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ABSTRACT Complete genome resequencing was conducted for Thermus thermophilus
strain TMY by hybrid assembly of Oxford Nanopore Technologies long-read and MGI short-
read data. Errors in the previously reported genome sequence determined by PacBio tech-
nology alone were corrected, allowing for high-quality comparative genomic analysis of
closely related T. thermophilus genomes.

T hermus thermophilus is an aerobic, thermophilic bacterium that grows optimally at
around 70 to 75°C. Since the first isolation of this species from Mine Hot Spring in Japan

in 1968 (1, 2), many T. thermophilus strains have been isolated from various thermal areas
worldwide (3–11). Among them, strains HB8 (type strain) and HB27 have been rigorously stud-
ied biochemically (12, 13), structurally (14, 15), and genetically (16, 17).

So far, 13 complete genome sequences have been determined for T. thermophilus strains
(https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/461/). One of the strains, TMY,
was isolated from the Otake geothermal power plant in Japan (6), and its genome sequence
has been reported previously (18). However, because the sequencing was performed using
PacBio technology alone, it contained numerous errors (frameshifted proteins), resulting in
exclusion from the RefSeq database. For fine-scale comparative analysis of closely related T.
thermophilus genomes, here, we reinvestigated the genome of TMY by combining Oxford
Nanopore Technologies (ONT) long-read and MGI short-read sequencing technologies.

Freeze-dried TMY cells (JCM 10668) obtained from JCM (RIKEN, Japan) were inoculated
into 5 ml of Thermus medium (ATCC 697), containing 0.4 mM MgCl2 and 0.35 mM CaCl2.
After 24 h of cultivation at 70°C, genomic DNA was purified from pelleted cells using a blood
and cell culture DNA midi kit (Qiagen). For long-read sequencing, unsheared genomic DNA
(1mg) was pretreated using a short-read eliminator kit (Circulomics) to remove fragments of
,10 Kbp, and a library was constructed using a ligation sequencing kit (ONT). Sequencing
was performed using a GridION X5 system on a FLO-MIN106 R9.41 flow cell (ONT). Base call-
ing was conducted using Guppy v.4.0.11 to generate 375,245 reads (average, 4,578 bases;
total, 1.72 Gb). For all software, default parameters were used. The raw sequencing data were
filtered (Q, 10; length,,1,000 bases) using NanoFilt v.2.7.1 (19), yielding 213,707 reads (lon-
gest read, 163,227 bases; N50, 9,231 bases; total, 1.15 Gb). For short-read sequencing, a library
was constructed using an MGIEasy FS PCR-free DNA library prep set (MGI) with a ;400 to
500-bp insert. Paired-end sequencing was then performed on a DNBSEQ-400 instrument
(MGI), yielding 8,454,552 paired-end reads (2 � 150 bases). The raw sequencing data were fil-
tered (Q, 30; length,,10 bases) using fastp v.0.20.1 (20), yielding 5,182,387 paired-end reads
(average, 150 bases; total, 2.53 Gb). The trimmed long- and short-read data were assembled
using Unicycler v.0.4.8 (21), and the assembly was polished using Pilon v.1.23 (22), generating
a single circular chromosome and a single circular plasmid. Automatic annotation was con-
ducted using DFAST v.1.4.0 (23), and the genomic features are summarized in Table 1.
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Comparative sequence analysis between the previously reported sequence (chromosome,
GenBank accession number AP017920.1; plasmid pTMY, AP017921.1) (18) and the present
result revealed 98.2% pairwise identity. The majority of differences were single-nucleotide
deletions in the PacBio sequence, while the presence of two large insertions (;30 Kbp
total) in our sequence was experimentally confirmed by Sanger sequencing.

Data availability. The complete genome sequence of T. thermophilus TMY is avail-
able from DDBJ/EMBL/GenBank under the accession numbers summarized in Table 1.
The raw sequencing data were deposited in the SRA database under the accession
numbers DRR313875 (Nanopore) and DRR313876 (DNBSEQ).
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TABLE 1 Genome statistics and features of Thermus thermophilus strain TMY

Genetic element Length (bp) GC content (%) No. of coding DNA sequences No. of rRNAs No. of tRNAs GenBank accession no.
Chromosome 2,151,326 69.0 2,309 6 52 AP025158
Plasmid 19,144 67.4 26 0 1 AP025159
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