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The chemokine receptors ACKR2 and CCR2
reciprocally regulate lymphatic vessel density
Kit M Lee1, Renzo Danuser2, Jens V Stein2, Delyth Graham3, Robert JB Nibbs1 & Gerard J Graham1,*

Abstract

Macrophages regulate lymphatic vasculature development;
however, the molecular mechanisms regulating their recruitment
to developing, and adult, lymphatic vascular sites are not known.
Here, we report that resting mice deficient for the inflammatory
chemokine-scavenging receptor, ACKR2, display increased
lymphatic vessel density in a range of tissues under resting and
regenerating conditions. This appears not to alter dendritic cell
migration to draining lymph nodes but is associated with
enhanced fluid drainage from peripheral tissues and thus with a
hypotensive phenotype. Examination of embryonic skin revealed
that this lymphatic vessel density phenotype is developmentally
established. Further studies indicated that macrophages and the
inflammatory CC-chemokine CCL2, which is scavenged by ACKR2,
are associated with this phenotype. Accordingly, mice deficient for
the CCL2 signalling receptor, CCR2, displayed a reciprocal pheno-
type of reduced lymphatic vessel density. Further examination
revealed that proximity of pro-lymphangiogenic macrophages to
developing lymphatic vessel surfaces is increased in ACKR2-
deficient mice and reduced in CCR2-deficient mice. Therefore,
these receptors regulate vessel density by reciprocally modulating
pro-lymphangiogenic macrophage recruitment, and proximity, to
developing, resting and regenerating lymphatic vessels.
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Introduction

The lymphatic system develops from the cardinal vein at E9.5 of

murine development (Wigle & Oliver, 1999; Haegerling et al, 2013)

and is characterised by expression of the transcription factor Prox1

and the VEGF-C/D receptor VEGF-R3 (Oliver, 2004; Koltowska et al,

2013). In adult tissues, the lymphatic vessel network drains fluid

from peripheral tissues, orchestrates adaptive immune responses

(Schulte-Merker et al, 2011) and is composed of lymphatic capillar-

ies, basement-membrane surrounded pre-collecting vessels and

smooth-muscle encapsulated collecting vessels (Alitalo, 2011;

Schulte-Merker et al, 2011). Whilst the resting adult lymphatic

network is relatively static, it is remodelled in a variety of inflamma-

tory (Vigl et al, 2011; Harvey & Gordon, 2012) and tumour contexts

(Alitalo, 2011). Therefore, the lymphatic system is central to tissue

homeostasis and pathogenesis.

A striking feature of developing and regenerating lymphatic

vessel networks is the close association with myelomonocytic

cells (Harvey & Gordon, 2012). In particular, macrophages

spatially co-localise with lymphatic vessels both in the mouse

embryo (Gordon et al, 2010) and at sites of neo-lymphangiogenesis

in the adult animal. These macrophages serve as important

sources of the pro-lymphangiogenic cytokines VEGF-C and VEGF-D

(Schoppmann et al, 2002; Jeon et al, 2008; Kataru et al, 2009;

Kim et al, 2009; Boehmer et al, 2010), and the importance of

macrophages for lymphatic vessel development is indicated by a

variety of studies utilising macrophage depletion or mutant, and

gene-targeted, mice. Specifically, op/op mice, which have a

‘nonsense’ mutation in the CSF-1 gene, are characterised by

severe reduction in macrophage numbers and an associated

decrease in lymphatic vessel branching and therefore in the

density of the lymphatic network (Kubota et al, 2009). Further

studies utilising PU1-deficient, and CSF-1 receptor-deficient, mice

have shown that macrophages regulate cutaneous lymphatic

vessel calibre and proliferative status in the developing embryo

(Gordon et al, 2010). In addition, in adult animals, macrophages

are associated with inflammation-induced (Kataru et al, 2009),

and tumour-related, neo-lymphangiogenesis (Schoppmann et al,

2002; Sacchi et al, 2003; Alitalo et al, 2005; Maruyama et al,

2007; Jeon et al, 2008). Accordingly, op/op mice are characterised

by reduced lymphangiogenesis in tumour models and suppression

of tumour growth (Kubota et al, 2009). Finally, more recent data

point to a novel role for macrophages in responding to salt-

induced hypertension by inducing cutaneous neo-lymphangiogenesis

designed to reduce peripheral tissue fluid pressure and restore

homeostasis (Machnik et al, 2009; Wiig et al, 2013). Thus, macro-

phages are central to the regulation of normal, and pathological,

lymphatic vessel development.
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Despite the evidence implicating macrophages in lymphangio-

genesis, almost nothing is known about the molecular mechanism(s)

underlying their recruitment to lymphatic sites although it is likely

that chemokines (Rot & von Andrian, 2004) and their receptors

(Bachelerie et al, 2014a) contribute to this process. In addition to

the classical leucocyte-expressed chemokine receptors, there exists a

small subfamily of ‘atypical’ chemokine receptors mainly expressed

by stromal cells and characterised by a seven-transmembrane

spanning structure, but an apparent inability to mount typical

chemokine receptor signalling responses following ligand binding

(Graham et al, 2012; Nibbs & Graham, 2013; Bachelerie et al,

2014b). We, and others, have studied ACKR2 (formerly known as

D6), one of the prototypic members of the ‘atypical’ chemokine

receptor family (Graham, 2009), and have shown it to be a highly

efficient scavenger of inflammatory CC-chemokines (Fra et al, 2003;

Weber et al, 2004). The major site of ACKR2 expression is

lymphatic endothelium and it has a role at this cellular interface in

limiting the function of inflammatory chemokines such as CCL2

(Nibbs et al, 2001; Vetrano et al, 2010; Lee et al, 2013; McKimmie

et al, 2013). The function of ACKR2 on resting lymphatic vessels

has not so far been addressed.

Here, we demonstrate that ACKR2 contributes to proper

lymphatic vessel network development and that ACKR2-deficient

mice are characterised by a denser lymphatic network than WT

mice. We further demonstrate that the enhanced lymphatic vessel

density renders ACKR2-deficient mice hypotensive. In addition, we

show that CCR2-deficient mice display a reciprocal phenotype of

reduced lymphatic vessel density. This altered vessel density is

developmentally established and is associated with ACKR2, and

CCR2, fine-tuning of pro-lymphangiogenic macrophage proximity to

sites of developing and regenerating lymphatic vasculature. This

study therefore highlights chemokine/receptor regulation of macro-

phage recruitment as being a key contributor to developmental and

adult lymphangiogenic programmes and provides the first evidence

of a role for inflammatory CC-chemokines in developmental

processes.

Results

ACKR2-deficient mice display increased lymphatic vessel density

Whole-mount staining of lymphatic vessel networks in ears of adult

(7–8 week old) mice revealed (Fig 1A) that ACKR2-deficient mice

displayed a higher density of dermal lymphatic vessels than WT

mice. This network consists of pre-collecting and collecting

lymphatics. Initial lymphatics have been excluded from these analy-

ses on the basis of morphology (note the increased calibre of the

initial lymphatics) and differential staining for Lyve-1, podoplanin

and collagen IV (Supplementary Fig S1). Depth coding (Fig 1A and

subsequent Figs), on the 3D transparent images generated from

serial Z-stacks, demonstrates that, with the wide-field imaging used,

the pre-collecting and collecting lymphatic networks sit within the

same Z-axial dimensions in the single imageable 3D transparent

images (Supplementary Fig S2) and can thus be imaged in their

entirety (see Supplementary Materials and Methods for a further

description). The altered network density was quantified on the

basis of the number of lymphatic branches, average distance

between lymphatic vessels and lymphatic vessel width (Fig 1B).

ACKR2-deficient mice had, on average, 30% more lymphatic

branches per field of view than WT mice (Fig 1Bi) and, as a conse-

quence, a decreased distance between individual vessels (Fig 1Bii).

There were no differences in the width of lymphatic vessels in WT

and ACKR2-deficient mouse skins (Fig 1Biii). We next examined

newly weaned (3 week old) mice in which ear tissues are still grow-

ing. Whole-mount staining of the dermal lymphatic vessel network

again revealed enhanced vessel density in ACKR2-deficient,

compared to WT, mice (Fig 1C) which was significant in terms of

higher numbers of lymphatic branches (Fig 1Di) and decreased

distance between individual lymphatic vessels (Fig 1Dii). Thus

ACKR2 deficiency is associated with increased dermal lymphatic

vessel density. Importantly, we noted no significant differences in

the density of the blood vessel network in the ears of WT and

ACKR2�/� mice (Supplementary Fig S3A–C).

To examine whether increased lymphatic vessel density in

ACKR2-deficient mice was specific to skin, we measured vessel

density in diaphragms. ACKR2-deficient mice also displayed a

higher lymphatic vessel density at this site with, on average, a

50% increase in numbers of lymphatic branches (Supplementary

Fig S4Ai) and a resulting decrease in average inter-vessel distance

compared to WT mice (Supplementary Fig S4Aii). Again, no

difference in lymphatic vessel width was noted (Supplementary

Fig S4Aiii). Next, we examined lymphatic vessel density in popli-

teal lymph nodes (LNs). As individual LN sections are inadequate

for such quantitative analyses, we utilised Single Plane Illumina-

tion Microscopy (SPIM)-based imaging of Lyve-1-labelled whole

LNs with subsequent quantification of lymphatic vessel distribu-

tion. Lyve-1 labelling was by intravenous injection of anti-Lyve-1

antibodies and their ability to stain the lymphatic network was

initially confirmed by imaging ear skin lymphatic vessels prior to

LN imaging. (Supplementary Fig S4B). Sample images of the

stained Lyve-1+ structures in the LNs are shown in Supplementary

Fig S4C. It is important to note that the manner in which these

experiments were performed means that the anti-Lyve-1 antibodies

might also stain some subpopulations of macrophages and we

cannot fully exclude their contribution to this SPIM analysis.

However, as shown in Supplementary Fig S4D, quantification of

this staining in 3Ds demonstrated that ACKR2-deficient mice

display a significant, approximately 40%, increase in LN Lyve-1+

structures compared to WT mice. Importantly, despite these differ-

ences in vessel density in the different tissues, confocal imaging

indicated that lymphatic vessels in WT and ACKR2-deficient skins

were morphologically indistinguishable (Supplementary Fig S1B).

Thus, together, these data demonstrate that ACKR2-deficient mice

display enhanced lymphatic vessel density at a range of tissue

sites.

ACKR2-deficient mice are hypotensive

We next determined the consequences of the increased lymphatic

vessel density in ACKR2-deficient mice. Notably, assessment of

numbers of migrating dendritic cells (CD11c+/MHC-IIhi) (Fig 2Ai),

and Langerhans cells (CD11c+/CD11b+/MHC-IIhi/EpCAM+)

(Fig 2Aii), in skin draining LNs suggested no effect of the enhanced

cutaneous lymphatic vessel density on basal antigen presenting cell

migration. We then examined effects on fluid drainage as this may
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also be altered by lymphatic vessel density changes. To this end, we

s.c. injected AlexaFluor-labelled BSA into mice and examined fluid

retention/drainage using whole-body IVIS (Intra Vital Imaging

System) imaging. The results (Fig 2B) demonstrated that ACKR2-

deficient mice, at rest, display a modest but significant increase in

the kinetics of fluid clearance from the skin than WT counterparts.

Thus, the greater density of the lymphatic vessel network in ACKR2-

deficient mice does not alter APC migration kinetics but is associ-

ated with enhanced fluid drainage from resting skin.

As peripheral tissue fluid retention/drainage can contribute to

whole animal blood pressure (BP) (Machnik et al, 2009; Wiig et al,

2013), we next measured BP in the mice. ACKR2-deficient mice

displayed a significant reduction in BP as shown in the systolic BP

measurements in Fig 2C despite there being no significant difference

in heart rate between WT and ACKR2-deficient mice (Fig 2D). Thus,

whilst we have not demonstrated a direct mechanistic link, these

data indicate that the increased lymphatic vascular density in

ACKR2-deficient mice is associated with a hypotensive phenotype.
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Figure 1. ACKR2-deficient mice display increased lymphatic vessel density.

A Whole-mount immunostaining for the lymphatic endothelial cell marker podoplanin using cartilage-free ventral sides of adult (7–8 weeks old) (i) WT and (ii) ACKR2-
KO mouse ear skins. Images presented are 3D transparent images with rainbow scale bars indicating the Z-axial dimensions of lymphatic networks across a thickness
(Z) of 20 lm. Scale bars, 200 lm.

B Quantitation of podoplanin-rich lymphatic vessel density in WT and ACKR2-KO skin by: (i) counting the number of vessel branches; (ii) measuring the average
distance between vessels; and (iii) measuring the width of individual lymphatic vessels. Each point in these graphs represents the mean of 3 fields-of-view (FOV)
measurements per mouse ear imaged under an objective ZEISS EC Plan-Neofluar 5× /0.16 M27 lens (as described in Supplementary Materials and Methods). Data
were analysed using Student’s t-test.

C Whole-mount immunostaining for podoplanin using cartilage-free ventral sides of newly weaned (3 weeks old) (i) WT and (ii) ACKR2-KO mouse ears skins. Images
presented here were processed using Zeiss 3D deconvolution software (AxioVision Release 4.8.2 12-2009, Special Edition) before being constructed as 3D transparent
images with rainbow scale bars indicating the Z-axial dimensions and positions of lymphatic networks across a thickness (Z) of 12 to 14 lm. Scale bars, 200 lm.

D Quantification of lymphatic vessel density in newly weaned WT and ACKR2-KO ears by: (i) counting the number of vessel branches and (ii) measuring the average
distance between vessels. Each point in these graphs represents the mean of 3 FOV measurements per mouse ear imaged under an objective ZEISS EC Plan-Neofluar
5× /0.16 M27 lens (see Supplementary Materials and Methods). Data were analysed using Student’s t-test.
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Macrophages are closer to lymphatic vessels in
ACKR2-deficient mice

As macrophages are involved in lymphatic vessel development,

and as ACKR2 regulates CCL2, a key macrophage chemoattractant,

we next examined myelomonocytic cell dynamics in the vicinity

of WT and ACKR2-deficient lymphatic vessels. Analysis of resting,

3-week-old, WT and ACKR2-deficient mice expressing CD11c-YFP

revealed more CD11c-positive cells in ACKR2-deficient skins

compared to WT skins (Fig 3Ai and ii). In addition, CD11c-

positive cells were in closer proximity to lymphatic vessel

surfaces in ACKR2-deficient mice (Fig 3Ai). Next, we examined

macrophage numbers by flow cytometry. In WT and ACKR2-

deficient adult skins at rest, numbers were similar, but, in accor-

dance with previous observations (Jamieson et al, 2005), skins of

TPA-inflamed ACKR2-deficient mice were characterised by stron-

ger macrophage infiltration than was seen in WT mice (Fig 3B).

In addition, and as demonstrated for CD11c-positive cells, we

noted that macrophages were in closer proximity to lymphatic

vessel surfaces in ACKR2-deficient, compared to WT, skins. This

is shown for TPA-inflamed skin (Fig 3Ci) and the enhanced prox-

imity of macrophages to vessel walls is significant as revealed by

quantification of average distances between macrophages and

lymphatic endothelial cell surfaces within single z-stack images

(Fig 3Cii). Importantly, this enhanced proximity is also apparent

when comparing uninflamed WT and ACKR2-deficient skin

(Fig 3Cii) and is therefore not an exclusive property of inflamma-

tory environments. Thus, macrophages are found in closer apposi-

tion to lymphatic vessel surfaces in ACKR2-deficient, compared to

WT, mouse ears.
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Figure 2. ACKR2-deficient mice are hypotensive.

A Flow cytometric evaluation of the numbers of (i) migrating dendritic cells and (ii) Langerhans cells in inguinal LNs of WT and ACKR2-KO mice. Each data point
represents a single LN.

B Assessment of fluid drainage from adult (7–8 weeks old) WT and ACKR2-KO mouse skins (5 mice/group) over time, using IVIS (Intra Vital Imaging System) imaging to
quantify the disappearance of subcutaneously injected AF750-labelled BSA. Statistical analysis used two-way ANOVA.

C Tail-cuff measurement of systolic blood pressure in adult (12 weeks old) WT and ACKR2-KO mice (12 mice/group). Statistical comparison was by Student’s
t-test.

D Heart rate measured for adult (12 weeks old) WT and ACKR2-KO mice (12 mice/group). Statistical comparison was by Student’s t-test.
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We next hypothesised that this enhanced proximity may be

regulated by CCL2, which binds to both its cognate receptor CCR2

on macrophages, and ACKR2 on lymphatic endothelial cells. In

keeping with its ‘Immediate Early Gene’-like properties (Rollins

et al, 1988), immunostaining for CCL2 (Fig 3D), in growing but

uninflamed ears of 3-week-old WT mice, revealed clearly
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Figure 3. ACKR2-deficient lymphatic vessels have an altered interaction with myelomonocytic cells.

A (i) Whole-mount anti-podoplanin (red) immunostaining of ear lymphatic vessels using WT (left-hand panel), and ACKR2-KO (right-hand panel), CD11cYFP mice for
simultaneous detection of CD11c+ myelomonocytic cells (green). Shown are 3D transparent projection images generated from a thickness (Z-stacks) of 13 lm (left-hand
panel) and 15 lm (right-hand panel). Scale bars, 100 lm. (ii) Quantification of numbers of CD11c+ cells in WT and ACKR2-KO cartilage-free ear sheets. Each point represents
the mean of cell counts from at least 3 FOVs from each mouse ear imaged using a Zeiss EC Plan-Neofluar 5× /0.16 M27 lens. Data were analysed using Student’s t-test.

B Flow cytometric quantitation of the numbers of macrophages (CD11b+F4/80+) in resting (acetone treated; Ace), or phorbol ester inflamed (72TPA), WT and ACKR2-KO
mouse ears (7–8 mice/group with each data point representing measurements from a single mouse). Data were analysed using one-way ANOVA with Newman–Keul
multiple comparison test as a post-test for differences between groups.

C (i) Immunostaining for macrophage proximity (CD11b, turquoise) to lymphatic vessels (podoplanin, red) in frozen ear skin sections of TPA-inflamed WT and ACKR2-KO
mice. Blue represents DAPI staining of cellular nuclei. Z-stack images (at 0.6- to 1-lm intervals) for WT and ACKR2-KO mice shown here (across a thickness of up to
10 lm) were taken using a Zeiss EC Plan-Neofluar 40 × /0.75 Ph2 M27. (ii) Measured distances between macrophages and lymphatic vessel surfaces in individual
z-stacks from resting (Ace) and phorbol ester inflamed (72TPA) WT and ACKR2-KO mouse ear skin frozen sections (10 mice/group with each point representing
measurements from a single mouse). Data were analysed using one-way ANOVA with Newman–Keul multiple comparison test as a post-test.

D Immunostaining of resting 3-week-old WT mouse lymphatic vessels with antibodies to CCL2 (green) and podoplanin (red). (i) CCL2 staining; (ii) merged CCL2 and
podoplanin staining; (iii) CCL2 staining with depth coding rainbow scale bar indicating the Z-axial dimensions. Confocal 3D transparent images were acquired, across
a thickness of 18 lm, using a Zeiss Plan-Apochromat 63× /1.4oil Ph3 on a Zeiss LSM 510 confocal microscope. Scale bar, 20 lm.

E (i) High magnification imaging of adult (7 weeks old) cutaneous lymphatic vessels using antibodies to LHS image: VEGFR3 (red) and Prox-1 (blue) and RHS image:
VEGFR3 (red); Prox-1 (blue) and podoplanin (green). Scale bars, 50 lm. Images were obtained using a Zeiss EC Plan-Neofluar 20× /0.50 Ph2 M27 lens. (ii) Staining of
VEGF-D expression by macrophages in WT mouse ear frozen sections using anti-CD11b antibodies (cyan); anti-F4/80 antibodies (green); DAPI (blue); anti-VEGF-D
antibodies (red). (iia) VEGFD-TyramideCy3; (iib) F4/80-AF488; (iic) Merged image of F4/80 and VEGFD; (iid) An overlay of all three channels. All images are maximum
projection images across a 3-lm thickness obtained under an EC Plan-Neofluar 40× /0.75 Ph2 M27 lens. Scale bars, 20 lm.
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detectable expression on individual, uninflamed, lymphatic

vessels. Finally, as shown in Fig 3Ei, lymphatic vessels in resting

mouse skin express VEGFR3. In addition, we examined expression

of the VEGFR3 ligand VEGF-D, which is involved in inflammatory

and tumour-associated lymphangiogenesis (Schoppmann et al,

2002; Kataru et al, 2009; Kim et al, 2009). Notably, the macro-

phages in proximity to the vessels express VEGF-D (Fig 3Eii). This

suggests that macrophages contribute to the increased lymphatic

vessel density in ACKR2-deficient mice by provision of proximally

acting lymphangiogenic factors.

Thus, together, these data demonstrate enhanced pro-

lymphangiogenic macrophage proximity to CCL2-expressing

lymphatic vessels in uninflamed ACKR2-deficient skin.

CCR2-deficient mice have reduced dermal lymphatic
vessel density

Given the association of macrophages, and CCL2, with exaggerated

lymphatic vessel density in ACKR2-deficient mice, we next exam-

ined lymphatic vessel density in CCR2-deficient mice. As shown in

Fig 4A, and indicative of a role for the CCL2/CCR2 axis in lymphatic

vessel development, adult CCR2-deficient mice display a significant

reduction in lymphatic vessel density, which is also apparent in

younger, 3-week-old, mice (Fig 4B). Quantification revealed this to

be significant in terms of the number of lymphatic branches

(Fig 4Ci), inter-vessel distance (Fig 4Cii) and number of lymphatic

vessels ‘loops’ (Fig 4Ciii). There were no significant differences in
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Figure 4. CCR2-deficient mice display reduced lymphatic vessel density.

A Whole-mount staining for lymphatic vessel networks in adult (7–8 weeks old) WT and CCR2-KO mouse ear skins using antibodies to podoplanin (red) and Lyve-1
(green). Images are merged 3D transparent images for podoplanin and Lyve-1 with depth coding rainbow scale bars indicating the Z-axial dimensions. Scale bars,
200 lm.

B Whole-mount staining for lymphatic vessel networks in newly weaned (3 weeks old) WT and CCR2-KO mouse ear skins using antibodies to podoplanin (red). Images
are merged 3D transparent images for podoplanin and Lyve-1 with depth coding rainbow scale bars indicating the Z-axial dimensions. Scale bars, 200 lm.

C Quantification of lymphatic vessel density in WT and CCR2-KO ear skins by measuring: (i) number of branches; (ii) average distance between vessel branches;
(iii) number of enclosed structures, or ‘loops’, formed by individual branches; and (iv) vessel width. Each point on the graphs represents the mean of
measurements from 3 FOVs per mouse (images were acquired for quantification using a Zeiss EC Plan-Neofluar 5× /0.16 M27 lens). Data were analysed using
Student’s t-test.

D Assessment of fluid drainage from adult (7–8 weeks old) WT and CCR2-KO mouse skins (5 mice/group) over time, using IVIS imaging to quantify the disappearance of
subcutaneously injected Qdot800 (Molecular Probe, InvitrogenTM Life Technologies, USA). Statistical analysis used two-way ANOVA.
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the width of WT and CCR2-deficient lymphatic vessels (Fig 4Civ).

In contrast to ACKR2�/� mice, the reduced vessel density in the

CCR2�/� mice was not associated with altered fluid drainage from

resting skin (Fig 4D). Thus, CCR2-deficient, and ACKR2-deficient,

mice display reciprocal dermal lymphatic vessel density pheno-

types.

ACKR2 regulates vessel density during
regenerative lymphangiogenesis

In keeping with previous reports regarding the effects of oxazolone

on lymphatic vessel networks (Truman et al, 2013), we have

observed that induction of rapid, sterile, cutaneous inflammation by

the phorbol ester TPA, leads to disruption of lymphatic vessel

networks in ear skin by 24 h. This is apparent at low (Fig 5Ai) and

high magnification (Fig 5Aii). The disrupted vessels are of a pre-

collector or collector phenotype (Supplementary Fig S5) and are

characterised by an apparent ‘clipping’ of individual branches

resulting in rapid (24 h) and significant increases in numbers of

lymphatic vessels with irregularly shaped ‘blunt/point-ended’

termini (Fig 5B). Importantly, by 48 h, lymphatic cell proliferation

is evident in the disrupted vessels as indicated by Ki67 staining

(Fig 5Aiii), and by 72 h, in both WT and ACKR2-deficient mice,

the lymphatic vessel network has fully regenerated. Quantification

by counting intact lymphatic branches (Fig 5Ci) and average

inter-vessel distances (Fig 5Cii) revealed that, following

inflammation-associated vessel disruption, numbers of intact

branches significantly decreased in both WT and ACKR2-deficient

mouse skins to the point at which their numbers were not signifi-

cantly different. Notably, following regeneration (72 h), the

increased lymphatic vessel density in ACKR2-deficient mice is

re-established. In keeping with these observations, at 72 h after TPA

application, ACKR2-deficient mouse skin displayed significantly

higher levels of expression of the lymphatic endothelial cell tran-

scription factor Prox-1 as well as of the inflammation-associated

(Kataru et al, 2009; Kim et al, 2009) lymphatic endothelial cell

growth factor VEGF-D indicative of enhanced lymphangiogenesis

(Fig 5D and E). Thus, ACKR2 also regulates lymphatic vessel

density following regenerative lymphangiogenesis.

This regenerative phenotype allowed us to formally establish

roles for macrophages, and CCR2, in contributing to the lymphatic

vessel density phenotype in ACKR2-deficient mice. Initially, this

involved assessing post-inflammatory lymphatic vessel regeneration

in ACKR2-deficient mice treated with clodronate liposomes to

deplete macrophages. Morphological analysis showed that macro-

phage depletion had no effect on resting lymphatic vasculature

(Fig 6A). Local injection of clodronate liposomes into the ears of

inflamed mice, however, reduced the macrophage numbers at the

injection site (Fig 6B) and significantly suppressed regeneration of

the lymphatic vessel network, at 72 h after TPA application, in both

WT (Fig 6C) and ACKR2-deficient (Fig 6D) mice as assessed by

enumerating the number of lymphatic branches. Next, to determine

roles for CCR2 in this process, we examined post-inflammatory vessel

regeneration in ACKR2-deficient mice treated with either vehicle, or

a pharmacological inhibitor of CCR2 (Mirzadegan et al, 2000). As

shown in Fig 6E, CCR2 blockade also significantly impaired vessel

regeneration. These data therefore indicate that lymphatic vessel-

associated macrophages are not simply bystander cells but that

they, along with CCR2, are essential requirements for full lymphatic

vessel regeneration in ACKR2-deficient mice.

Increased lymphatic vessel density in ACKR2-deficient mice is
developmentally established

The increased vessel density seen in numerous tissues in ACKR2-

deficient mice suggested that this phenotype might be developmen-

tal in nature. We therefore examined whether increased lymphatic

vessel density in ACKR2-deficient mice was established during

embryogenesis. Initially, we utilised fluorescent ligand (Alexa-

CCL22)-based staining (Hansell et al, 2011) to confirm ACKR2

expression on developing lymphatic vessels. Figure 7A shows the

presence of ACKR2-positive ‘puncta’ in Lyve-1+ lymphatic vessels

of E15.5 WT embryo skin, which are absent in ACKR2-deficient skin

of the same developmental stage. Thus, lymphatic vessels express

ACKR2 during development. Next, lymphatic vessel density was

examined in E14.5 and E15.5 embryos. When imaged using wide-

field fluorescence microscopy, at E15.5, increased lymphatic vessel

density was apparent in ACKR2-deficient embryo skins, compared

to WT skins (Fig 7B). Quantification revealed an almost twofold

increase in branch numbers at E14.5 and a 30% increase at E15.5

(Fig 7Ci). Similar differences were also seen in the numbers of

lymphatic ‘loops’ formed by these branches (Fig 7Cii). Thus, these

data demonstrate that increased lymphatic vessel density in ACKR2-

deficient mice is developmentally established.

Next, we determined whether lymphatic vessel density differ-

ences were also developmentally established in CCR2-deficient

mice. As shown in Fig 7D, the most striking feature of the lymphatic

vessel network in E15.5 CCR2-deficient mouse skin was the

increased width of individual vessels compared to that seen in WT

skins. This difference in vessel width was highly significant, and

importantly, no difference in vessel width was noted in ACKR2-

deficient mouse skins at this time point (Fig 7Ei). In keeping with

the reduced lymphatic vessel density in adult CCR2-deficient mice,

E15.5 mice displayed a trend towards reduction in vessel density

but this did not reach statistical significance (Fig 7Eii). Thus, CCR2

is required for the proper establishment of lymphatic vessel width in

the developing embryo.

Evidence for two distinct macrophage populations at developing
lymphatic vessel sites in embryonic skin

As we hypothesise that ACKR2 contributes to lymphatic vessel

density by regulating peri-lymphatic macrophage dynamics, we

phenotyped the macrophage populations in the vicinity of the devel-

oping lymphatic vessels at E15.5 to determine their expression of

molecular regulators of lymphangiogenesis. As shown in Fig 8Ai

and ii, two major populations are apparent in wild-type mice, R1,

which are CD11bhiF4/80loLyve-1�, and R2, which are CD11bloF4/80hi

Lyve-1+. Intriguingly, in both ACKR2-deficient and CCR2-

deficient embryonic mouse skins, the R1 population was significantly

depleted (Fig 8Bi) with no differences in the size of the R2 popula-

tion being noted (Fig 8Bii). This suggests a combined, but as yet

uncharacterised, role for ACKR2 and CCR2 in the recruitment of the

R1 macrophage population to the developing skin. Focused cytokine

arrays (full heat-maps are shown in Supplementary Fig S6) demon-

strated (Fig 8Ci) that the R1 population expressed higher levels of
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pro-inflammatory cytokines than the R2 population which, in

contrast, expressed significantly higher levels of the majority of

inflammatory CC-chemokines (Fig 8Cii), suggesting that these are

functionally distinct macrophage subpopulations. In terms of chemo-

kine receptors, both populations expressed relatively high levels of

CXCR4 and CX3CR1, and, in keeping with the effects of ACKR2 and

CCR2 deletion on the population size, the R1 population expressed

higher levels of CCR2 (data not shown). Focused angiogenesis arrays

(full heat-maps shown in Supplementary Fig S7) also discriminated

between these two populations with the R2 population generally

expressing higher levels of pro-angiogenic transcripts (Coso et al,

2014) than the R1 population with notably higher levels of

expression of Jagged 1 and VEGFD (Fig 8Ci). In contrast, the R1

population expressed higher levels of a number of molecules

associated with suppression of lymphangiogenesis (Fig 8Cii), includ-

ing the Tie-1 ligand angiopoietin-1 (Qu et al, 2010) and most notably

thrombospondin-1 (Cursiefen et al, 2011) (160-fold higher levels in

R1 compared to R2 macrophages), which would account, at least in
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Figure 5. ACKR2 deficiency is associated with increased vessel density after lymphatic vessel regeneration.

A (i) Whole-mount staining of control and inflamed (TPA-treated) lymphatic vessel networks in adult (7–8 weeks old) mouse ears. Podoplanin staining is in green and
VEGFR3 staining in red. VEGFR3 has been used here as an additional stain due to the reduction in podoplanin content in TPA-treated skin. Depth coding rainbow
scale bars are included to represent the Z-axial dimensions. Scale bars, 200 lm. (ii) Higher magnification confocal imaging (63× magnification) of an intact (upper
image) and a ruptured (lower image) lymphatic vessel stained using antibodies to podoplanin (red), Lyve-1 (green) and collagen IV (blue). Images were obtained
using a Zeiss LSM510 using a Plan-Apochromat 63× /1.4oil Ph3 lens. Merged images shown here for these three colours are 3D maximum projection images
constructed on the Imaris Bitplane software (Version 7.6.1). (iii) Ki67 staining (cyan and indicated by arrows) of resting (control: top) and inflamed (48 h post-TPA;
bottom) skin of ACKR2-deficient mice. These images were obtained using an EC Plan-Neofluar 20× /0.50 Ph2 M27 lens on a Zeiss Axioimager M2 across a thickness
(z-stacks) of 12 lm (control: top) or 11 lm (48 h TPA: bottom). Scale bars, 50 lm (top) and 20 lm (bottom). The images are merged and also show
Lyve-1 (green) and podoplanin (red) staining.

B Quantification of the numbers of ruptured vessels as assessed by counting blunt/point-ended vessel structures in resting (Ctrl) and 24 h inflamed (24) WT and
ACKR2-KO mouse ears. Each data point represents the mean of 3 FOV measurements per mouse ear.

C Quantification of (i) lymphatic vessel branch numbers and (ii) average distance between individual lymphatic vessels in WT and ACKR2-KO mouse ears at rest (Ctrl)
and at 24 and 72 h post-TPA treatment. Each point on the graphs represents the mean of measurements from 3 FOVs per mouse ear imaged under an objective
ZEISS EC Plan-Neofluar 5× /0.16 M27 on the Zeiss AxioImager M2 for quantification.

D, E qPCR analysis of expression of Prox-1 (D) and VEGF-D (E) in resting (Ace) and TPA-inflamed (72) WT and ACKR2-deficient (KO) adult (7–8 weeks old) mice. Each data
point represents one ear per mouse and data points from two independent experiments were pooled together. Student’s t-test (E) and Mann–Whitney U-test (D)
was used for the statistical analysis between groups.
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part, for the enhanced lymphatic vessel width in the CCR2-deficient

embryonic mouse skins. This would not, however, explain why the

same phenotype was not seen in ACKR2-deficient mouse skins

suggesting, as detailed below, complex dynamics of the macrophage

populations in this development context. Thus, two distinct macro-

phage populations, distinguished on the basis of CD11b, F4/80 and

Lyve-1 staining, and displaying broadly pro-lymphangiogenic and

anti-lymphangiogenic gene expression patterns respectively, are

seen in the developing mouse skin at E15.5. Notably, the R2 popula-

tion is indistinguishable, in terms of flow cytometry profile and

transcript patterns, from the population of ‘tissue resident’ yolk-

sac-derived monocytes described by Schulz et al (2012), whereas the

R1 population is equivalent to the myb-dependent population of

haemopoietic stem cell-derived monocytes described in the same

study.

ACKR2 and CCR2 reciprocally regulate Lyve-1+ macrophage
proximity to developing lymphatic vessels

As alterations in macrophage ‘proximity’ were associated with the

altered lymphatic vessel density in ACKR2-deficient adult mice, we

next examined the impact of ACKR2, or CCR2, deletion on the prox-

imity of the pro-lymphangiogenic Lyve-1+ macrophage population

to developing lymphatic vessels. Co-staining of E15.5 dorsal skin for

Prox-1, and Lyve-1, revealed alterations in the proximity of the

Lyve-1+ macrophages to lymphatic vessel surfaces (Fig 9A and with

depth coding in Supplementary Fig S8). Specifically, whilst Lyve-1+

macrophages were seen to be relatively remote from lymphatic

vessel surfaces in WT and CCR2-deficient skins, they were closely

associated with, and indeed followed the contours of, vessel

surfaces in ACKR2-deficient skin (arrowed in Fig 9A). The average
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Figure 6. Implicating macrophages and CCR2 in regenerative lymphangiogenesis.

A Application of clodronate liposomes has no effect on resting cutaneous lymphatic vessel density as imaged by podoplanin staining of either uninjected, PBS or
clodronate liposome-treated WT mouse ears. Images shown here are 3D transparent images with rainbow scale bars showcasing the axial (Z)-dimensions across
the Z-stacking. Scale bars, 200 lm.

B Flow cytometric quantitation of macrophages (CD11b+F4/80+Ly6C�) in the TPA-inflamed ears of WT mice following s.c. injection of PBS-containing liposomes
(LipoPBS) or clodronate liposomes (LipoClo).

C, D Quantification of lymphatic vessel density in WT (C) and ACKR2-KO (D) mouse ears at rest (acetone) or at 72 h after application of TPA in the absence (LipoPBS) or
presence (LipoClo) of locally applied clodronate liposomes by measuring the number of branches. Each point on the graphs represents the mean of measurements
from 5 FOVs per mouse ear whole-mount imaged under a ZEISS EC Plan-Neofluar 5× /0.16 M27 lens on the Zeiss AxioImager M2 wide-field microscope. Ace: the
number of branches pooled from the uninjected ears painted with acetone only.

E Quantification of lymphatic vessel density in the differential treated mouse ears (RS = CCR2 blocker) by measuring the number of branches. Each point on the
graphs represents the mean of measurements from 3 FOVs per mouse ear whole-mount imaged under a ZEISS EC Plan-Neofluar 5× /0.16 M27 lens. Ace: the
number of branches pooled from the uninjected ears painted with acetone only.

Data information: All data were analysed using one-way ANOVA with Newman–Keul multiple comparison test.
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distances between Lyve-1+ macrophages and lymphatic vessel

surfaces were then systematically measured revealing that these

macrophages were significantly closer to ACKR2-deficient lymphatic

vessel surfaces, and further away from CCR2-deficient vessel

surfaces, compared to WT skins (Fig 9B and C). Note that the

macrophages and lymphatic vessels imaged in Fig 9 lie within the
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Figure 7. Differences in lymphatic vessel density in ACKR2-deficient mice are developmentally established.

A Alexa-CCL22 stained (purple) D6+ structures in lymphatic vessels (Lyve-1 stained, green, and outlined) in WT but not ACKR2-KO E15.5 skin. Punctate ACKR2 staining is
indicated by arrows. Images are maximum projection images. The z-projections are marked as “z” on the top right corners of the images with a thickness of 9 lm
(top) or 14 lm (bottom). The z-stack images were acquired, every 1 lm, using an EC Plan-Neofluar 40× /0.75 Ph2 M27 lens on the AxioImager M2 wide-field
fluorescence microscope. Scale bars, 20 lm.

B Immunostaining for cutaneous lymphatic vessels using antibodies to VEGFR3 reveals a higher density in ACKR2-deficient (KO), compared to WT, E15.5 embryos.
Images shown are 3D transparent projection images (with depth coding scale bars to demonstrate Z-axial dimensions) taken using an EC Plan-Neofluar
5× /0.16 M27 lens. Scale bars, 200 lm.

C Quantification of lymphatic vessel density in E14.5 and E15.5 WT and ACKR2-KO embryos by measuring (i) number of branches and (ii) number of enclosed structures,
or ‘loops’, formed by individual branches. Each point on the graphs represents the mean of 2–4 measurements per field of view (with a scaled image size of
900 × 700 lm in the x-y direction) for each embryo skin whole-mount imaged using an EC Plan-Neofluar 10× /0.30 Ph1 lens on a Zeiss AxioImager M2. Data were
analysed using Student’s t-test.

D Whole-mount staining for cutaneous lymphatic vessel networks in E15.5 WT and CCR2-KO mice using antibodies to VEGFR3. Images shown are 3D transparent
projection images acquired using an EC Plan-NeoFluar 10× /0.30 Ph1 lens on a Zeiss AxioImager M2. A rainbow scale bar is shown to demonstrate the Z-axial
dimensions. Scale bars, 100 lm.

E Quantification of lymphatic vessel structures in E15.5 WT and CCR2-KO embryos by measuring (i) number of ‘loops’ and (ii) mean vessel width. Each point on the
graphs represents the mean of three measurements per embryo skin sample that were imaged using an EC Plan-Neofluar 10× /0.30 Ph1 lens with a scaled image
size of 900 × 700 lm in the x-y direction. Numbers of loops were divided by the total areas of skin to give the numbers of loops/mm2. Data were analysed using
(i) Student’s t-test and (ii) one-way ANOVA with Newman–Keul multiple comparison test.
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same Z-dimensions as shown by the depth coding details in Supple-

mentary Fig S9. Thus, these data suggest that reciprocal regulation

of Lyve-1+, pro-lymphangiogenic, macrophage proximity to devel-

oping lymphatic vessels by ACKR2, and CCR2 is associated with

altered lymphatic vessel density.

Discussion

Despite the clear importance of macrophages for physiological

and pathological lymphangiogenesis, the molecular mechanisms

regulating their recruitment to the lymphatic vasculature remain

poorly defined. Here, we implicate a CCR2-dependent axis, and its

regulation by the atypical chemokine receptor ACKR2, in this

context. ACKR2-deficient mice display increased lymphatic vessel

density, which is associated with enhanced, CCR2-dependent,

macrophage recruitment to the vicinity of the lymphatic vasculature

and a closer apposition of these cells to vascular surfaces. In

contrast, CCR2-deficient mice display a less dense lymphatic

vascular network. The fact that macrophages are sources of pro-

lymphangiogenic cytokines provides further explanation of the

phenotype observed and of the molecular basis for the reciprocal rela-

tionship between ACKR2 and CCR2 in the regulation of lymphatic

vessel density. The increased lymphatic vessel density apparent in

ACKR2-deficient mice is seen in adult, newly weaned and develop-

mental contexts, as well as in situations of post-inflammatory
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Figure 8. Analysis of cutaneous peri-lymphatic macrophage populations in WT, ACKR2-deficient and CCR2-deficient embryos.

A (i) Flow cytometry showing expression of CD11b and F4/80 by the two prominent monocyte/macrophage populations in WT, ACKR2-deficient and CCR2-deficient
E15.5 skin. (ii) Flow cytometric assessment of Lyve-1 staining on the R1 and R2 populations from (i).

B Quantification of the sizes of the CD11bhiF4/80loLyve-1� (i) and CD11bloF4/80hiLyve-1+ (ii) monocyte/macrophage populations in WT, ACKR2-deficient and CCR2-
deficient E15.5 skins.

C Expression of (i) inflammatory cytokine transcripts and (ii) inflammatory CC-chemokines by the two macrophage populations. White bars denote the R1, and black
bars the R2 cell populations. Fpr1: formyl peptide receptor 1; Itgm: integrin alpha M. *P < 0.05; **P < 0.01; ***P < 0.001.

D Expression of (i) pro-angiogenic and (ii) anti-angiogenic factors by the two macrophage populations. White bars denote the R1 and black bars the R2 cell populations.
Plau: plasminogen activator, urokinase; Igf: insulin-like growth factor; Egf: epidermal growth factor; Itgb3: integrin beta 3. Angpt1: angiopoietin-1; Flt1: FMS-like
tyrosine kinase (source of soluble(s)Flt); Fn1: fibronectin 1; Thbs1: thrombospondin-1; Timp2: tissue inhibitor of metalloproteinase 2. *P < 0.05; **P < 0.01.
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lymphatic network regeneration. The reduced lymphatic vessel

density apparent in CCR2-deficient skin is also apparent in adult

and newly weaned mice. Notably, CCR2-deficient embryos demon-

strate a trend towards reduced vessel density in E15.5 embryonic

skin, but this did not reach statistical significance, suggesting that

the major roles for CCR2 in regulating lymphatic vessel density may

be more apparent in adult mice than in the developing embryo.

Collectively, these observations indicate a previously unanticipated,

but essential, role for chemokines and their receptors in regulating

macrophage dynamics during the development of lymphatic vessel

networks. This study also represents the first report of a develop-

mental role for inflammatory CC-chemokines and their receptors.

Importantly, the functions proposed for ACKR2 and CCR2 in

lymphangiogenesis are quite distinct from, but complementary to,

those reported for the homeostatic chemokine receptor CXCR4,

and its ligand CXCL12, which provide early guidance cues for
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Figure 9. Differential proximity of Lyve-1+ macrophages to lymphatic vessels in WT, ACKR2-deficient and CCR2-deficient embryos.

A (i) Representative wide-field fluorescence images acquired at 10× magnification of PFA-fixed whole-mounts of E15.5 dorsal skin sheets of WT, ACKR2-KO and CCR2-
KO embryos. Fixed dorsal skin sheets were stained for Prox-1 (purple) and Lyve-1 (green). Scale bars, 100 lm. White arrows indicate the localisation of macrophages
along vessel walls in the ACKR2-deficient image. (ii) Axial dimensions for Prox-1-stained images. Scale bars, 100 lm. All maximum projection images were acquired
using an EC Plan-Neofluar 10× /0.30 Ph1 lens on the Zeiss AxioImager M2, and all the 3D transparent projection images with depth coding rainbow scale bars were
generated using Zeiss Zen 2012 (Blue edition).

B Representative wide-field fluorescence images cropped from ImageJ counter-Window images acquired using an EC Plan-Neofluar 10× /0.30 Ph1 lens demonstrating
the distance of Lyve-1+ macrophages (green) to the lymphatic vessel walls (green with Prox-1 in purple) in PFA-fixed E15.5 dorsal skin whole-mounts of WT, ACKR2-
KO and CCR2-KO embryos.

C A graph showing the mean distance of Lyve-1+ macrophages to the lymphatic vessel walls of PFA-fixed E15.5 dorsal skin whole-mounts. Each point on the graph
represents data from a single embryo. One-way ANOVA was used for statistical analysis with differences between groups analysed by a post-test using Newman–Keul
multiple comparison test as a post-test.
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development of the lymphatic trunk but which play no role in

controlling CD11bloF4/80hiLyve-1+ pro-lymphangiogenic macro-

phage proximity to developing vessel networks (Cha et al, 2012).

In the context of CCR2-regulation of macrophage recruitment to

sites of developing and adult lymphatic networks, our data provide

a mechanistic basis for observations from macrophage-deficient

op/op mice in which, again, reduced lymphatic vasculature is

observed (Kubota et al, 2009). However, reports of hyperplastic

skin lymphatic vasculature in developing PU1�/� and CSF1R�/�

mice (Gordon et al, 2010; Harvey & Gordon, 2012) suggest that

there are currently unexplained complexities with regard to the role

of macrophages in lymphatic vessel development. Of particular note

is the marked increase in vessel width in CCR2-deficient E15.5

skins, which is also seen in embryos from macrophage-deficient

mouse strains (Gordon et al, 2010). Importantly, we found a reduc-

tion in numbers of CD11bhiF4/80loLyve-1� macrophages with an

anti-lymphangiogenic gene expression pattern in CCR2-deficient

E15.5 mouse skins, suggesting that the absence of this macrophage

population could contribute to the increased vessel width in CCR2-

deficient mice. The fact that this population is also depleted in

ACKR2-deficient mice suggests a complex interplay between the two

macrophage populations in defining the overall lymphangiogenic

programme. It is important to note that CCR2-deficient mice are

characterised by a profound monocytopenia, and thus, aspects of

the phenotypes observed in adult CCR2-deficient mice may be

explained by the general reduction in myelomonocytic cells.

However, the ability of the pharmacological blocker of CCR2 to

inhibit post-inflammation vessel regeneration again suggests that

the phenotype observed is not simply related to monocytopenia but

to reduced macrophage recruitment directly to the vicinity of

developing/regenerating vessels.

In keeping with a previous report (Vigl et al, 2011), we demon-

strate CCL2 expression by resting lymphatic endothelial cells. Our

model for ACKR2 and CCR2 function in the regulation of lymphatic

vessel density therefore suggests that ACKR2 is responsible for regu-

lating CCL2 (and potentially other inflammatory CC-chemokine)

gradients emanating from the lymphatic endothelial surface and

therefore for controlling the proximity of CCR2+ macrophages to

lymphatic vessel surface. In keeping with this model, we have previ-

ously demonstrated that ACKR2 is capable of regulating vessel

presentation of lymphatic endothelial cell-produced chemokines on

a cell-autonomous basis (McKimmie et al, 2013). We note that

lymphatic endothelial cells have been shown to be strong expressers

of the dipeptidyl-peptidase CD26 (Shin et al, 2008) for which

inflammatory chemokines are known to be physiological substrates

(Proost et al, 1998). This suggests potentially complex regulation of

chemokine involvement in the control of lymphangiogenesis by

local enzymatic processing of chemokine ligands.

In the specific context of ACKR2, our current study suggests

distinct roles under resting and inflammatory conditions. Whilst, as

shown here, ACKR2 regulates macrophage proximity to lymphatic

vessels at rest and thus contributes to control of lymphangiogenesis,

in inflamed situations, ACKR2 is involved in minimising inflamma-

tory cell interaction with lymphatic endothelial surfaces and

ensuring ‘openness’ of lymphatic channels (Lee et al, 2011, 2013).

Accordingly, ACKR2-deficient mice display relatively inefficient

antigen presentation from inflamed sites. It is notable that expression

of ACKR2 by lymphatic endothelial cells is strongly up-regulated,

during inflammation (McKimmie et al, 2013) by interleukin-6 and

interferon-c. This may provide some rationale for the observed

impairment of lymphangiogenesis in response to interferon-c
(Kataru et al, 2011).

As well as being of developmental interest, our study suggests a

possible involvement of inflammatory chemokine and receptor func-

tion in the establishment of resting blood pressure. Thus, one nota-

ble consequence of the enhanced lymphatic vascular density in

ACKR2-deficient mice is that, at rest, fluid drains more efficiently

from ACKR2-deficient mouse skin than from WT skin and this is

associated with a hypotensive phenotype. Lymphatic vessel remod-

elling and expansion in response to high salt diet has been strongly

associated with macrophage recruitment to tissue sites (Machnik

et al, 2009; Wiig et al, 2013), and again, the ability of ACKR2 to

regulate this process may explain the hypotensive phenotype

observed.

In summary, therefore we demonstrate a key role for ACKR2 and

CCR2 in the regulation of macrophage proximity to lymphatic vessel

surfaces during lymphangiogenesis. Our current model for this role

(Supplementary Fig S10) proposes that LEC-expressed ACKR2 regu-

lates gradients of the major CCR2 ligand, CCL2, in the vicinity of the

LEC surface and controls pro-lymphangiogenic macrophage proxim-

ity to the developing vessel network. Thus, in contrast to WT mice

(i), the absence of CCL2 scavenging in ACKR2�/� mice results in a

closer association of pro-lymphangiogenic macrophages to develop-

ing vessel walls (ii) and thus the delivery of a higher local concen-

tration of lymphangiogenic factors. This leads to the development of

a denser lymphatic vessel network. What is currently unclear is

whether this closer apposition of macrophages to vessel walls in the

ACKR2�/� embryos results in macrophage depletion in other skin

compartments. This, and any associated developmental conse-

quences, remains to be examined. In contrast to ACKR2�/� mice,

CCR2�/� mouse macrophages are less capable of migrating towards

the peri-lymphatic CCL2 (iii) thus effectively reducing the concentra-

tion of lymphangiogenic factors within the developing lymphatic

vasculature resulting in a less dense vessel network. This represents

the first reported evidence of inflammatory chemokine/chemokine

receptor involvement in development and lymphangiogenesis. Our

observations have implications for cardiovascular disease and high-

light chemokines as plausible therapeutic targets for interfering with

pathogenic lymphangiogenesis.

Materials and Methods

Animals

C57Bl/6 WT and ACKR2-deficient mice (Jamieson et al, 2005) were

bred in-house. CD11cYFP and CCR2-deficient mice (both C57Bl/6)

were from JAX Laboratories. ACKR2-deficient mice were crossed

with CD11cYFP mice to yield ACKR2-deficient/CD11cYFP mice. All

mice were maintained in conventional caging and procedures

performed complied with UK Home Office licensing regulations.

Antibodies

Antibodies used, and suppliers, are listed in Supplementary Table

S1.
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Kinetic measurement of in vivo fluid drainage

Mouse dorsal skin was shaved 2 days before subcutaneous (s.c.)

injection of 25 ll 15 nmol/ml of SAIVITM AF750 injectable contrast

agent BSA (Molecular Probes, InvitrogenTM Life Technologies, USA

Cat no: S34789) or 50 ll of 20 nM Qdot800 (Molecular Probe, Invitro-

genTM Life Technologies, USA Cat no: Q21071MP). Mice were placed

on a warm pad (37°C) inside a chamber and anaesthetised (isoflurane)

for imaging using IVIS Spectrum Caliper (Perkin Elmer, USA) by

epi-ilumination exposure at 710 nm with emission being detected

at 780 nm. Mice were imaged every 30 min over a 4-h period.

Induction of sterile skin inflammation

Dorsal sides of ear skin were painted with 15 ll of 50 lM TPA

(Sigma-Aldrich, UK) in acetone. An equivalent volume of acetone

was painted as a vehicle control. Following 24 and 72 h, ears were

excised for antibody labelling of dermal lymphatic vessels as

described in the Supplementary Materials and Methods.

qPCR analysis

Details of qPCR methodology are given in the Supplementary

Materials and Methods. Primers used are listed in Supplementary

Table S2.

Frozen sectioning and immunostaining of ear skin biopsies

8-mm ear punch biopsies were obtained using STIEFEL biopsy

punches (Schuco, Germany). Punch biopsies were covered with

OCT embedding medium and frozen, using isopentane (Sigma-

Aldrich)-cooled liquid N2, to form circular frozen blocks on cork

discs (Raymond A Lamb, UK) and 10–14-lm sections cut on a Shan-

don CryotomeTM (Thermo Scientific). Ribbons of frozen sections

mounted onto POLYSINETM slides (VWR International, Germany)

were fixed in acetone on ice for 10 min. After three washes in TBS,

sections were blocked in TBS/2.5% fish gelatin (Sigma-Aldrich) and

5 lg/ml mouse IgG for 30 min at RT before avidin–biotin block

(Vector Laboratories, UK). Frozen sections were then stained at 4°C

overnight with 8 lg/ml biotin-conjugated anti-CD11b mAb and

4 lg/ml of anti-podoplanin antibody in TBS/1% fish gelatin/5 lg/
ml mouse IgG. AF647-conjugated streptavidin (4 lg/ml) and AF546-

conjugated goat anti-hamster IgG (4 lg/ml) were added in TBS/1%

fish gelatin onto the frozen sections for detection of CD11b+ cells

and pdpn vessels in the dermis. For co-staining of VEGF-D with

CD11b and F4/80, frozen ear sections were blocked as above with

fish gelatin and avidin–biotin. Sections were then incubated over-

night at 4°C with 2 lg/ml goat anti-VEGF-D antibody, 5 lg/ml of

biotin-conjugated M1/70 (CD11b) and 5 lg/ml of FITC-conjugated

BM8 (F4/80), all in TBS/1% fish gelatin/0.05% Triton X-100. Next,

sections were submerged in TBS/1% H2O2/0.05% NaN3 for 20 min

at RT and then washed 3 × in TBST/0.05% stained with 2 lg/ml

of HRP-conjugated anti-goat IgG (H+L) and 5 lg/ml of AF647-

conjugated streptavidin in TBS/1% fish gelatin for 1 h at RT and

washed once in TBST/0.05%. Sections were then incubated in 5 lg/
ml AF488-conjugated goat anti-FITC antibody prepared in TBS/1%

gelatine and washed once in TBST/0.05%. 1:70 TyramideCy3 diluent

(Perkin Elmer, USA) was then added to the sections for 5 min at RT

for amplification of the VEGF-D signal, and sections were then

washed 3 × 5 min in TBST/0.05% with gentle agitation.

Measurements of macrophage proximity to the lymphatic vessels

Details of the methodology for measuring macrophage proximity to

lymphatic vessels are given in the Supplementary Materials and

Methods.

Administration of CCR2 blocker (RS504393) and
clodronated/PBS liposome

Dorsal sites of adult ear skin painted with TPA/acetone for 48 h

were s.c. injected with 5 ll of 2 mg/ml RS504393 (Mirzadegan et al,

2000) (TOCRIS Bioscience, Bristol, UK) or equal volume of filter-

sterilised PBS using Hamilton customised needles (Gauge: 33;

length: 10 mm; Point style 4) and Hamilton Microlitre Syringe, 700

Series (701RN). In separate experiments, 2 ll of clodronate lipo-

somes, or PBS liposomes (as a control), obtained from http://

www.clodronateliposomes.org, was s.c. injected into TPA (48 h)-

painted dorsal ear skin as above. At 24 h post-injection, ears were

collected (i.e. at 72 h TPA painting) for labelling of the dermal

lymphatic networks on the cartilage-free ventral sides as described

below.

Fluorescent chemokine uptake assay

Fresh, unfixed E15.5 dorsal skin samples were placed into 24-well

tissue culture plates (Corning, USA) with 200 ll cRPMI containing

0.5 lg AF647-labelled human(h)CCL22 (Almac, Scotland UK). The

plates were then placed into a humidified incubator at 37°C/5% CO2.

After 30 min, cRPMI was removed and the tissue gently rinsed three

times with warm cRPMI. The plates were then placed onto ice, and

the skin samples incubated with cold 4% PFA for 20 min. After

washing three times with cold PBS, the skin samples were incubated

in cRPMI with 6 lg/ml goat anti-Lyve-1 antibody overnight at 4°C

with slow, gentle, agitation. AF488-conjugated chicken anti-goat IgG

was added at 6 lg/ml in cRPMI to the dorsal skin samples for 30 min

at RT for subsequent imaging of the Lyve-1+ lymphatic networks.

Whole-mount labelling of tissue lymphatic vasculature

Mouse ear skin

Cartilage-free ventral sides of ear were fixed in 4% PFA (in PBS) for

20 min at RT prior to incubating with combinations of 4 lg/ml anti-

pdpn monoclonal antibody, 4 lg/ml anti-Lyve-1 polyclonal anti-

body and 4 lg/ml anti-collagen IV antibody in cRPMI/10% FBS/

10 mM HEPES/10 lg/ml Gentamicin (Sigma-Aldrich, UK) with 100

units/100 lg/ml of penicillin/streptomycin (Life Technologies, Pais-

ley, UK) for 90 min at RT. Ear skin was then incubated in cRPMI

with 6 lg/ml of AF488-conjugated chicken anti-goat IgG for 30 min

at RT and washed once before incubating with 6 lg/ml of AF546-

conjugated goat anti-hamster IgG diluted in cRPMI for 30 min at RT.

For detection of VEGFR3 on adult skin lymphatic vasculature, 3 lg/
ml goat anti-VEGRF3 antibody and 4 lg/ml hamster anti-podopla-

nin monoclonal antibody were used for incubation as above. Cy3

Tyramide signal amplification reagents (Perkin Elmer, USA) were

used for visualising VEGFR3, and 6 lg/ml of AF488-conjugated
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chicken anti-hamster IgG diluted in cRPMI was used for revealing

podoplanin. For labelling of blood vessels, dermal sides of unfixed

cartilage-free ear halves were incubated in cRPMI with 4 lg/ml of

anti-pdpn monoclonal antibody and biotin-conjugated Meca-32 for

1 h at RT and then washed once before labelling with 8 lg/ml of

AF546-conjugated anti-hamster IgG (H+L) and AF647-conjugated

streptavidin for 30 min at RT. Stained ears were fixed in 4% PFA

for 20 min at RT prior to microscopic examination. Blood vessels

were identified as podoplanin-ve with strong expression of Meca-32.

A series of Z-stack images (14 lm to 18 lm) was acquired, at

every 1 lm, on a Zeiss AxioImager M2 with an EC Plan-Neofluar

5× /0.16 M27 lens. The density of blood endothelial vessels was

quantified on the maximum projection images with a size of

1.8 mm (x-axis) × 1.4 mm (y-axis) by measuring the inter-vessel

distances and counting the numbers of “loops” using ImageJ plug-in

LVAP (Lymphatic Vessel Analysis Protocol).

Mouse diaphragms

Diaphragm muscles with central tendons were fixed in 4% PFA for

20 min at RT before incubating for 90 min at RT with 8 lg/ml goat

anti-mouse Lyve-1 antibody in cRPMI/0.05% Triton X-100 (Sigma-

Aldrich, UK). Samples were then incubated in cRPMI with 6 lg/ml

AF488/AF647-conjugated chicken anti-goat IgG for 30 min at RT.

Mouse embryonic skin

Embryo fixation and isolation of skin were performed as described

(Mukouyama et al, 2012) with the following modifications.

Harvested embryos were immediately immersed in cold 4% PFA (in

PBS) for 1 h at RT. Embryos were then kept in methanol at �20°C

until use. Forelimb skin or dorsal skin was isolated using fine

forceps and scissors (Fine Science Tools, Germany) under a dissec-

tion microscope and incubated with 2 lg/ml anti-VEGFR3/anti-

Lyve-1 or 1:2,000 anti-Prox-1 antibodies in cRPMI/0.05% Triton

X-100 (Sigma-Aldrich, UK) overnight at 4°C with gentle agitation.

Anti-Prox-1 antibody staining was visualised by incubation with

10 lg/ml AF647-conjugated chicken anti-rabbit IgG in cRPMI for

1 h at RT. For detection of VEGFR3 and Lyve-1, skin was incubated

in TBS/0.1% H2O2/0.1% NaN3 for 30 min at RT before washing 3

times (5 min each) in TBS/2% fish gelatin (Sigma-Aldrich, UK).

This was followed by 30-min incubation with 3 lg/ml of HRP-

conjugated horse anti-goat IgG in TBS/1% fish gelatin. Following

three washes (5 min each) in 0.05% TBST, tyramide-conjugated

Cy3 reagent (Perkin Elmer, USA) was used at 1:70 for signal amplifi-

cation detection of VEGFR3 and Lyve-1.

CCL2 staining

Four percent of PFA-fixed cartilage-free ear sheets were incubated in

cRPMI/0.05% Triton X-100 with 6 lg/ml goat anti-mouse CCL2

antibody and 4 lg/ml hamster anti-pdpn mAb at RT for 2 h. Stained

ear sheets were washed three times in cRPMI (without Triton

X-100) for 5 min each and then incubated with 4 lg/ml fluorescein-

conjugated rabbit anti-goat, in cRPMI only, for 30 min at RT. After

three 5 min washes in cRPMI, stained ear skin was incubated with

5 lg/ml goat AF488-conjugated anti-fluorescein antibody and 5 lg/
ml goat AF546-conjugated anti-hamster antibody. Stained skin was

finally fixed in 4% PFA for 10 min and then washed three times in

PBS and mounted with Vectorshield (Vector Laboratories, Inc.,

Burlingame, USA).

Ki67 staining

Four percent of PFA-fixed cartilage-free ear sheets were incu-

bated in TBS with 1% fish gelatine/0.05% Triton X-100 and

1:100 Ki67 antibody, 4 lg/ml of hamster anti-podoplanin and

goat anti-Lyve-1 antibodies overnight at 4°C with gentle agita-

tion. 8 lg/ml of anti-rabbit IgG, anti-goat IgG (both raised in

chicken) and goat anti-hamster IgG were used for visualisation

of these markers.

Assessment of mouse ear skin lymphatic vascular density

Details of methods for quantifying lymphatic vascular density are

given in the Supplementary Materials and Methods.

FACS analysis of skin and lymph nodes

Skin samples

Cartilage-free ear sheets were minced and incubated in 1 ml of

digestion master mix [500 lg/ml dispase (Invitrogen); 1 mg/ml

collagenase-D and 100 lg/ml DNase (Roche) in HBSS (Invitrogen)]

at 37°C for 30 min with agitation. After 30 min, a further 1 ml of

digestion master mix was added and incubation continued for 1 h.

Skin digests (on ice) were then filtered through 70-lm cell strainers

(BD Bioscience), with 1-ml syringe plungers being used to enhance

cellular passage through the mesh and finally washed through with

2 ml of cRPMI/10% FBS/10 mM HEPES. Cell suspensions were

centrifuged at 400 g for 5 min and washed twice in cold FACS

buffer (0.1% BSA/0.1% NaN3/2 mM EDTA in PBS) before being

incubated in FcBlock (Miltenyi, Germany). FcBlock-stained ear skin

digests were further stained for CD45, F4/80 and Mac-1 (CD11b)

for flow cytometry. A similar method was used for E15.5 dorsal

skin sheets with the following changes. E15.5 embryos were kept

on ice in RPMI, and dorsal skin sheets were gently dissected out in

a 60-mm petri dish (Corning, USA) with cold TBS under a dissec-

tion microscope. Minced dorsal skin sheets were digested and

processed as the above except that that 1 ml of digestion master

mix was used with only one-hour 37°C incubation with agitation

and 500 ll of cRPMI/10% FBS/10 mM HEPES was added to the

70-lm nylon mesh. E15.5 skin cell suspensions were stained for

Lyve-1, F4/80 and CD11b and flow cytometry performed on a

MACSQuant (Miltenyi, Germany). Cell doublets were gated-out on

the SSC-A (Area), and SSC-H (Height) channels and dead cells

stained with DRAQ7TM (Biostatus, UK) were excluded. Data analysis

used FlowJo version 7.6.5 (TreeStar, USA). For the ear skin cell

suspension, myeloid/macrophages were gated on live CD45+ cell

populations.

Lymph nodes

Migratory DCs were identified within the ‘live cell’ gate from ingui-

nal lymph nodes by defining them as being CD11c+/MHC-IIhi.

Langerhans cells were defined as being CD11c+/CD11b+/MHC-IIhi/

EpCAM+. Antibodies used and full details of the flow cytometric

strategy adopted are as previously reported (Lee et al, 2011).

SPIM (Single Plane Illumination Microscopy) analysis

Details of SPIM imaging methodology are given in the Supplemen-

tary Materials and Methods.
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Pathway-focused qPCR arrays

Details of Pathway-focused qPCR methodology are given in the

Supplementary Materials and Methods.

Image analysis

Images were acquired on Zeiss AxioImager M2 epifluorescence

microscope (Germany) with AxioVision software (Release 4.8.2 06-

2010)/Zeiss ZEN 2012 (Blue edition) or Zeiss LSM510 confocal

microscope with ImageExaminer software. Images were analysed

using Zeiss AxioVision analysis modules: Interactive Measurements,

Colocalization and 3D-deconvolution (the latter of which was oper-

ated on AxioVision Release 4.8.2 12-2009, Special Edition), ImageJ

plug-in LVAP (Lymphatic Vessel Analysis Protocol) (Shayan et al,

2007) and Bitplane Imaris Version 7.6.1 (Switzerland). Specific

details are also provided in each of the relevant figure legends.

Murine blood pressure (BP) measurements

Details of the methodology for measuring blood pressure are given

in the Supplementary Materials and Methods.

Statistical analysis

Two-tailed unpaired t-test, Mann–Whitney U-test, one-way ANOVA

with Newman–Keuls multiple comparison tests and two-way

ANOVA were performed on GraphPad Prism 4 for statistical analysis

as described in the figure legends, with P-values < 0.05 considered

to be significant. Data are presented as mean � SEM unless other-

wise stated.

Supplementary information for this article is available online:

http://emboj.embopress.org
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