chosen so that a trade-off between
noise (small h) and over-smoothing (large h) is attained. A rule
of thumb to choose the optimal bandwidth is given by47

σ= ̂ −h n1.06 min( , IQR /1.34)w w
1/5

(8)

where σ̂w and IQRw are the weighted versions of the sample
standard deviation and sample interquartile range, respectively.
This bandwidth minimizes the mean integrated squared error
(MISE) between the real underlying PDF f X(x) and the KDE
fĥ(x) when X is close to normally distributed.41

Now, let us connect KDE with the NEA spectra. Notice that
eqs 1 and 3 can be recast as
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where w(Rj) = ΔEn(Rj)f n(Rj)/Ng. The summation over
geometries j is exactly eq 6, meaning that the problem of NEA
electronic spectral reconstruction is formally analogous to KDE.
Accordingly, the empirical bandwidth that optimizes the shape
of each band in the electronic spectrum is δn,opt = 2h, with h given
by eq 8. In this sense, for each transition n, one has to compute
the weights w(Rj) for the KDE and, with them, the weighted
standard deviation σ̂w and weighted IQRw of the ΔEn. Thus, we
have found a straightforward method that allows determining in
a band-wise fashion the best empirical bandwidths using a data-
driven strategy. We will refer to this method as auto-δ.
Incidentally, Srsěň et al.23,27 reported a slightly different

version of this method based on original Silverman’s rule of
thumb,41 where eq 8 only considers the weighted standard
deviation σ̂w and assumes an effective sample size neff. This
method implies a normal distribution for the data (ΔE), an
assumption that cannot be always guaranteed. The incorpo-
ration of the IQR into eq 8 allows for gentle deviations from
normality, hence being a more robust estimator. Nevertheless,
both methods will provide analogous results. Furthermore,
Feheŕ et al.28 have just reported a similar, but slightly more
sophisticated, method to find the optimal bandwidths through
an optimization problem. These authors make as well the
connection between eq 1 and KDE and find the bandwidth
minimizing simultaneously the MISE between the originally
computed f values and those “predicted” by the kernel function
and the leave-one-out cross-validation error. In contrast, the
bandwidth h (or δn) given by eq 8 has been shown to minimize
the MISE between the real underlying PDF f X(x) and the KDE
fĥ(x) when X is close to normally distributed,41 as it is the case
with ΔE (Figure S1). Thus, the three methods will provide
similar results.

Complete Elimination of Empirical Broadening (GMM-
NEA). Even when we have managed to establish a methodology
to avoid themanual selection of δ, the fact that it is an artificial or
phenomenological broadening still remains. To eliminate this
artifact, we report a new approach based on the use of
GMMs.42,43,46,48,49 From a conceptual point of view, GMMs are
probabilistic models that assume that all the data points in a
dataset are generated from a finite mixture of normal
distributions with unknown parameters. In the context of
clustering, a common unsupervised ML task to find groups or
clusters of points sharing common characteristics (e.g.,
customers, patients, genes, voices, images, etc.), each
component of the GMM would represent a cluster.
Furthermore, once the cluster structure is found, GMMs can
serve as classifiers to assign new observations to its
corresponding cluster. However, what is more important in
the context of this work is that GMMs are very powerful density
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estimators, this is, they are algorithms that allow inferring the
continuous probability distribution underlying a discrete
distribution of points.42,43

From a mathematical perspective, GMMs rely on the fact that
any multivariate PDF supported in the real plane can be
decomposed into a finite sum (mixture) of normal distribu-
tions.42,43 Let = { }x x, ..., n1 be a set of n iid events of a
bidimensional random variable X = (X1, X2) drawn from an
unknown joint PDF f X(x). Then, the joint PDF can be modeled
as

∑ μπ ϕ Σ=
=

f x x( ) ( ; , )
k

K

k kX k
1 (10)

where each bivariate Gaussian PDF ϕ(x;μk,Σk) has its own
vector of means μk = (μk,1, μk,2) and the covariance matrix Σk =
(σk,1

2 ,ρkσk,1σk,2;ρkσk,1σk,2,σk,2
2 ), where σk,1

2 and σk,2
2 are the variances

of the mixture covariates, and ρk is the correlation coefficient.
The parameters πk are the mixing coefficients, weights, or priors
for each component of the mixture and must fulfill the
conditions 0 ≤ πk ≤ 1 and ∑πk = 1.
The mixture parametersΨ = {π1, ..., πk−1, μ1, ..., μk, Σ1, ..., Σk}

must be chosen so that they maximize the log likelihood of set
having been drawn from mixture eq 10. A powerful iterative
method for estimating the mixture parameters locally max-
imizing the likelihood is the Expectation-Maximization algorithm
or EM algorithm.46 First, some initial values for the means,
covariances, and mixing coefficients are chosen. In the
expectation step, or E step, the current parameter estimates are
used to evaluate the posterior probabilities, or responsibilities, of
a given observation to belong to a given mixture component. In
the maximization step, or M step, these responsibilities are used
as weights to update the means, covariances, and mixing
coefficients. Finally, the log likelihood is computed for these
new estimates. These steps are repeated until either the
parameters or the log likelihood has converged. The interested
reader can find the expressions to compute the likelihoods,
responsibilities, and updated parameters elsewhere.46 Figure 1
shows an example of a sample of a bidimensional random
variable drawn from an unknown distribution and the joint PDF
of the underlying distribution estimated using GMMs.
A key aspect of mixture models, in general, and GMMs, in

particular, is model selection or how many components K to
include in the mixture and which constraints to apply to the
covariance matrices (spherical, diagonal, or ellipsoidal). The

most common model selection procedure in the context of
GMMs consists of maximizing the Bayesian Information
Criterion (BIC), which is given by

νΨ= | ̂ − nxBIC ( ) log( )K K, , (11)

where Ψ| ̂x( )K, is the log likelihood of model with
estimated parameters Ψ̂, n is the sample size, and ν is the number
of estimated parameters. Thus, the pair { }K, maximizing
BIC K, is selected. The BIC, like other model selection criteria,
looks for a compromise between precision (small log likelihood)
andmodel complexity/simplicity (small number of parameters).
The term ν log(n) in eq 11 acts as a regularization term that
penalizes models which are too complex and thus avoids
overfitting. This means that even when a more complex GMM
could be needed to exactly model the distribution, the BIC could
suggest a simpler GMM. In the NEA context, the spectra
generated with GMMs (vide infra) could be slightly smoother
than the real ones.
Now, let us connect GMMs with the NEA spectra. For

reasons that will transpire later on, eq 1 is recast as
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where f has been expressed as transition dipole moments using
the relation M2 = 3ℏ2e2f/2mΔE. Notice that the summation is
nothing but the discrete mean or expected value [·]( ) of the
function ς(ΔEn,Mn) = ΔEn

2Mn
2g(E − ΔEn,δn). The way in which

NEA is constructed, each pair {ΔEn(Rj), Mn(Rj)} is equiprob-
able, thus the factor 1/Ng in front of the summation.14

Nevertheless, based on physical grounds, ΔEn and Mn are
continuous random variables, and not all pairs {ΔEn, Mn} are
equally probable. For a continuous random variable X, the
expected value of a function g(X) is given by the Lebesgue
integral 


∬[ ] =g g fX x x x( ) ( ) ( ) dX , where f X(x) is the joint

PDF of X. Applying this same principle, discrete eq 12 can be
turned into a continuous version given by
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where ΔE M( , )n n is the probability of finding the pair {ΔEn,
Mn}. In other words, the unknown joint PDF f X(x) with X =
(ΔEn, Mn). However, we have just seen that an unknown PDF
can be estimated using GMMs, and then, we can make the
substitution (cf. eq 10)
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w h e r e μ n , k = ( μ 1 , n , k , μ 2 , n , k ) a n d Σ n , k =
(σ1,n,k

2 ,ρn,kσ1,n,kσ2,n,k;ρn,kσ1,n,kσ2,n,k,σ2,n,k
2 ). The subindices 1 and 2

make reference to the corresponding variable ΔEn and Mn,
respectively. Notice that an additional term has been included to
take into account that for some transitions and geometries,Mn =
0 (forbidden transition). Thus, Θn,0 is the probability of Mn
being exactly 0, and δ(Mn) is the Dirac delta distribution. It is

Figure 1. Sample of 500 observations (points) drawn from an unknown
distribution and the estimated joint PDF (shaded contours) assuming
K = 2 components for the GMM model. The diamonds mark the
location of the mixture means.
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important to stress that the addition of this term implies that
∑kπn,k ≠ 1, but∑kπn,k = 1 − Θn,0. The estimate Θ̂n,0 is obtained
by simply computing the proportion of sampled geometries with
Mn = 0. Now, the substitution of eq 14 into eq 13 yields

∫ ∫
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Notice that upon applying the above-mentioned trans-
formation, the explicit dependency on the molecular geometry
Rj vanishes, and it is not required anymore, as it is implicitly
contained within ΔE M( , )n n or its GMM model.
In any case, the dependency on the empirical linewidth δn still

must be removed. To do so, one must resort to the nice
properties of the Gaussian function. In the limit where δn → 0,
one has

δ δ− Δ = − Δ
δ →

g E E E Elim ( , ) ( )n n n
0n (16)

where δ(E −ΔEn) is the Dirac delta function centered at ΔEn =
E. Thus, taking the limit of eq 15 when δn→ 0, using relation eq
16, and applying the Dirac delta function property ∫ −∞

∞ f(x)δ(x
− a) dx = f(a) yield the simplified expression

∫∑
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Remarkably, this expression does not depend anymore on the
empirical linewidth δn. This equation can be simplified further
by noting that a joint PDF evaluated at a given value of one of the
covariates can be factorized as f X(x1 = x, x2) = f X1

(x)f X2|X1=x(x2),
where the first and second terms on the right-hand side are the
marginal and conditional PDFs, respectively.50 For the case of
normal distributions, both PDFs follow Gaussian functions, and
one finds the relation

μϕ
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where μ̃n,k and σ̃n,k
2 are given by50
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2

(20)

Plugging in eqs 18−20 into eq 17 leads to
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The integral in eq 21 is the second-order moment or
expectation value of Mn

2 under the Gaussian distribution
ϕ(Mn;μ̃n,k,σ̃n,k

2 ), which is exactly solvable and equals μ̃n,k
2 +

σ̃n,k
2 .51 Accordingly, eq 21 is simplified to
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where μ̃n,k and σ̃n,k
2 are given by eqs 19 and 20, respectively.

The full NEA spectrum (σabs(E)) is constructed again as the
incoherent sum of all possible transitions (eq 3). With the
foregoing procedure, we have obtained a continuous version of
the NEA spectra which does not depend anymore on empirical
bandwidths. In this sense, eq 22 constitutes the main result of
this article. This method, based on the use of unsupervised ML,
will be referred to in subsequent sections as GMM-NEA.
From a practical point of view, to refine the NEA spectra using

GMM-NEA, one should proceed, for each transition independ-
ently, as follows: Estimate the proportion Θ̂n,0 of sampled
geometries with Mn = 0 and remove them from the dataset.
Using the remaining geometries (pairs {ΔEn, Mn}), carry out a
model selection to find GMM constraints n and number of
mixtures Kn that maximizes the BIC (eq 11). Retrieve the
estimated means (μn,k,1, μn,k,2), variances (σn,k,1

2 , σn,k,2
2 ),

correlation coefficients (ρn,k), and weights (πn,k) associated to
each of the mixtures of the optimized GMMmodel. Multiply the
estimated weights by (1− Θ̂n,0) so that we guarantee that∑kπn,k
= 1 − Θ̂n,0. Finally, substitute the estimated parameters (means,
variances, correlations, and rescaled weights) into eqs 19 and 20
and reconstruct the electronic spectrum using eq 22.
The statistical error (CIs) associated with the GMM-NEA

spectra must be inferred using bootstrap. In this case, for each
bootstrap replica and transition, a GMMmodel with the number
of mixtures Kn and constraints n maximizing the BIC in the
original dataset (zeros removed) is fitted. The resulting GMM
parameters are used to reconstruct each bootstrap replica
transition spectrum using eq 22. Finally, the lower and upper CI
for each transition and the full NEA spectrum is computed with
eqs 4 and 5, respectively. Again, we have selected a 95% CI (α =
0.05) and B = 999 bootstrap replicas.

Outlier Detection. The presence of extreme or anomalous
events that significantly differ from themain bulk of the datamay
distort any statistical procedure applied upon a multivariate
dataset. Thus, the detection of this so-called outliers, which may
or may not be real anomalous events, is of paramount
importance for ML algorithms in general and GMMs in
particular.52 Among the many algorithms for outlier/anomaly
detection, we will use the false discovery rate (FDR) method in
combination with the squared Mahalanobis distance DM

2 .53 This
method has been chosen because it is very common, it has been
covered by extensive literature,53−56 it is easy to interpret, and it
allows one to have relative control on the percentage of false
positives.
The Mahalanobis distance measures the distance of any given

observation x = (x1, x2, ..., xp) in a p-dimensional space to a given
distribution of n samples as

μ μΣ= − ̂ ̂ − ̂−
D x x x( ) ( ) ( )M

2 T 1
(23)

where μ̂ = (μ̂1, μ̂2, ..., μ̂p) is the sample mean vector, and Σ̂ is the
sample covariance matrix. Accordingly, one can easily see that
the possible outliers of the distribution will display large
Mahalanobis distances. It remains to be seen how large is large.
For a multivariate normally distributed random variableX, it can
be shown that DM

2 (x) ∼ χp
2, that is, it follows a chi-squared

distribution with p degrees of freedom. Thus, the possible
outliers can be identified, with an FDR below q ∈ (0, 1], as
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follows: Compute the distancesDM
2 (x) for all observations in the

sample. Compute their corresponding p-values p1, ..., pn
assuming that they follow a χp

2 distribution. Label as outliers
those observations with p-values below ρiq/n, where ρi is the
rank of the i-th p-value. It can be proved that this procedure
guarantees that the proportion of false outlier detections is
below q.54

There are some caveats to this method. The condition DM
2 (x)

∼ χp
2 is exactly valid only for normally distributed random

variables, but it has been shown that it can be used for non-
normally distributed variables as it is the case with ΔEn and
dipole moments Mn (Figure S1). In addition, the presence of
outliers may influence the estimates for the mean vector μ̂ and
covariance matrix Σ̂, thus modifying the distribution of DM

2 (x)
and, in turn, the detection of outliers itself. For this reason, it is
fundamental to use robust estimates for the location and scatter
of data immune to the presence of outliers. Among the many
robust estimates found in the literature,53,56 we have used as the
robust location estimate μ̂R the median instead of the mean and
as the robust scatter estimate the covariance matrix computed
using the robust estimate μ̂R, that is, Σ̂R = 1/(n − 1)MXMX

T,
whereMX is the matrix of observations centered at the median.
Finally, to guarantee a conservative selection of outliers, we set q
= 0.001, that is, we forced less than 0.1% false outlier detections.
Relative Integral Change. A conundrum posed by the

generation of NEA electronic spectra refined by any of the
above-described methods is to assess the goodness of the
reconstruction and to decide how many geometries to compute
and use in the reconstruction to find a compromise between
accuracy and computational burden. This can be done by visual
inspection of the generated spectra (subjective way) or by using
quantitative metrics (objective way). Xue et al. introduced the
relative integral change (RIC),30 which measures the relative
difference between the reconstructed spectrum σR(E) and the
expected/target spectrum σT(E) as

∫
∫

σ σ

σ
≐

| − |E E E

E E
RIC

( ) ( ) d

( ) d
T R

T (24)

In this sense, if the reconstruction is perfect, then RIC = 0.
Although this metric has proven useful, its results may be
misleading, as it “over-rewards” a good reconstruction of the
strongest bands, while neglecting the reconstruction of the
weakest bands. Accordingly, in this work, we will use a band-wise
RIC, or bRIC, computed as

∑
∫

∫
σ σ

σ
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| − |

=N

E E E

E E
bRIC

1 ( ) ( ) d

( ) dn

N
n n

ns 1

T, R,
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s

(25)

where σR,n(E) and σT,n(E) are, respectively, the reconstructed
and target electronic spectra for band n. In this way, all bands
contribute equally irrespective of their strength.
Themetrics RIC or bRIC as defined above are useful if there is

a target spectrum, but that is not the situation in real scenarios.
In these cases, it is better to resort to an “active learning”
strategy, where an extra set of samples (batch) must be
computed if a certain criterion is not met. In this work, we
propose as criterion a sequential version of bRIC, defined as

∑
∫

∫
σ σ

σ
≐

| − |
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E E E

E E
bRIC

1 ( ) ( ) d

( ) dn

N
n n

n
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s 1

R,
old

R,
new

R,
old

s

(26)

where σR,n
old(E) and σR,n

new(E) are, respectively, the reconstructed
electronic spectra for band n computed without and with the
extra batch of data. Thus, bRICseq would tend to 0 as the number
of added batches is increased. In this sense, the “active learning”
should be stopped when this metric falls below a given threshold
value. Be aware that a change in batch size should be
accompanied by a change in this threshold.

Datasets and Computational Details. The main body of
the workload in this publication will be carried out using freely
available data on ΔE and f computed for benzene,30 an acridine
derivative (Comp2),57 and an acridophosphine derivative
(Comp3)57 using TD-DFT as the QM framework. The
interested reader is referred to the original publications for the
computational details. For benzene, there are pairs {ΔE, f} for 10
different transitions and 50,000 geometries, whereas for Comp2
and Comp3, there are data for 30 transitions and 2000
geometries.
In addition, values for ΔE and f for the uracil nucleobase OH

radical (U6OH radical)29 and the HgBrOOH atmospheric
compound,58 both previously reported by our group, have been
used to test the methodologies developed in the current work.
For the U6OH radical, there are pairs {ΔE, f} for 9 different
transitions and 100 geometries, whereas for HgBrOOH, there
are data for 79 transitions and 200 geometries. They were
obtained by using multiconfigurational quantum chemistry, in
particular, the CASPT2 method. Spin-free states and spin−orbit
states were used, respectively, for the U6OH radical and
HgBrOOH (see the references for details).
All the methods described in this work have been

implemented in R. In particular, we have used library mclust
version 5,59 a very powerful and versatile package that allows
modeling data with GMMs using the EM algorithm for
classification, clustering, and density estimation. This package
allows performing an automatic model selection (maximization
of the BIC) using a pool of different covariance structures
(model constraints ) and different numbers of mixture
components K. A study on the computation cost of auto-δ and
GMM-NEA can be found in the Supporting Information and
Figure S2.

■ RESULTS AND DISCUSSION
In the remaining article, a comparison between auto-δ and
GMM-NEA electronic spectrum reconstructions and a
quantification of the differences will be presented. As a reminder,
the auto-δ spectra are calculated by means of the conventional
NEA expression (eq 1) but with an empirical broadening
automatically determined by using a data-driven approach (eq
8). In contrast, for the GMM-NEA spectra, a GMM is fitted to
the data, and the fitted parameters are used to calculate the
spectra with eq 22. This section is organized as follows: Using
benzene, Comp2, and Comp3, we start by presenting a visual
inspection of the reconstructed spectra and its similitude to the
target spectra and assessing the influence of the sample size and
bias on the reconstruction accuracy (RIC and bRIC). We will
unveil the effects of outliers on the U6OH radical and, finally,
will compare the photolysis rates obtained for HgBrOOH using
auto-δ and GMM-NEA.

auto-δ Versus GMM-NEA: A Visual Analysis. For the
forthcoming analysis, the target spectra were generated using
auto-δ with all available geometries (50,000 for benzene and
2000 for Comp2 and Comp3). As it is clearly seen in Figure 2,
both methods provide reliable reconstructions for benzene even
when trained with only 250 geometries, finding a good balance
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between the avoidance of artificial “vibronic” bands (δ too
narrow) and an excessive smoothing or washing out of electronic
details (δ too wide). In this sense, GMM-NEA has a larger
smoothing effect than auto-δ, but the uncertainty of the
reconstruction is similar. This makes sense, as GMM-NEA
does not use empirical bandwidths, and the electronic details are
not determined by the available pairs {ΔE, f} but by their
underlying distribution. Analogous results have been obtained
for Comp2 and Comp3 using again 250 geometries (Figures S3
and S4).
The model parameters use to reconstruct the electronic

spectra in Figure 2 are included in Table 1 (Those for Figures S3
and S4 can be found in Table S1). As it was expected (cf. eq 8),
increasing the number of geometries entails a reduction in the
optimal bandwidths (δn,250 vs δn,50000 in Table 1). Furthermore,
as it has been reported before,27,28 the use of auto-δ unveils that
every transition requires its own bandwidth. For example, notice
that when using 250 geometries (δn,250), the optimal bandwidth
for band #2 is twice as broad as that needed for band #7. The
same holds true even when using 50,000 geometries (δn,50000).
This situation contrasts with the common procedure of using
the same δ for all bands and highlights the importance of

resorting to a method capable of choosing a different δ for each
band in order to properly reconstruct the full spectrum.
GMM-NEA does not make use of empirical bandwidths, but

this method too renders different optimal parameters for each
band (Table 1). In this case, the differences are both in the
number of mixtures (K) and the model constraints( ). In fact,
notice that for band #1 6 components with fully unconstrained
covariance matrices (model VVV) are needed, whereas for the
rest of bands 2−3 components with more or less constrained
covariancematrices suffice. It is worth to digress for amoment to
understand the reason why for GMM-NEA the transition dipole
moments M are used instead of the oscillator strengths f. As
shown in Figure S1, f is a highly right-skewed variable,
whereupon a GMM should replicate this skewness with a
combination of symmetric (non-skewed) distributions (nor-
mals). The model selection procedure (EM algorithm + BIC
maximization) would suggest the use of very skinnyGaussians to
properly model the region of low f values, while avoiding the
negative f region, and then, it would add more and more
components with ever fatter Gaussians to model the long tail of
the f distribution. In other words, to model a skewed
distribution, GMMs with a higher complexity (components +
constraints) are needed. The more complex the model is, the
larger the number of parameters to fit becomes. This situation
might lead to an overfitting scenario, where there are more
parameters to fit than data to use, leading to incorrect density
estimations and, in turn, spectral reconstructions. To obtain less
complex GMM models and thus avoid overfitting, it is a good
practice to transform the skewed variable so that it becomes
more symmetrically distributed. There are many transforma-
tions that could have been applied (log-transform, Box−Cox,
quantiles, etc.), but in this case, we chose a square root
transformation, that helps in making the distribution less skewed
(Figure S1) and that is physically meaningful ∝f M( ).
The spectral reconstruction is not only reasonable for the

main absorption features in the full spectrum (Figure 2) but it is
as well reliable band to band (Figure 3). In this particular case, it
becomes clearer that GMM-NEA seemingly outperforms auto-
δ, as its reconstructed bands systematically lay closer to the
target ones. This situation is as well observed for derivatives
Comp2 and Comp3 (Figures S5 and S6). For these derivatives,
though, there are far less available geometries to compute the
target spectrum (2000), and thus, its reconstruction using auto-δ
still contains too much artificial “vibronic” noise.

Sample Size and Sampling Bias Effects. At this point,
one may wonder when the spectral reconstruction is good
enough and which of the two proposed methods performs
better. This is especially relevant when addressing the
computation of absorption spectra requiring high-level quantum
chemistry methods (EOM-CCSD, CASPT2, etc.) and/or the
study of more complex systems (large number of excited

Figure 2. Electronic absorption cross-section spectrum of benzene
reconstructed from 250 geometries using (a) GMM-NEA and (b) auto-
δ. The shaded areas represent the reconstruction of 95%CIs. The target
spectrum (black lines) is included for comparison purposes.

Table 1. Optimal Model Parameters for Each of the Bands/Transitions Used to Reconstruct the Spectra in Figure 2

1 2 3 4 5 6 7 8 9 10

δn,50000
a 0.035 0.039 0.025 0.025 0.026 0.026 0.023 0.024 0.025 0.021

δn,250
b 0.094 0.118 0.074 0.066 0.069 0.072 0.058 0.075 0.071 0.064

|K c 6|VVV 2|EVE 3|EEE 2|VVI 3|VVI 2|VVI 3|VVE 3|VVI 3|VVE 3|VVE

aEmpirical bandwidths for the target spectrum. bEmpirical bandwidths for the auto-δ spectrum. cNumber of mixtures (K) and GMM models ( )
for the GMM-NEA spectrum. VVV: ellipsoidal, varying volume, shape, and orientation; EVE: ellipsoidal, equal volume, and orientation; EEE:
ellipsoidal, equal volume, shape, and orientation; VVI: diagonal, varying volume, and shape; VVE: ellipsoidal and equal orientation. For a
visualization of these model constraints, check Table 3 and Figure 2 in mclust documentation.59
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electronic states, spin−orbit coupling, large molecules, solvent
effects, etc.). With this in mind, we performed a study to assess
the dependence of the electronic spectra on the number of
geometries (sample size effect) and on the particular set of
geometries (sampling bias effect) used for the reconstruction.
The sample size Ns was varied from 50 up to 1000, and, to
account for the sampling bias, 25 different sets of Ns geometries
were randomly sampled from the whole population. For each of
these geometry sets, the spectra were reconstructed using
GMM-NEA and auto-δ, and, with them, the bRIC was
computed using the target bands generated with 50,000
geometries as σT,n (see methods and eq 25). As one would
expect, the bRIC decreases when increasing the number of
geometries, implying an improvement in the goodness of the
spectral reconstruction (Figure 4a). However, the most relevant
result of this experiment is that, statistically, GMM-NEA
outperforms auto-δ as a reconstruction method since its bRIC
values are consistently smaller than those of auto-δ. Actually, we
have calculated that for any given set of geometries, GMM-NEA
outperforms auto-δ in more than 90% of the cases. This confirms
the results observed in Figure 3. Again, analogous results have
been obtained for Comp2 and Comp3 (Figures S7 and S8).
Nevertheless, notice in Figures S7 and S8 that for a large number
of geometries, auto-δ starts to outperform GMM-NEA.
However, this can be misleading/artificious, as auto-δ will
eventually converge to the target spectrum, which is itself
computed using auto-δ with 2000 geometries (a relatively small
number). Accordingly, for 600+ geometries, auto-δ has
converged to the target (i.e., itself) more than GMM-NEA.
Should the number of available geometries for the target
spectrum be much larger, this might not be the case.
To compare the spectral reconstruction goodness of GMM-

NEA and auto-δ against that of supervised ML algorithms such
as the KREG model,30 we computed as well in the previous
experiment the metric RIC, using the target spectrum generated
with 50,000 geometries as σT (see methods and eq 24). Figure
4b displays the results of this calculation and its comparison with
the RIC values reported previously for the KREGmodel applied
onto benzene.30 Remarkably, in this case, the unsupervised ML

models clearly render significantly better reconstructions than
those obtained with the KREG model, specially for sample sizes
below 400 geometries. The situation is even more drastic for
derivative Comp2 (Figure S7). The probable reason for the
under performance of the supervised ML model is that the
prediction of f from molecular descriptors is notoriously
difficult.32,33

Active Learning. As we mentioned before, in realistic
scenarios, one does not have a target spectrum to compute
bRIC, and thus, an “active learning” approach should be
followed. With this in mind, we performed another study to
assess the applicability of this method. The sample size Ns was
varied from 20 up to 500, adding in each step batches of 20
geometries. For each of these geometry sets, the spectra were

Figure 3. Electronic absorption cross-section spectrum for each of the transitions in benzene reconstructed from 250 geometries using GMM-NEA
(red lines) and auto-δ (green lines). The shaded areas represent the reconstruction of 95% CIs. The target spectrum (black lines) is included for
comparison purposes.

Figure 4. Dependence of (a) bRIC and (b) RIC on the number of
geometries used for reconstructing the electronic absorption spectra of
benzene using GMM-NEA (red points) and auto-δ (green crosses).
The RIC values reported for the spectra reconstructed using the KREG
model30 (black stars) have been included in (b) for comparison
purposes. The markers and error bars indicate the average and standard
deviation over 25 independent random draws. The same y-scale has
been used in both panels for the sake of better comparison.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00004
J. Chem. Theory Comput. 2022, 18, 3052−3064

3059

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00004/suppl_file/ct2c00004_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00004/suppl_file/ct2c00004_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00004/suppl_file/ct2c00004_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00004?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00004?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00004?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00004?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00004?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00004?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00004?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00004?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00004?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


reconstructed using GMM-NEA and auto-δ, and, with them, the
bRICseq was computed (see methods and eq 26). To account for
the sampling bias, 10 independent experiments were conducted.
Notice that there is no value of bRICseq for 20 geometries, as
there are no spectra to compare with (σR,n

old, cf. eq. 26). As we
already saw in Figure 4, the addition of more geometries led to
more reliable spectra (smaller bRIC), but the improvements
became smaller, signaling that the reconstructed spectrum was
converging to the target one. Figure 5 reveals this tendency as

well, meaning that bRICseq is a useful metric to ascertain when
the reconstructed spectrum following the “active learning”
approach has sufficiently converged to the target one, even when
we do not have access to it. Analogous results were obtained for
Comp2 and Comp3 (Figures S9 and S10).
Of course, it is up to the practitioner to decide when the

spectrum has converged sufficiently. If using QM formalisms
with a moderate computing time burden (like TD-DFT), one
may decide to addmore geometries until, for example, bRICseq <
0.025. For the case of benzene, this threshold condition would
entail the selection of around 400 geometries (see Figure 5),
whereas for Comp2 and Comp3, it would increase up to 500
geometries (Figures S9 and S10). In situations requiring a much
higher computational power (higher-level QM formalisms and/
or more complex systems), one could decide to add geometries
until bRICseq < 0.05 or even bRICseq < 0.1. For benzene, Comp2,
and Comp3, the former criterion would entail the selection of
around 200−300 geometries (see Figures 5, S9, and S10).
Incidentally, the spectra displayed in Figures 2, 3, and S2−S5,
which were already quite reliable, were reconstructed using 250
geometries. Accordingly, we believe that the criterion bRICseq <
0.05 is a good compromise between accuracy and computational
burden, but values of bRICseq < 0.1 or even higher could be
reasonable depending on the ultimate goal of the practitioner.
Notice that on an individual experiment basis, bRICseq becomes
smaller with the sample size, but it does follow a fluctuating
behavior overall for the spectra reconstructed usingGMM-NEA.
This means that to select the number of geometries in a

sequential fashion, it could be recommended to use bRICseq
computed onto the auto-δ spectra.

Effect of Outliers (The Case of the U6OH Radical). The
presence of outliers (observations significantly differing from the
population) in electronic spectrum computations has not been
reported till date, as it is not usually looked for nor easily
detected. One may argue that any extreme or rare value in either
ΔE or M cannot be considered an outlier but an extreme
although totally feasible and fundamental value. Although this is
true in most cases, it sometimes happens that the QM
computations do not converge to a realistic solution overall
when dealing with complex problems and advanced method-
ologies. For instance, in CASPT2 applications, problems derived
from the presence of intruder states, instability of the active
space, a reduced number of roots, or differential dynamic
correlation are not so infrequent. Although these problems are
normally detected and solved by individual analyses of each ΔE
and M calculation or data processing prior to plot generation,
efficient algorithms to identify them during the NEA spectral
reconstruction stage would surely help the user. In this section,
we aim at describing how GMM-NEA or auto-δ can be affected
by the presence of outliers.
A particular example that we found during this investigation

was that of the U6OH radical. We reconstructed the electronic
absorption cross-section spectra using the available cases
reported previously29 (100 geometries). Both GMM-NEA and
auto-δ reconstructed spectra are distorted, specially the former
(Figure 6a). The auto-δ spectrum shows a suspiciously large

uncertainty around 6.6 eV, whereas the GMM-NEA one
portraits what seems a gigantic resonance at the same energy.
This suggests that there is an anomaly in one of the transitions in
that region. This anomaly can be effectively visualized in the M
vsΔE plot corresponding to that transition, which shows a clear
outlier (Figure S11).
It must be stressed that once a possible outlier/anomaly is

detected, the user of the method should revise the correspond-
ing structure and the output of the QM computation for this
point, try to interpret the reason why there was this anomaly, and

Figure 5. Evolution of bRICseq with the number of geometries used for
reconstructing the electronic absorption spectra of benzene using (a)
GMM-NEA and (b) auto-δ. Each line represents an independent
experiment. The markers indicate the average over these experiments.
The horizontal dotted lines mark the location of bRICseq = (0.1, 0.05,
0.025).

Figure 6. Electronic absorption cross-section spectrum of the U6OH
radical reconstructed from 100 geometries using GMM-NEA (red
lines) and auto-δ (green lines) in the presence (a) and absence (b) of
outliers. The shaded areas represent the reconstruction of 95% CIs.
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evaluate the relevance of this anomalous point. For example, by
tracking the outlier structure in the U6OH radical, we found that
it corresponds to the highest root (10th) used for the CASSCF/
CASPT2 computations. Although this excited state with largeM
is stabilized in this geometry and it was therefore added in the set
of 10 roots during the CASSCF/CASPT2 optimization of the
wavefunctions, it is out in the rest of geometries. This indicates
that should we properly compute σabs at this range of energies,
the number of roots had to be increased. Nevertheless, for this
species of relevance in the field of DNA damage mechanisms by
reactive oxygen species, the most interesting range of wave-
lengths is that of the visible part of the spectrum (<3.3 eV).29,60

Once the outlier detection algorithm is applied (see
Methodology) and the corresponding geometry removed, the
reconstructed spectra show the expected behavior. The
uncertainty around 6.6 eV in the auto-δ spectrum is more in
agreement with that of the rest of energies, and the GMM-NEA
spectrum does not show a false resonance anymore (Figure 6b).
An alternative visualization of the effect of the outliers on the
GMM-NEA and auto-δ spectra is shown in Figure S12. In this
particular case, the effect of the outlier and the outlier itself were
easily detected by visual means (Figure S11), but in many other
cases, it may not be that trivial. In these situations, the
anomalous effect of an undetected outlier could be ascribed to
an innocuous spectral feature that, in turn, could lead to wrong
conclusions. These results highlight the importance of detecting
possible outliers. Nonetheless, the outliers may not have a high
leverage in the resulting NEA spectrum. For example, we have as
well detected possible outliers in benzene, but, in this case, the
changes in the spectra were barely noticeable, and therefore,
they are irrelevant.
Finally, whereas the FDR method works adequately, it might

not be necessarily the best method to detect outliers in the
context of QM calculations, specially when dealing with high-
dimensional data (many tens of transitions), and other anomaly
detection algorithms could perform better. Although relevant,
attempting a serious and comprehensive comparison of anomaly
detection methods in this context is beyond the scope of this
publication, which is mainly focused on the use of GMMs for
spectral reconstruction.
Photolysis Rates in HgBrOOH. Once the performance of

the proposed methods has been assessed under diverse
conditions, we will apply it to a problem of interest. Namely,
the accurate determination of the photolysis rate of an oxidized
Hg species, HgBrOOH, present in the Earth’s atmosphere and
involved in the planetary distribution of this metal.5,58 The
photolysis rate J is defined as

∫ ϕ λ σ λ θ λ λ≐J T( , ) ( ) ( , ) dabs (27)

where ϕ(λ,T) is the photolysis quantum yield as a function of
the wavelength and temperature, σabs(λ) is the absorption cross-
section spectrum, and θ λ( , ) is the solar spectral actinic flux (in
quanta s−1 cm−2 nm−1) at the altitude of interest as a function of
solar zenith angle θ and the wavelength. Thus, the correct
reconstruction of the absorption spectrum σabs(λ) is funda-
mental for a precise estimation of the photolysis rate J.
The reconstructed spectrum for this compound was already

reported,58 where an empirical bandwidth δ = 0.05 eV was
applied to all bands (Figure 7a). This choice of δ resulted in the
presence of apparently strong and quite resolved bands around
2.6 and 3 eV. The absorption at these bands could play a role in
the photolysis reaction of this compound, as they overlap with a

region of strong solar radiation (Figure S13). Nevertheless, the
reconstructed spectra using both auto-δ and GMM-NEA unveil
that there is indeed absorbance in that region but that the bands
are not as resolved as previously reported (Figure 7b).
One may wonder whether this change in the spectral shape is

followed by an important change in the photolysis rate J. To
assess this extent, we compared the J obtained with the three
spectra (δ = 0.05 eV, auto-δ, and GMM-NEA). For simplicity,
we assumed in eq 27 that ϕ(λ,T) = 1 and used spectral actinic
flux calculated by using the “quick TUV calculator” tool61

assuming an altitude of 13 km from the sea level (mean of the
troposphere) and normal solar incidence (θ = 0). The resulting
solar spectrum is displayed in Figure S13. The photolysis rates J
obtained under these conditions were 0.025, 0.026, and 0.025
s−1 for δ = 0.05 eV, auto-δ, and GMM-NEA, respectively.
Remarkably, the method to reconstruct the absorption spectrum
has not much influence on the computed photolysis rate as long
the value of δ is sensibly chosen. In this sense, many times a
single geometry (the ground-state equilibrium structure) is used
to reconstruct electronic spectra. Using a unique geometry may
lead to wild errors in the determination of the photolysis rates.
For example, the exclusive use of the optimized geometry for this
compound leads to large variations in the computed J as a
function of the empirical bandwidth δ (Figure S14). When using
a single geometry, it is impossible to know beforehand which is

Figure 7. (a) Electronic absorption cross-section spectrum of
HgBrOOH reconstructed from 200 geometries using a unique
empirical bandwidth for all transition (δ = 0.05 eV). (b) Same as (a)
but using GMM-NEA (red lines) and auto-δ (green lines). The shaded
areas in (a,b) represent the reconstruction of 95% CIs. The inset in (b)
details the contribution of three spectra in the region of maximum solar
radiation. (c) Evolution of the photolysis rate J with the number of
geometries used for reconstructing the electronic absorption spectra of
HgBrOOH using GMM-NEA. Each line represents an independent
experiment. The markers indicate the average over these experiments.
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the optimal bandwidth δ, and thus, there will always be a large
uncertainty in the determination of the photolysis rates. This
result highlights the need of using a representative sample of
geometries to reconstruct electronic spectra.
Following with this line of reasoning, another relevant aspect

is to understand how the number of sampled geometries affects
the determination of the photolysis rate. With this in mind, we
ran an experiment analogous to the one previously described to
assess the usefulness of the “active learning” approach. Namely,
the sample size Ns was varied from 20 up to 200, adding in each
step batches of 20 geometries. For each of these geometries sets,
the spectra were reconstructed using GMM-NEA and auto-δ,
and, with them, J was computed. To account for the sampling
bias, 10 independent experiments were conducted. The first
thing to notice is that the value of J is importantly affected by
sampling bias, specially when using a small number of
geometries (Figure 7c). It might seem that the sampling bias
is reduced for the largest sample sizes, and it is indeed, but this
reduction is somewhat fictitious, as there are only 200
geometries to sample from. As a consequence, the 10
independently drawn samples will be very similar when sampling
more than 150 of them, resulting in very similar J values. In any
case, it is true that J converges, on an individual experiment basis,
toward a constant value as the sample size increases, but it does
follow a fluctuating behavior.
Overall, the range of J values obtained herein for HgBrOOH

reinforces the conclusions obtained in our previous inves-
tigations on the significant role of solar radiation to photoreduce
this compound (and other oxidized Hg species) to elementary
Hg.5,58 As a final note, we comment that the bRICseq in this
compound is barely at a level of 0.1 for the auto-δ spectrum
generated with 200 geometries (Figure S15). This indicates that
if higher accuracy is demanded in future studies, for instance, to
discern among competitive processes, we should work in the
direction of decreasing this value by increasing the sample size.

■ CONCLUSIONS
In this work, we have developed and tested a new approach to
reconstruct NEA spectra based on the use of GMMs that
circumvent the use of phenomenological broadenings and, in
turn, the selection of a bandwidth δ altogether. The key for this
approach is to mathematically transform the conventional
equation for the reconstruction of NEA spectra (eq 1) to express
it in terms of the GMM parameters that model the distribution
of the pairs {ΔEi,Mi}i=1,...,Ns for each transition (eq 22). Globally,
GMM-NEA systematically outperforms both the KREG and
KDE models (auto-δ herein) in reconstructing both the full
spectrum and the different transition band shapes overall for
small datasets (less than 400 geometries). Although choosing an
adequate δ, either manually or using auto-δ, is an easier and less
time-consuming task (see the Supporting Information), the
benefits of GMM-NEA are sufficiently relevant as to choose the
former over the latter overall when the computational
bottleneck is clearly in the QM calculations. In addition, we
have proved the importance of detecting anomalous QM
computations leading to inaccurate values of the oscillator
strength for certain geometries and transitions. These outliers, if
undetected, may lead to heavy distortions both in the NEA
spectra and their CIs, specially for those reconstructed using
GMM-NEA. In contrast, when performing computations with
the reconstructed spectra, like inferring the photolysis rate,
GMM-NEA leads to virtually the same results as auto-δ or a
“manual” selection of bandwidths (as long as δ is chosen

sensibly), probably because it involves an integration over
wavelengths that washes out the fine details of the NEA spectra.
Another great advantage of GMM-NEA (and other

unsupervised ML methods) with respect to supervised ML
algorithms such as NNs or the KREG model for the
reconstruction of NEA spectra is that it does not rely anymore
on the critical step of defining adequate molecular descriptors or
on the difficulty of mapping the molecular structure space onto
the chemical properties’ space. This is particularly relevant for
the incorporation of a solvent, embedding, and/or environment
effects (proteins, nucleic acids, surfaces, interfaces, etc.) beyond
the continuum solvation model.29 In these complex systems, the
number of molecular descriptors increases dramatically and,
more importantly, the values of ΔE and f do not depend
exclusively on themolecular geometry. Finally, the methodology
presented in this article should be fully compatible with the
strategy to finding the optimal choice of the nuclear ensemble
geometries recently reported by Srsěň and Slavićěk.27 In this
sense, the combination of GMM-NEA and this method could
lead to a fairly accurate reconstruction of NEA spectra resorting
to the QM computation of ΔE and f for just tens of geometries.
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(35) Schütt, K. T.; Sauceda, H. E.; Kindermans, P.-J.; Tkatchenko, A.;
Müller, K.-R. SchNet − A deep learning architecture for molecules and
materials. J. Chem. Phys. 2018, 148, 241722.
(36) Westermayr, J.; Gastegger, M.; Marquetand, P. Combining
SchNet and SHARC: The SchNarc Machine Learning Approach for
Excited-State Dynamics. J. Phys. Chem. Lett. 2020, 11, 3828−3834.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00004
J. Chem. Theory Comput. 2022, 18, 3052−3064

3063

https://pubs.acs.org/doi/10.1021/acs.jctc.2c00004?ref=pdf
https://doi.org/10.1039/c7nr04270a
https://doi.org/10.1039/c7nr04270a
https://doi.org/10.1063/1.4993216
https://doi.org/10.1063/1.4993216
https://doi.org/10.1021/jacs.7b01780?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.7b01780?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.7b01780?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.8b01457?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.8b01457?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.8b01457?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-018-07075-3
https://doi.org/10.1038/s41467-018-07075-3
https://doi.org/10.1038/s41467-018-07075-3
https://doi.org/10.1021/acs.jpclett.0c01439?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c01439?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c01439?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/d0tc02309d
https://doi.org/10.1039/d0tc02309d
https://doi.org/10.1039/d0tc02309d
https://doi.org/10.1021/acs.jpcb.0c05761?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.0c05761?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00692?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00692?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1080/01442350802137656
https://doi.org/10.1080/01442350802137656
https://doi.org/10.1146/annurev-physchem-040215-112252
https://doi.org/10.1146/annurev-physchem-040215-112252
https://doi.org/10.1146/annurev-physchem-040215-112252
https://doi.org/10.1039/c9fd00072k
https://doi.org/10.1039/c9fd00072k
https://doi.org/10.1039/c9fd00072k
https://doi.org/10.1039/b924956g
https://doi.org/10.1039/b924956g
https://doi.org/10.1007/s00214-012-1237-4
https://doi.org/10.1007/s00214-012-1237-4
https://doi.org/10.1007/s00214-012-1237-4
https://doi.org/10.1021/ct300844y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct300844y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct300844y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp502753a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp502753a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz5022087?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz5022087?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cplett.2014.02.031
https://doi.org/10.1016/j.cplett.2014.02.031
https://doi.org/10.1021/jp508512s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp508512s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.7b08910?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.7b08910?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.7b08910?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.7b00089?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.7b00089?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00059?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00059?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C8CP00199E
https://doi.org/10.1039/C8CP00199E
https://doi.org/10.1039/C8CP00199E
https://doi.org/10.1002/cptc.201900075
https://doi.org/10.1002/cptc.201900075
https://doi.org/10.1039/c8cp06160b
https://doi.org/10.1039/c8cp06160b
https://doi.org/10.1039/c8cp06160b
https://doi.org/10.1021/acs.jctc.0c00579?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00579?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00579?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00749?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00749?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00531?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00531?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c01083?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c01083?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c01083?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.0c05310?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.0c05310?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s41061-021-00339-5
https://doi.org/10.1007/s41061-021-00339-5
https://doi.org/10.1021/acs.chemrev.0c00749?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.0c00749?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41570-021-00278-1
https://doi.org/10.1038/s41570-021-00278-1
https://doi.org/10.1038/ncomms13890
https://doi.org/10.1038/ncomms13890
https://doi.org/10.1063/1.5019779
https://doi.org/10.1063/1.5019779
https://doi.org/10.1021/acs.jpclett.0c00527?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c00527?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c00527?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00004?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(37)Westermayr, J.; Marquetand, P. Deep learning for UV absorption
spectra with SchNarc: First steps toward transferability in chemical
compound space. J. Chem. Phys. 2020, 153, 154112.
(38) Ye, S.; Hu, W.; Li, X.; Zhang, J.; Zhong, K.; Zhang, G.; Luo, Y.;
Mukamel, S.; Jiang, J. A neural network protocol for electronic
excitations of N-methylacetamide. Proc. Natl. Acad. Sci. U.S.A. 2019,
116, 11612−11617.
(39) Zhang, Y.; Ye, S.; Zhang, J.; Hu, C.; Jiang, J.; Jiang, B. Efficient
and Accurate Simulations of Vibrational and Electronic Spectra with
Symmetry-Preserving Neural Network Models for Tensorial Proper-
ties. J. Phys. Chem. B 2020, 124, 7284−7290.
(40) Dral, P. O. MLatom: A program package for quantum chemical
research assisted by machine learning. J. Comput. Chem. 2019, 40,
2339−2347.
(41) Silverman, B. W. Density Estimation for Statistics and Data
Analysis; Chapman & Hall: London, 1986.
(42) McLachlan, G. J.; Basford, K. E. Mixture Models: Inference and
Applications to Clustering; Marcel Dekker: New York, 1988.
(43) McLachlan, G.; Peel, D. Finite Mixture Models; Wiley Series in
Probability and Statistics; Wiley, 2004.
(44) Sakurai, J. J.; Napolitano, J.Modern QuantumMechanics, 2nd ed.;
Addison-Wesley, 2011.
(45) Efron, B.; Tibshirani, R. J. An Introduction to the Bootstrap;
Monographs on Statistics and Applied Probability 57; Chapman &
Hall/CRC: Boca Raton, Florida, USA, 1993.
(46) Bishop, C. M. Pattern Recognition and Machine Learning
(Information Science and Statistics); Springer-Verlag: Berlin, Heidelberg,
2006.
(47) Wang, B.; Wang, X. Bandwidth Selection for Weighted Kernel
Density Estimation. arXiv 2011, arXiv:0709.1616v3 [stat.ME].
(48) Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical
Learning: Data Mining, Inference and Prediction, 2nd ed.; Springer, 2009.
(49) Handbook of Mixture Analysis; Frühwirth-Schnatter, S., Celeux,
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