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Helveticoside is a biologically active component
of the seed extract ofDescurainia sophia and
induces reciprocal gene regulation in A549
human lung cancer cells
Bu-Yeo Kim1, Jun Lee1 and No Soo Kim1,2*

Abstract

Background: Although the pharmacological activities of the seed extract of Descurainia sophia have been proven
to be useful against cough, asthma, and edema, the biologically active components, particularly at the molecular
level, remain elusive. Therefore, we aimed to identify the active component of an ethanol extract of D. sophia seeds
(EEDS) by applying a systematic genomic approach.

Results: After treatment with EEDS, the dose-dependently expressed genes in A549 cells were used to query the
Connectivity map to determine which small molecules could closely mimic EEDS in terms of whole gene expression.
Gene ontology and pathway analyses were also performed to identify the functional involvement of the drug
responsive genes. In addition, interaction network and enrichment map assays were implemented to measure the
functional network structure of the drug-responsive genes. A Connectivity map analysis of differentially expressed
genes resulted in the discovery of helveticoside as a candidate drug that induces a similar gene expression pattern to
EEDS. We identified the presence of helveticoside in EEDS and determined that helveticoside was responsible for the
dose-dependent gene expression induced by EEDS. Gene ontology and pathway analyses revealed that the
metabolism and signaling processes in A549 cells were reciprocally regulated by helveticoside and inter-connected as
functional modules. Additionally, in an ontological network analysis, diverse cancer type-related genes were found to
be associated with the biological functions regulated by helveticoside.

Conclusions: Using bioinformatic analyses, we confirmed that helveticoside is a biologically active component of EEDS
that induces reciprocal regulation of metabolism and signaling processes. Our approach may provide novel insights to
the herbal research field for identifying biologically active components from extracts.
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Background
Descurainia sophia (L.) Webb ex Prantl., also known as
Flixweed, belongs to the family Brassicaceae, which is also
called Cruciferae. Traditionally, the seeds of D. sophia
have been used to treat various ailments, including cough,
asthma, and edema. We previously isolated diverse com-
pounds showing cytotoxic and anti-inflammatory activ-
ities, including glycosides, from the seeds of D. sophia [1].

Our previous results are consistent with other reports that
D. sophia possesses biologically active secondary metabo-
lites, such as cardiac glycosides [2], sulfur glycosides [3],
nor-lignan [4], and lactones [5]. We demonstrated that
treatment with EEDS up- or down-regulates diverse genes
that are closely associated with numerous genome-wide
biological functions [6]. However, despite the therapeutic
constituents that have been identified thus far in EEDS,
the pharmacological effects of EEDS have not been well-
characterized, particularly on the molecular level, largely
due to the chemical complexity of EEDS.
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The difficulty of elucidating molecular mechanisms is
a common problem in herbal extract research and sig-
nificantly influences the course of novel drug develop-
ment from herbal extracts. The application of genomic
and bioinformatic approaches could greatly reduce the
time and effort required to identify the mechanisms of
pharmacologically active candidate molecules. Therefore,
in the present study, we used the Connectivity map, a
comprehensive database for chemical genomic informa-
tion, to identify the biologically active components of
EEDS and elucidate its putative pharmacological activity.
Genomic expression profiles and network analyses were
also applied to identify global regulatory mechanisms.

Methods
Preparation of EEDS
Dried seeds of D. sophia were commercially obtained from
the Kwangmyungdang Medicinal Herbs Co. (Ulsan,
Republic of Korea) and identified by Dr. Go Ya Choi at
the Korea Institute of Oriental Medicine (KIOM),
Daejeon, Republic of Korea. A voucher specimen (KIOM-
CRC-5) was deposited at the Cancer Research Center,
Herbal Medicine Research Division, KIOM. EEDS was
prepared as described in our previous report [6]. EEDS
was dissolved in 100 % dimethyl sulfoxide (DMSO, Sigma,
St Louis, MO, U.S.A.) at a concentration of 20 mg/mL
and stored at −80 °C for further studies.

Purification of helveticoside from EEDS
Helveticoside, isoquercitrin, quercetin 3-O-α-L-rhamnopyr-
anosyl-(1→ 2)-α-L-arabinopyranose, isorhamnetin-3-O-β-
D-glucopyranoside, and drabanemoroside were isolated
from EEDS using a chromatographic method and identified
by NMR studies as described in our previous study [1].

Ultra high performance liquid chromatography (UHPLC)
analysis
UHPLC analysis was performed using an Agilent UHPLC
system (1290 Infinity, Waldbronn, Germany) consisting of
a binary pump VL (G4220B), a diode array detector
(G4212A, DAD), a sampler (G4226A), a thermostatted col-
umn compartment (G1316A), and a thermostat (G1330B).
The system was operated by OpenLAB CDS (ChemStation
Edition) software (Agilent Technologies, Santa Clara, CA,
USA). HPLC grade acetonitrile, methanol, acetic acid (J.T.
Baker, Center Valley, PA, USA), and ultrapure water (Milli-
pore RiOs & Milli-Q-Gradient water purification system,
Millipore, Bedford, MA, USA) were used for the analyses.
A Kinetex C18 column (50 × 2.1 mm, id, 1.7 μm, Agilent)
with a mobile phase consisting of acetonitrile and 0.1 %
acetic acid in water was used. The mobile phase gradient
elution was programmed as follows: acetonitrile 1–5 %
(0–7 min), 5–20 % (7–27 min), and 20–60 % (27–40 min).
The flow rate of the mobile phase was set to 0.3 mL/min.

The sample injection volume was set to 2.0 μL. The
column temperature was maintained at 40 °C, and the UV
detector was set to 254 and 220 nm. The sample solutions
for the UHPLC analyses, including the EEDS (2,000 μg/
mL, 80 % methanol), ethyl acetate (EtOAc) fraction
(2,000 μg/mL, 100 % methanol), and helveticoside
(100 μg/mL 100 % methanol) were filtered (Millex-FG 0.2
μ m, Millipore) prior to the injections.

Cell culture
A549 human lung cancer cells were directly obtained
from the American Type Culture Collection (ATCC,
CCL-185, Manassas, VA, USA). Authentication of the
cell line was done using a short tandem repeat analysis
by Korean Cell Line Bank (Seoul National University
College of Medicine, Seoul, Republic of Korea). The cells
were grown in RPMI1640 supplemented with 10 % (v/v)
fetal bovine serum, 100 U/mL penicillin, and 100 μg/mL
streptomycin in 5 % CO2 humidified air at 37 °C. All the
supplements and basal media used for the cell cultures
were purchased from Invitrogen (Carlsbad, CA, USA).

Microarray experiment
One day before drug treatment A549 cells were seeded
and cultured on 100 mm dishes. Next, cells were ex-
posed to increasing concentrations of EEDS (0–20 μg/
mL) or helveticoside (0–60 nM) for 24 h. Total RNA
was prepared from A549 cells using the Easy-SpinTM
total RNA extraction kit (iNtRON Biotechnology, Seoul,
Republic of Korea) following the manufacturer’s instruc-
tions. The RNA quality was determined using an Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA). Only those samples with an RNA integrity
number (RIN) greater than 7.0 were included in the
microarray analysis. The equal amounts of RNAs from
triplicate experiments were pooled to exclude experi-
mental bias. The total RNA was amplified and labeled
using a Low RNA Input Linear Amplification kit PLUS
(Agilent Technologies, Santa Clara, CA, USA) and then
hybridized to a microarray (Agilent Human whole gen-
ome 44 K, Agilent Technologies) containing approxi-
mately 44,000 probes (approximately 21,600 unique
genes) in accordance with the manufacturer’s instructions.
The arrays were scanned using an Agilent DNA Micro-
array Scanner. The dataset is available online at the Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo)
under the ID number GSE65413.

Dose-dependent microarray analyses
The raw signal intensities were extracted from the arrays
using Agilent Feature Extraction Software (Agilent
Technologies). Only those array elements with signal in-
tensities 1.4-fold higher than the local background were
selected and normalized using the quantile method [7].
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The ratios from duplicated spots were averaged. The ex-
pression ratios were hierarchically clustered with the
average linkage method of the Gene Cluster 3.0 program
(http://www.eisenlab.org/eisen/). For the identification of
dose-dependent patterns of gene expression, the Short
Time- series Expression Miner (STEM) program was
used. Although STEM was developed for the time series
analysis of microarrays, STEM can be applied for the
identification of gene expression patterns from non-
time-series microarrays [6]. The statistical significance
of the resultant expression patterns were calculated as
false discovery rates (FDRs) using 1,000 random per-
mutations [8].

Connectivity map
The dose-dependent genes that were up- or down-
regulated in A549 cells after treatment with EEDS or helve-
ticoside were used as up- and down-tags, respectively, for
querying the Connectivity map 02 (http://www.broadinsti-
tute.org/cmap/), which is composed of reference micro-
array data of 6,100 samples from diverse pharmaceutical
substances, to perform non-parametric and rank-based
pattern-matching algorithms based on the Kolmogorov-
Smirnov statistic [9]. The list of genes used for the
Connectivity map analysis is shown in Additional file
1 for EEDS and Additional file 2 for helveticoside.
The query signature was compared to each rank-
ordered list of reference microarray data to determine
whether the up- and down-tags tended to appear near
the top or bottom of the list, respectively, which
yielded a connectivity score for each reference micro-
array. The statistical significance was then computed
based on permutation.

Gene ontology (GO) and pathway analyses
The Functional Annotation Tool of Database for Annota-
tion, Visualization and Integrated Discovery (DAVID) was
used for the identification of enriched GO terms and path-
ways using the dose-dependently expressed genes, and p-
values were calculated using the modified Fisher’s exact
test and adjusted using the Benjamini-Hochberg proced-
ure [10]. To construct the functional network composed
of non-redundant subsets of GO terms, the Reduce and
Visualize Gene Ontology (REVIGO) program was used
for the significantly enriched GO terms, and the distance
between GO terms was based on semantic similarity [11].
For Network Ontology Analysis (NOA), we used a

novel GO functional enrichment method (http://app.apor-
c.org/NOA), which was previously published for the net-
work analysis by considering molecular interaction among
gene products [12]. List of interacted genes from the net-
work was used as an input in NOA.
For a systematic pathway analysis allowing for signal-

ing pathway topology, we conducted a Signaling Pathway

Impact Analysis (SPIA) in which a pathway is randomly
bootstrapped 3,000 times to calculate two statistical
values, namely PNDE and PPERT, which represent the
over‐representation of the input genes in a pathway and
the abnormal perturbation of a specific pathway, respect-
ively. Subsequently, the global p-value (PG) was calculated
from PNDE and PPERT for the selection of significant path-
ways with multiple adjustments (PGFDR) [13].
To measure pathway activity, we linearly combined the

logarithmic expression values of the genes in each path-
way using a weight of −1 for repressors to account for the
accumulative effect of all the genes in a pathway. The
measured values were divided by the size of the pathway
[14]. The statistical significance of the measured activity
was estimated using a random permutation-based method
(n = 1,000) in which the FDR was determined by compar-
ing the original activity value with randomly permutated
values [15]. The pathway information was obtained from
the Kyoto Encyclopedia of Genes and Genomes (KEGG,
http://www.genome.jp/kegg/) database.

Functional network
A functional interaction network based on individual
genes was constructed using the Reactome FI network
Cytoscape plugin application (http://www.reactome.org/),
which utilizes a database (2013 version) of protein-protein
interactions, gene co-expression, protein domain interac-
tions, GO annotations, and text-mined protein interac-
tions [16]. Using the dose-dependently regulated genes
with at least two-fold variation as the input, a Markov
Cluster Algorithm (MCA) with a default inflation param-
eter of 5.0 was implemented using the Reactome FI pro-
gram to cluster the networks. After the MCA step, the
modules were selected by applying a default size of n = 7
and an average Pearson correlation coefficient of 0.8. The
associations of the modules and GO terms were then
measured using the REVIGO application [11].
The GO term network structure was also visualized

using the Enrichment Map plugin for Cytoscape (http://
baderlab.org/Software/EnrichmentMap/), wherein the
connections between GO terms are based on the com-
mon genes of GO terms [17]. The results from the GO
enrichment analysis from DAVID were used as inputs
with the parameters p-value < 0.001, and default settings
(FDR q-value < 0.1 and similarity coefficient cutoff of
0.5). For the implications of the cancer-related genes
with enriched GO terms, known cancer genes were
obtained from the DiseaseHub database (http://zldev.cc-
br.utoronto.ca/~ddong/diseaseHub/), which provides a
collection of disease-related genes from various data-
bases, such as Online Mendelian Inheritance in Man
(OMIM), Genetic Association Database (GAD), Human
Gene Mutation Database (HGMD), Pharmacogenomics

Kim et al. BMC Genomics  (2015) 16:713 Page 3 of 14

http://www.eisenlab.org/eisen/
http://www.broadinstitute.org/cmap/
http://www.broadinstitute.org/cmap/
http://app.aporc.org/NOA
http://app.aporc.org/NOA
http://www.genome.jp/kegg/
http://www.reactome.org/
http://baderlab.org/Software/EnrichmentMap/
http://baderlab.org/Software/EnrichmentMap/
http://zldev.ccbr.utoronto.ca/~ddong/diseaseHub/
http://zldev.ccbr.utoronto.ca/~ddong/diseaseHub/


Knowledge Base (PharmGKB), Cancer Genome Project
(CGP), and Genome Wide Association Studies (GWAS).

Results
Connectivity map for the effect of EEDS on A549 human
lung cancer cells
We previously observed that EEDS treatment induced
two major patterns of gene expression in A549 human
lung cancer cells [6]. One pattern was composed of
dose-dependently down-regulated genes, and the other
pattern was composed of dose-dependently up-regulated
genes. The former pattern was primarily involved in
metabolic processes, and the latter pattern was primarily
involved in signaling processes. However, the pharmaco-
logical activity of EEDS could not be clearly identified
from this simple gene expression analysis. One way to
connect the gene expression results to the potential
pharmacology of EEDS would be to compare the gene
expression pattern of EEDS to those of the vast majority
of drugs with well-known chemical structures and
pharmacology. Therefore, we utilized the Connectivity
map of microarray data from cultured human cells
treated with bioactive small molecules [9]. Fig. 1a shows
the top-ranked drugs (ordered by increasing permuted
p-values) with the most similar expression patterns to
EEDS, as determined through an enrichment analysis of
the Connectivity map, and helveticoside was ranked
highest. Figure 1b presents the positions of an individual
instance with the five top-ranked drugs, showing the
treatment conditions used in the Connectivity map
database For this analysis, we used 275 genes that were
up-regulated (over 4-fold) and 193 genes that were
down-regulated (under 0.25-fold) by EEDS. The list of
genes used for the Connectivity map analysis is shown
in Additional file 1. All 5 of the drugs, namely helvetico-
side, lanatoside C, anisomycin, digoxigenin, and digitoxi-
genin, showed high connectivity scores (greater than 0.6)
under various experimental conditions. A list of the top
15 significantly enriched drugs is shown in Additional
file 3. The similarity measurements based on gene expres-
sion demonstrated the close relationships between EEDS
and the top-ranked chemicals (Fig. 1c). We confirmed that
many of the genes that were up- or down-regulated by
EEDS were also significantly up- or down-regulated by the
top-ranked chemicals, respectively.

Chemical profiling of EEDS
The above results imply the presence of specific chem-
ical components, particularly glycosides, in EEDS. In
fact, we have previously isolated diverse types of glyco-
sides having cytotoxic and anti-inflammatory activities
from EEDS [1]. Therefore, we investigated whether
helveticoside, the top-ranked glycoside from the Con-
nectivity map, was present in EEDS. Figure 2 shows the

presence of peak of helveticoside in both fractions of D.
sophia; 80 % ethanol fraction and EtOAc fraction of
EEDS, as measured by UHPLC chromatograms at UV
254 nm (Fig. 2a) and 220 nm (Fig. 2b), respectively.
After confirming the presence of helveticoside in EEDS,
we then measured the biological activity of helveticoside
in comparison with EEDS.

Gene expression profiles induced by EEDS and
helveticoside
To determine the effects of EEDS and helveticoside on
cell growth, A549 human lung cancer cells in exponen-
tial growth phase were treated with each serially diluted
drug (1.25, 5, and 20 μg/mL for EEDS and 3.75, 15, and
60 nM for helveticoside). The half maximal inhibitory
concentrations (IC50s) of EEDS and helveticoside were
4.5 μg/mL and 35 nM, respectively. The overall patterns
of gene expression after EEDS- or helveticoside treat-
ment were compared in parallel with the top-ranked
drugs from the Connectivity map database and are pre-
sented in Fig. 3a. As expected from the enrichment
results of Fig. 1, EEDS and helveticoside regulated dose-
dependent gene expression in a similar fashion. Two
subgroups of genes that were up-regulated and down-
regulated in a dose-dependent manner by EEDS and
helveticoside were identified. These patterns of gene
expression were also evident in the top-ranked drugs
downloaded from the Connectivity map database, and
these patterns were obtained irrespective of the individ-
ual treatment conditions, such as different cell lines,
used for the top-ranked drugs from Connectivity map,
as shown in Additional file 4. Moreover, the similarity of
gene expression between the publicly available data and
our experimental data on EEDS and helveticoside
increased according to the rank.
A quantitative dose-dependency analysis confirmed the

presence of two distinctive patterns of gene expression
after helveticoside treatment (FDR < 0.001) as follows:
down- and up-regulated patterns consisting of 1,093 and
824 genes, respectively (Fig. 3b). As shown in the cluster-
ing profile, many of the same genes were observed in the
two dose-responsive patterns after treatment with EEDS
and helveticoside. Approximately 68.8 % (753/1,093) and
75.8 % (625/824) of the genes in the down-regulated and
up-regulated patterns, respectively, of the cells that were
treated with helveticoside responded similarly to EEDS
treatment as shown in Additional file 5. In addition to the
overall gene expression profile induced by helveticoside,
we also performed the Connectivity map analysis using
the helveticoside-responsive genes. Figure 4a shows the
clear similarity between the enriched compounds in the
Connectivity map analysis of helveticoside and EEDS.
Among top-ranked 25 compounds enriched by helvetico-
side (permuted p-value < 0.0001), 23 compounds were also

Kim et al. BMC Genomics  (2015) 16:713 Page 4 of 14



significantly enriched by EEDS (permuted p-value <
0.0001). A plot of the connectivity scores further con-
firmed the correlation between the results of EEDS and
helveticoside (Fig. 4b). Interestingly, helveticoside itself
was ranked highest by the Connectivity map analysis of
our helveticoside data, which may validate our bioinfor-
matic approach.

GO analysis
The biological functions of the two expression patterns by
treatment with helveticoside were investigated with GO
analysis. As shown in Table 1, the down-regulated pattern
was enriched with oxidation/reduction GO terms
(GO:0055114, p-value < 0.001, FDR < 0.001). In contrast,
signaling-related GO terms, including ‘apoptosis regulation’,

Fig. 1 Enrichment analyses for EEDS using the Connectivity map. a The Connectivity map was queried using 275 up- and 193 down-regulated
genes in A549 cells after EEDS treatment (Additional file 1) as up- and down-tags, respectively. The resultant connectivity scores of the 23
top-ranked chemicals (permutated p-value < 0.0001) were plotted in the order of rank. b The position of an individual treatment instance with
the five top-ranked chemicals is plotted in the bar graph, which was constructed from 6,100 individual chemicals ordered by their corresponding
connectivity scores from +1 (top) to −1 (bottom). The green, gray and red colors reflect the positive, null, and negative signs of the scores,
respectively. The dose, cell line, connectivity score, and name (instance ID) of each individual instance included in the top five chemicals are
shown. c A comparison of the EEDS-responsive gene expression profile with that obtained for several top-ranked chemicals is shown. The
columns and rows represent individual samples and genes, respectively. The color scale for the expression ratio ranges from red (high) to green
(low) as indicated by the scale bar.
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‘transcription regulation’, and ‘regulation of phosphate
metabolic process’, were enriched in the up-regulated pat-
tern (I-value < 0.001 and FDR < 0.001). The top 10 signifi-
cantly enriched GO terms in the up-regulated pattern are
shown in Table 1 (for the full list of enriched GO terms,
please see Additional file 6). The GO terms in the up-
regulated pattern were composed of hierarchically redun-
dant terms. Thus, we eliminated the redundancy using the
REVIGO program and obtained a network structure of
non-redundant GO terms. Additional file 7 illustrates the
inter-connected biological functions (p-value < 0.001 and
FDR < 0.01) in the up-regulated pattern network. ‘apoptotic
process’, ‘cell cycle’, ‘regulation of phosphate metabolism’, and
‘transcription’ were found to be interrelated. This functional
enrichment in the up-regulated pattern was also confirmed
by a text-based GO term distribution tree map (Additional

file 7) in which related signaling functions, such as
apoptosis, proliferation, and transcription, were pre-
dominately found in the up-regulated pattern. For the
down-regulated pattern, we lowered the input stringency
threshold (p-value < 0.01 and FDR < 0.1) to increase the
number of input GO terms for the REVIGO analysis. The
resultant GO term network and tree map showed that the
down-regulated pattern is primarily associated with general
metabolic processes, such as fatty acid metabolism, hetero-
cycle biosynthesis, and DNA metabolism (Additional file 8).
In addition, the overall distribution of all enriched GO
terms (FDR < 0.01) across all samples including our EEDS
and helveticoside experiments, and 15 top-ranked drugs
from the Connectivity map database clearly shows the simi-
lar enrichment of GO terms among all datasets (Additional
file 9), supporting biological similarity among datasets.

Fig. 2 UHPLC chromatograms of EEDS and helveticoside. EEDS (80 % ethanol extract), ethyl acetate fraction of EEDS, and helveticoside were
analyzed at (a) UV 254 nm and (b) 220 nm.
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Pathway analyses
In addition to the GO analysis, we examined the func-
tional involvement of the pathways in the helveticoside
dose-responsive patterns using pathway enrichment ana-
lyses. Table 2 shows the enriched pathways (FDR < 0.01).
Similar to the results of the GO analysis, all of the signifi-
cantly enriched pathways (p-value < 0.001 and FDR < 0.01)
were associated with the up-regulated pattern. Several sig-
naling pathways, including MAPK pathway (KEGG 4010),
TFG-beta pathway (KEGG 4350), circadian rhythm
(KEGG 4710), and apoptosis pathway (KEGG 4210),
were regulated by helveticoside. But, no pathways
were found to be significantly associated with the
down-regulated pattern.
For a more systematic analysis of the pathways, we

conducted a SPIA pathway analysis, which calculates the
connections of pathways by considering their topology

and the expression levels of their genes. Figure 5a shows
8 pathways (red circles) that were significantly enriched
(PG < 0.01 and PGFDR < 0.01), including MAPK pathway,
cytokine-cytokine receptor interaction pathway, circadian
rhythm and apoptosis pathway. The blue circles in Fig. 5a
represent marginally significant pathways (PGFDR < 0.05).
All of these pathways were related to signaling or diseases,
which is consistent with the simple enrichment results
shown in Table 2. The statistical significances of these
pathways are listed in Fig. 5b.
In addition to the identification of enriched pathways,

we also investigated dose-dependent changes in pathway
activity, which were measured by linearly combining the
expression values of the genes in each pathway. Figure 6
shows the dose-dependent changes in 80 statistically
significant pathways (FDR < 0.01) after helveticoside
treatment. Interestingly, similar to the patterns of overall

Fig. 3 Dose-dependent gene expression after EEDS or helveticoside treatment in A549 cells. a Approximately 5,800 genes were differentially
expressed over two-fold in at least one sample when compared with the vehicle control group. For comparison, the expression levels of genes
induced by the top-ranked 15 chemicals selected from the Connectivity map analysis of EEDS are also displayed in parallel. The columns and rows
represent individual samples and genes, respectively. The expression ratio color scale ranges from red (high) to green (low) as indicated by the
scale bar. b The dose-dependently regulated genes affected by helveticoside treatment were identified with the STEM program (FDR < 0.001).
The down-regulated pattern was composed of 1,093 genes, and the up-regulated pattern was composed of 824 genes.
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gene expression, the pathways were also divided into
two major pattern groups based on their activity and the
top-ranked drugs in the Connectivity map also show a
similar pattern of pathway activities. As obtained from
the analysis of gene expression, the individual treatment
conditions, such as different cell lines, used for the ana-
lysis of the top-ranked drugs in the connectivity map
has no significant effect, as shown in Additional file 10.
Furthermore, the dose-dependently down-regulated path-

ways were generally composed of general metabolism-
related pathways, while the up-regulated pathways were
composed of signaling or disease-related pathways. These
patterns of pathway activity were also observed after EEDS
treatment. We also compared the pathways selected from

the SPIA analysis and the simple pathway enrichment
analysis with the pathway activities in Fig. 6.

Network-based functional analyses
The co-expression of functionally associated genes
suggested the presence of an interrelated network of
genes that could be induced by external stimuli, such
as helveticoside or EEDS. Although the pathway and
GO information provided one of these types of networks,
we used a more comprehensive functional interaction
database (Reactome FI) [16] to obtain functional subgroup
networks composed of co-expressed genes induced by
helveticoside treatment. Using 1,093 and 824 genes from
the down- and up-regulated patterns, respectively, we

Fig. 4 Comparison of connectivity scores between EEDS and helveticoside. a The 25 top-ranked drugs (permutated p-value < 0.0001) were
selected from the Connectivity map analysis of helveticoside-treated A549 cells, in which 126 genes were up-regulated (over 4-fold) and 151
genes were down-regulated (under 0.25-fold). The connectivity scores were then compared with those obtained from the EEDS-treated A549
cells. The list of drugs is ordered according to the rank obtained from the Connectivity map analysis of helveticoside-treated A549 cells. b The
correlation of the connectivity scores between EEDS and helveticoside was measured.

Table 1 Top 10 GO terms enriched (FDR < 0.01) by helveticoside

Pattern GO ID Name p-value* FDRa

Down-regulation GO:0055114 Oxidation reduction 4.49E-08 1.13E-04

Up-regulation GO:0042981 Regulation of apoptosis 9.16E-09 2.56E-05

GO:0019220 Regulation of phosphate metabolic process 1.29E-08 1.79E-05

GO:0051174 Regulation of phosphorus metabolic process 1.29E-08 1.79E-05

GO:0043067 Regulation of programmed cell death 1.41E-08 1.31E-05

GO:0010941 Regulation of cell death 1.61E-08 1.12E-05

GO:0006357 Regulation of transcription from RNA polymerase II promoter 5.87E-08 3.28E-05

GO:0042325 Regulation of phosphorylation 7.44E-08 3.46E-05

GO:0007167 Enzyme linked receptor protein signaling pathway 1.32E-07 5.26E-05

GO:0042127 Regulation of cell proliferation 2.59E-07 9.04E-05

GO:0007242 Intracellular signaling cascade 7.04E-07 2.18E-04

*p-values were calculated using the Fischer’s test
aFDR corrections were calculated using the Benjamini-Hochberg procedure
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Table 2 Pathways enriched (FDR < 0.01) by helveticoside

Pattern KEGG ID Name p-value* FDRa

Down-regulation NA NA NA NA

Up-regulation hsa4010 MAPK signaling pathway 8.00E-07 1.10E-04

hsa4350 TGF-beta signaling pathway 4.73E-06 3.25E-04

hsa4710 Circadian rhythm 2.27E-05 1.03E-03

hsa4210 Apoptosis 7.98E-05 2.71E-03

hsa5200 Pathways in cancer 8.00E-05 2.18E-03

hsa4540 Gap junction 8.86E-05 2.01E-03

hsa5212 Pancreatic cancer 2.05E-04 3.96E-03

hsa4060 Cytokine-cytokine receptor interaction 2.50E-04 4.22E-03

hsa5219 Bladder cancer 3.39E-04 5.07E-03

hsa4115 p53 signaling pathway 4.73E-04 6.33E-03

hsa4660 T cell receptor signaling pathway 5.15E-04 6.27E-03

hsa5221 Acute myeloid leukemia 5.31E-04 5.94E-03

hsa5211 Renal cell carcinoma 5.74E-04 5.93E-03

hsa4110 Cell cycle 6.00E-04 5.76E-03

hsa4621 NOD-like receptor signaling pathway 8.03E-04 7.15E-03

hsa4662 B cell receptor signaling pathway 9.02E-04 7.52E-03

*p-values were calculated using the Fischer’s test
aFDR corrections were calculated using the Benjamini-Hochberg procedure

Fig. 5 Pathways altered after helveticoside treatment in A549 cells. a The pathways involved in the up-regulated pattern (824 genes) and
down-regulated pattern (1,093 genes) were analyzed with the SPIA program. The horizontal axis represents pathway over-representation (PNDE),
while the vertical axis indicates pathway perturbation (PPERT). The dotted horizontal and vertical lines represent the corrected thresholds (1 %) of
significance (red for Bonferroni and blue for FDR correction) for each axis value. The red and blue circles located to the right of the oblique lines
are the significant pathways (red circles for PGFDR < 0.01, and blue circles for PGFDR < 0.05) with the KEGG IDs after the FDR correction of the global
p-values (PGs), which were calculated from the combined probabilities of PNDE and PPERT. The list of pathways for the red circles (PGFDR < 0.01) is
shown in (b).
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constructed a network of genes composed of 11 modules
(from 0 to 10), shown in Fig. 7a. The GO terms associated
with co-expression networks were measured by NOA,
which incorporates the interaction status of the gene
products for the selection of enriched GO terms. The
resulting top 10 enriched GO terms (p-value < 10E-10)
shows that metabolic processes involving protein metabol-
ism and nucleotide metabolism were significantly enriched
in response to helveticoside in the subgraph of GO-
directed acyclic structure (Fig. 7b). In addition, various
signaling processes, including gene expression regulation

and cell development and differentiation, were also signifi-
cantly enriched. The full list of significantly enriched GO
terms in the NOA is shown in Additional file 11, and the
detailed GO terms associated with each module are shown
in Fig. 7c. In accordance with NOA, signaling functions,
such as transcription pathways (module 3), receptor sig-
naling (modules 4 and 8), and the notch signaling pathway
(module 7), were significantly associated with each mod-
ule. In addition to signaling pathways, cellular metabolism
functions were also enriched in the modules, including
macromolecule biosynthesis (module 0), catabolism

Fig. 6 Dose-dependent changes in pathway activity after helveticoside treatment in A549 cells. The pathway activities (FDR < 0.01), which were
calculated by linear combinations of gene expression, were hierarchically clustered. For comparison, the statistically significant pathways
(FDR < 0.01) after EEDS treatment are shown in parallel. For comparison, the pathway activity obtained for the 15 top-ranked chemicals selected
from the Connectivity map analysis of EEDS is also displayed in parallel. The columns represent individual samples, and the rows represent
pathways. The red and green colors reflect high and low activity levels, respectively, as indicated by the scale bar with arbitrary units. The
pathways that were enriched based on the enrichment analysis (Table 2) and SPIA (Fig. 5) are also indicated in black in the right panel of the
pathway activity bar. Signal-related pathways and metabolism-related pathways are colored red and blue, respectively, in the right panel.

Kim et al. BMC Genomics  (2015) 16:713 Page 10 of 14



(module 1), RNA metabolism (module 2), and nucleotide
metabolism (module 9). A text-based GO term distribu-
tion tree map for each module is shown in Additional file
12. The individual genes included in each module from
the entire network are listed in Additional file 13 along
with detailed network characteristics representing the
centrality of each node. The module network structures
showed that the diverse functions enriched in the GO and
pathway analyses were interrelated through modules.
The interrelationship of the biological functions regu-

lated by helveticoside treatment was further verified by
the GO term enrichment map. While relationships
between GO terms based solely on the GO hierarchy,
the network from the enrichment map was based on the
genes included in the GO terms. As shown in Additional
file 14, the signaling (kinase activity and cell migration) and
metabolic functions were interconnected, thus implying the
presence of a common response to these two cellular
processes after helveticoside treatment. Because a

number of cardiac glycosides have been shown to ex-
hibit anti-proliferative effects on tumors [18–20], and
because our previous report also showed that EEDS
could be used as an anti-cancer agent [6], we measured
whether diverse cancer types could be associated with the
biological network regulated by helveticoside treatment.
Interestingly, the genes related to diverse types of cancers,
through modules.including colon cancer, breast cancer,
kidney cancer, and gastric cancer, were associated with
biological functions that were enriched after helveticoside
treatment as shown in Additional file 15, thereby support-
ing the assumption that helveticoside could be effective
against diverse cancer types.

Discussion
Identification of biologically active components is cru-
cial for the development of novel drugs from herbal
extracts. However, determining which component has
crucial pharmacological activity requires great effort

Fig. 7 Interaction network of the genes induced by helveticoside in A549 cells. a The interaction network was constructed from 1,093 genes with
the down-regulated pattern and 824 genes with the up-regulated pattern by implementing the Reactome FI application. In total, 11 modules (as indicated
from 0 to 10) are shown in different colors. b The GO terms associated with this interaction network were analyzed by NOA, and top 10 enriched GO
terms (p-value < 1.00E-10) were measured in the subgraph of GO-directed acyclic structure. c The network structure of the enriched GO terms in each
module (FDR < 0.01) was obtained from the REVIGO program. The node size and color intensity are proportional to the hierarchical status and statistical
significance of each node, respectively. The edge thickness between two nodes represents their closeness.
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and a significant time commitment when using con-
ventional approaches. Moreover, it is challenging to
infer the pharmacological effect of a component using
in vitro experiments alone. Therefore, it is important
to reduce this time-consuming process in advance
and efficiently narrow down the possible candidates
for subsequent screening from the complex chemical
components of herbal extracts.
The application of genomic approaches is one way to

reduce the time required for in vitro screening. The Con-
nectivity map resource is a reference collection of gene
expression profiles from cultured human cells treated with
diverse bioactive small molecules. Using the Connectivity
map, the mechanisms of action, physiological processes,
and disease associations of unknown substances can be
predicted. As evidenced by the results of various experi-
ments, the pattern-match algorithm implemented in the
Connectivity map, which adopts a non-parametric, rank-
based method using the Kolmogorov-Smirnov statistic (as
described in Gene Set Enrichment Analysis (GSEA) [21]),
minimizes the effect of different experimental conditions,
such as cell type, drug concentration, and treatment
period [9].
In the present study, we queried the Connectivity map

with a list of genes (293 up-regulated and 275 down-
regulated genes treated with EEDS in A549 cells as shown
in Additional file 1). Among the top-ranked drugs, many
compounds, such as helveticoside, lanatoside, digoxigenin,
digoxin, digitoxigenin and ouabain, are classified into a
cardiac glycoside family sharing a common chemical
structure. These compounds showed highly similar gene
expression patterns with EEDS. Interestingly, we identified
that helveticoside was one of the cytotoxic components of
EEDS. Many of the genes regulated by helveticoside were
also regulated by EEDS in the present study, thus implying
that helveticoside could be one of the leading biologically
active components of EEDS. Moreover, the Connectivity
map analysis using helveticoside-responsive genes from
our experiment also successfully identified helveticoside as
the top-chemical from the Connectivity map database.
However, this result does not exclude the possible pres-
ence of other cardiac glycosides in EEDS, although we
could not identify other cardiac glycosides mentioned
above than helveticoside in EEDS.
Helveticoside is a cardiac glycoside that has a similar

chemical structure as estrogens. Cardiac glycosides have
been used for many years for the treatment of cardiac
congestion and arrhythmias [22]. In addition, cardiac
glycosides have also been proven to have anti-proliferative
activity on tumors [18–20]. The possible mechanisms of
their anti-cancer effect include the ability of cardiac glyco-
sides to bind to estrogen receptors or inhibit Na+/K+
ATPase activity [20, 23]. We identified that the biological
functions regulated by helveticoside treatment were

associated with diverse cancer types in terms of biological
function, which implies the potential usefulness of helveti-
coside and/or EEDS as anti-cancer agents.
As evidenced by the GO and pathway analyses, the

down-regulated genes in helveticoside-treated cells were
associated with metabolic processes, and the up-regulated
genes in helveticoside-treated cells were involved in signal-
ing processes, which is consistent with our previous results
with EEDS [6]. This reciprocal regulatory mechanism may
provide clues for understanding the growth inhibitory
mechanism of EEDS and helveticoside in A549 cancer cells.
For example, metabolic processes, such as the pentose
phosphate pathway and the excision repair pathway, which
were enriched by EEDS, can regulate lung cancer cells and
are associated with lung cancer risks [24, 25]. Furthermore,
these pathways can modulate the effectiveness of chemo-
therapy in lung cancer patients [26]. In addition, a recent
study has suggested that the regulation of oxidation/reduc-
tion pathways, which were the same pathways associ-
ated with down-regulated genes after helveticoside
treatment in our study, is a promising systemic target
for cancer treatments [27], thus supporting a possible
role for helveticoside as an anti-cancer agent. Additionally,
several signaling pathways, such as the apoptosis and p53
pathways, are the targets of herbal-derived anti-lung
cancer drugs [28–30].
In the present study, the reciprocal regulation be-

tween metabolic and signaling processes was more
evident in the pathway activity analysis (Fig. 6). The
dose-dependently down-regulated pathways were pre-
dominantly composed of metabolism pathways, and
the up-regulated pathways were exclusively composed
of signaling or disease-related pathways. Interestingly,
the tight linkage between metabolism and signaling is
becoming increasingly clear in a variety of cellular
conditions in which protein modification by acetyl-
ation, glycosylation, and phosphorylation is thought to
play an important role during reciprocal regulation
[31, 32]. However, a functionally reciprocal response
induced by drug treatment has not been previously
reported. Moreover, our present results showed that two
reciprocally regulated biological processes are connected
in a functional network structure, thus signifying a pos-
sible linkage between metabolic and signaling processes.
The biological significance of these functional network
associations must be further verified in terms of the
pharmacological effects of helveticoside.

Conclusions
In summary, using the Connectivity map, we have iden-
tified that helveticoside induced a reciprocal regulation
of genes and biological functions in A549 cells and that
it could be the foremost biologically active component
of EEDS.
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