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Abstract

Background: Polymorphisms in the promoter region of the serotonin transporter gene (5-HTTLPR) and exposure to early
childhood adversities (CA) are independently associated with individual differences in cognitive and emotional processing.
Whether these two factors interact to influence cognitive and emotional processing is not known.

Methodology and Principal Findings: We used a sample of 238 adolescents from a community study characterised by the
presence of the short allele of 5-HTTLPR (LL, LS, SS) and the presence or absence of exposure to CA before 6 years of age. We
measured cognitive and emotional processing using a set of neuropsychological tasks selected predominantly from the
CANTABH battery. We found that adolescents homozygous for the short allele (SS) of 5-HTTLPR and exposed to CA were
worse at classifying negative and neutral stimuli and made more errors in response to ambiguous negative feedback. In
addition, cognitive and emotional processing deficits were associated with diagnoses of anxiety and/or depressions.

Conclusion and Significance: Cognitive and emotional processing deficits may act as a transdiagnostic intermediate marker
for anxiety and depressive disorders in genetically susceptible individuals exposed to CA.
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Introduction

Allelic variation in the promoter region of the serotonin

transporter (5-HTTLPR), encoded by a single gene (SLC6A4), is

partly responsible for regulating serotonergic (5-hydroxytrypta-

mine, 5-HT) functions in the brain [1]. 5-HTTLPR has been

considered functionally bi-allelic, where the short (S) allele of this

region is associated with lower transcriptional activity, less 5-HT

uptake, binding and lower concentrations [2,3]. An in vivo study

also showed higher rates of 5-HT uptake in platelets for the long

(L) compared to the S allele [4]. More recently, research has

suggested that an A.G single-nucleotide polymorphism (SNP;

rs25531) makes the L allele function similar to the S allele when it

is LG rather than LA [5,6,7], although this literature is somewhat

inconsistent [8,9]. Human brain imaging (PET) findings also

suggest that if there are differences they may occur more in

moderating neurogenesis or methylation processes than binding as

such but the precise mechanisms remain somewhat unclear [9].

Two studies have shown that although the LG and S alleles are

functionally similar, the S and LA alleles displayed the lowest and

highest functioning, respectively, in absolute terms [7,10].

Originally postulated to play a causal role in the development of

anxiety-related traits [3] or affective disorder [11], subsequent

research has suggested that 5-HTTLPR has a moderating role in

the presence of other factors such as an adverse social environment

[12].

The interplay between genes and environment in psychopa-

thology is comprised of two broad categories: gene-environment

interactions (G6E) and gene-environment correlations (rGE)

[13,14,15]. In the seminal G6E interaction study on depression

by Caspi et al. [16] the probability of a major depressive episode in

young adulthood was approximately doubled for S allele

homozygotes when compared to their L allele homozygote

counterparts, among people with multiple recent environmental

adversities. This G6E effect was subsequently replicated in

maltreated and bullied children [17,18]. Following the work of

Caspi and colleagues [16] there has been a considerable amount of

research testing for the presence of G6E with both positive and

null effects being reported. Compared to previous publications

[19,20] the largest meta-analysis to date has supported the G6E
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hypothesis indicating a diathesis-stress model involving some form

of within person vulnerability for subsequent clinical affective

disorders [21]. Further theoretical accounts, however, have

proposed a broader impact for common gene variants, such as

present in 5-HTTLPR, conferring differential susceptibility to the

social environment [22,23] or a biological sensitivity to context

[24,25]. Thus, rather than being specifically ‘vulnerable’ to

negative environmental risks, these views suggest that individuals

with the S allele are more susceptible or sensitive to the

environment in general; whether it is ‘good’ or ‘bad’. Accordingly

given a positive environment, individuals homozygous for the S

allele (SS) may have significantly lower levels of emotional

difficulties and symptoms than their LL counterparts. Experimen-

tal study has yet, however, to reveal the precise nature of the

emotional bias in S carriers. For example 5-HTTLPR S carriers

can demonstrate a significant attentional bias toward negative or

threatening stimuli such as words [26] or spiders [27]. Equally,

however, attentional biases towards emotionally positive as well as

negative images occur in S carriers [28,29]. Other studies have

shown that S carriers display a greater bias towards negative

stimuli (angry faces) while L carriers show the reverse bias, towards

positive stimuli [30]. Finally a recent report showed that strong

attentional biases can be trained in S carriers for both positive and

negative stimuli [31].

There has been increasing interest in how both genes and the

social environment are related to cognitive and emotional

processing that is associated with affective disorders [32]. Recent

conceptual models of emotion psychopathology [33] suggest that

cognitive abnormalities such as a negative affective bias may be a

product of genetic polymorphisms (e.g. 5-HTTLPR) and environ-

mental influences, while also being a central cause of the

development of emotional disorder. Whether the translation of

the G6E effect into disorder is likely to be due to cognitive and

emotional information processing is a testable neuropsychological

hypothesis.

Studies across the lifecourse have demonstrated that being an S

allele carrier is related to differential cognitive and neural

processing of emotion stimuli. As well as attentional bias

[26,34,35] S carriers show increased amygdale reactivity in

adolescent anxiety and depression [36], errors made in emotion

classification in both typically developing children and ecstasy

users [37,38] and errors on tasks in response to negative feedback

[39,40]. Similarly, exposure to adverse family environments,

including parental discord and various forms of privation and

neglect, are frequently unpredictable and evoke high emotional

sensitivity, maladaptive cognitive distortions and emotion process-

ing biases in offspring [41,42,43]. While these studies addressing

the independent effects of 5-HTTLPR and childhood adversities

(CA) have revealed much about how variation in these factors can

moderate emotional and behavioural responses, they do not take

into account any 5-HTTLPR6CA interactive effects that may

exist. Indeed some have argued that main effects research has now

reached a critical mass and that gene-environment interplay

accounts should take more prominence [32].

A range of studies in children and adolescents has shown that

deficits in cognitive and emotion processing are fundamental to

common mental disorders, such as anxiety and depression, in this

age range [44] and can predict the emergence of future emotional

symptoms [45]. In addition studies with adults have shown

increased errors in response to negative feedback on task

performance (termed a ‘catastrophic response to perceived failure’)

[46,47] in depressed patients compared to well controls. This latter

observation has led to the speculation that catastrophic response to

feedback may be fundamental to the cognitive architecture of

clinical depression [48,49]. Determining the origins of individual

differences in such information processing may therefore extend

our understanding of which individuals are at risk for mental

illness by revealing intermediate phenotypes that are genetically

and environmentally determined.

A recent study focusing on proximal stressful life events and 5-

HTTLPR found no evidence for an interaction on current and

recurrent depressions [50]. This leaves open the possibility that

exposure to family adversities in early childhood could be driving

the effect in genetically susceptible individuals. One major

methodological imperative is to establish with the best retrospec-

tive interview methods available the quality and quantity of

exposure to adversities in the childhood years [51,52].

In this study we used selected data from a new semi-structured

interview-based assessment [53] that collated exposure to the early

family environment of adolescents and assessed the interactive

effects with 5-HTTLPR on self-reported anxiety and depression

symptoms. We have reported that in the cohort from which this

sub sample is drawn exposure to an adverse family environment

over childhood and early adolescent years (up to 14) is associated

with an increased risk for common adolescent emotional and

behavioural psychopathologies with odds ratios ranging from 2.0–

8.0 [53].

In the present study, individual differences in cognitive and

emotional processing including attentional bias and response to

negative feedback are hypothesised as arising from the product of

the combined effects of exposure to CA and possessing two S

alleles in 5-HTTLPR. We tested the specific hypothesis that

cognitive and emotional neuropsychological deficits will be

revealed in adolescents exposed to CA up to the age of 6 who

are homozygous for the S allele in 5-HTTLPR. In order to achieve

our objective, we compared performance on tasks that draw on

attentional bias, response to negative feedback, and simple visuo-

spatial memory in a sub-sample taking part in a longitudinal study

of adolescent development.

Methods

Participants
Participants were sampled from a larger cohort of individuals

(the ROOTS project) recruited from secondary schools in

Cambridgeshire and Suffolk, UK [54]. In the present embedded

study, an opportunity sampling method was used to identify from

available adolescents (around 800 at the time of this sub study) in

the ROOTS cohort an initial sample of 277 (aged 15–18), selected

from the database on the basis of the 2 factors of interest: 5-

HTTLPR (LL,LS,SS) and exposure to CA (presence/absence)

before the age of 6 years to elicit a multi-group design. Participants

were subsequently excluded if the database showed them to be of

non-Caucasian ethnicity (self-report; n = 25), or had a diagnosis of

attention deficit hyperactivity disorder or a neurodevelopmental

disorder (n = 6). At assessment a further 5 were excluded because

they had an IQ lower than 70 (n = 4), or were intoxicated with

alcohol or drugs (n = 1). Participants with available genetic and

environmental data (n = 238 of 241) were then classified by bi-

allelic variants within the promoter region of 5-HTTLPR into 3

groups (LL, LS, SS) and exposure to CA up to 6 years of age. The

latter had been previously ascertained blind to genetic status and

future cognitive and emotional test performance. Those who were

both SS carriers and exposed to CA constituted the ‘at risk’ group.

Given the uncertainty over the functionality of the A.G SNP

associated with 5-HTTLPR in the human brain [9] we carried out

follow-up analyses, re-classifying participants according to the

triallelic genotyping following Parsey et al. [9]. The prime symbol

5-HTTLPR6Adversity and Cognition & Emotion
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used indicates a change from the original metric: LALA were

classified as L9L9; LALG & LAS were classified as L9 S9; LG S & SS

were classified as S9S9. Additionally, we re-analysed the data using

the LA allele only (LALA = L0L0; LAS = L0S0; SS = S0S0) to focus on

the distinction between the highest (LA) and lowest (S) variations

considered involved in transcriptional activity [10]. The protocol

and procedures for the study were all carried out in accordance

with the principles outlined in the Helsinki Declaration [55].

Written informed consent was obtained from all participants and

their parents in compliance with the Cambridgeshire 2 REC local

ethics committee (reference number 03/302).

Materials
The Cambridge early experiences interview. CA occur-

ring before the age of 6 was measured using the Cambridge Early

Experiences Interview (CAMEEI) [53] which is conducted with

the child’s primary care-giver, predominantly biological mothers

(96%) in the ROOTS study. To assess inter-rater agreement on

the CAMEEI, 48 interviews were observed by a 2nd trained

interviewer and the responses independently double coded.

Agreement was high (kappa = 0.7–0.9) on those core indicators

with sufficient positive endorsements to permit analysis (any family

discord, parenting and any financial difficulties). In the present

study, we focused on any episodes of family discord of sufficient

severity to impact on family functioning and any incidents of abuse

(physical, sexual or emotional). There were no incidents of sexual

abuse reported at this age in this subsample and physical or

emotional abuse never occurred in the absence of family discord.

Reported family discord ranged from mild (e.g. constant bickering)

to moderate (e.g. shouting, throwing things, a complete break-

down in communication between family members) to severe (e.g.

domestic violence) and negatively impacted family functioning in

each case. Adolescents were then classified into those exposed and

not exposed to CA.

Self-Reported Anxiety and Depression Symptoms. All

participants completed the Mood and Feelings Questionnaire

(MFQ) [56] at the time of testing. The MFQ has good

psychometric properties [57,58] and also established criterion

validity as a screen for adolescents with unipolar depression [59].

Self-report anxiety data were also available for participants,

collected as part of the wider ROOTS study in the form of the

Revised Children’s Manifest Anxiety Scale (RCMAS) [56]. The

RCMAS is a 28 item instrument with established reliability in

school age children that measures general anxiety, including

physiological anxiety, worry/oversensitivity, and social concerns.

Diagnostic Assessment for Psychopathology. All partici-

pants were assessed for DSM-IV current anxiety, depression or

dysthymia disorders (herein emotional disorders) at 17 years, with

the K-SADS-PL [60], also collected as part of the overall ROOTS

study. We included participants with sub-threshold conditions who

had 3 or 4 symptoms but with overt psychosocial impairment.

Both the diagnostic interviews and self-report anxiety measure-

ment took place before and after testing in the present sub-study

(mean time elapsed = +1.02 years, SD = .57, range = 21.14 to

1.84).

Genotyping. DNA from saliva samples (Qiagen, Crawley,

UK) was genotyped for allelic variation in 5-HTTLPR. This region

was amplified using the primers 59-ATGCCAGCACC-

TAACCCCTAATGT- 39 and 59- GGACCG-

CAAGGTGGGCGGGA-39 which generate a 419 bp and

375 bp product for the ‘L’ and ‘S’ alleles, respectively. The

polymerase chain reaction mixture consisted of: 100 ng genomic

DNA, 10 mM. Tris-HCl (pH 9.0), 1.5 mM MgCl2, 50 mM KCl,

0.1% Triton1X-100, 1.25 U Taq DNA polymerase, 200 mM

dNTPs, 500 nM each of forward and reverse primer and 100 mM

7-Deaza-dGTP in a final reaction volume of 15 mL. The reaction

conditions were 98uC for 7 min, followed by 40 cycles of 96uC for

30 secs, 61uC for 30 secs and 72uC for 1 min with a final

extension stage of 72uC for 10 mins. Polymerase chain reaction

products were electrophoresed on a 3700 DNA analyser (Applied

Biosystems) with semi-automated sizing and genotyping performed

using GENESCAN v3.7 and GENOTYPER v3.7 software for

Windows (Applied Biosystems).

Triallelic genotyping was performed using Taqman methodol-

ogy on a 7900 Sequence Detection System (Applied Biosystems). A

181 bp fragment was amplified using the primers 59-

GCAACCTCCCAGCAACTCCCTGTA-39 and 59-GAGGTG-

CAGGGGGATGCTGGAA-39. Each reaction contained two

fluorogenic probes that are specific for the LA allele (59-6FAM-

CCCCCCTGCACCCCCAGCATCCC-39) and the LG allele (59-

VIC- CCCCTGCACCCCCGGCATCCCC-39). PCR amplifica-

tion of the DNA was completed using 50 ng DNA, 16 Taqman

Universal Mastermix (Applied Biosystems), 500 nM each of

forward and reverse primer, 80 nM FAM probe (LA allele) and

100 nM VIC probe (LG allele) in a final reaction volume of 5 mL.

PCR amplification conditions were 96uC for 10 mins followed by

40 cycles of 96uC for 15 secs and 69uC for 1 min. Following PCR

amplification, an end-point reading of the fluorescence from each

probe was measured, with the relative fluorescence of each probe

used to genotype individuals. Genotyping was completed using the

Sequence Detection System Software Version 2.1 (Applied

Biosystems).

Neuropsychological Assessment. Participants completed

the Probabilistic Reversal Task (PRT) and the following two tasks

from the Cambridge Neuropsychological Test Automated Battery,

CANTABH [61]; the Affective Go/No-Go task (AGN) and the

Paired Associates Learning (PAL), control task. These tasks were

delivered via a portable touch screen computer. A schematic

representation of the tasks is shown in Figure 1.

Probability Reversal Task (PRT). The PRT [48] measures

response to negative feedback. The task requires participants to

learn a visual discrimination between two stimuli (stage 1) and

subsequent reversal of this discrimination (stage 2). On each trial,

two stimuli composed of either four red or four green horizontal

lines are presented on the screen. Participants must choose one of

the two coloured stimuli by touching it. The first touched by the

participant in the discrimination stage of the task is the ‘correct’

stimulus for that stage and receives an 80:20 ratio of positive/

negative reinforcement, presented in both visual (‘correct’ or

‘wrong’) and auditory (a high or low tone) forms. Instructions to

the participants were given as follows: ‘‘On each go, the same two

patterns will be presented. One of the patterns is correct and the other pattern is

wrong and you have to choose the correct pattern on each go.’’ Participants

were instructed to continue with the stimulus that was usually

correct, even if it was occasionally wrong. ‘‘However on some goes, the

computer will tell you that you were wrong even if you chose the correct pattern.

Your task is to stick to the pattern that is usually correct. So in other words

always choose the pattern that is correct more often than the other pattern.’’ Not

continuing with the ‘correct’ stimulus is referred to as ‘switching’.

In the subsequent reversal stage, the previously ‘incorrect’ stimulus

becomes the correct stimulus (in this example the green colour).

Success criterion on the task is met after eight successive correct

answers. We used the total number of errors made before reaching

criterion and the probability of switching as dependent variables

for this task.

Affective Go/No-Go (AGN). Attentional bias was tested

using the computerised Affective Go/No-Go (AGN) task from the

CANTABH battery [62,63]. The task requires participants to

5-HTTLPR6Adversity and Cognition & Emotion
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Figure 1. A schematic representation of the computerised cognitive and emotional tasks. Figure 1a shows a representation of the
Probability Reversal Task (PRT). Two stimuli are initially presented on the screen. The participant is asked to select one of the stimuli and the feedback
‘‘CORRECT’’ is given. In 20% of trials, participants are given negative reinforcement (‘‘WRONG’’). Figure 1b shows a word from the positive condition of
the Affective Go/No-Go (AGN) task. Participants are asked to respond with a button press when they see a target word as fast as they can without
making mistakes. Figure 1c shows the Paired Associates Learning task (PAL), in which six boxes are opened in a randomised order. A geometric
shape(s) appears in one of the boxes. After all boxes are opened the geometric shapes appears in the center of the screen and the participant must
select the box in which the shape appeared.
doi:10.1371/journal.pone.0048482.g001
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respond to a happy, sad or neutral word in 20 blocks and involves

judging the emotional tone of the word stimuli. Half the words are

the target valence (e.g., happy), half are the distractor valence (e.g.

sad or neutral). Participants must press the button only when they

see a word of the target valence. The instructions given were as

follows: ‘‘All you have to do is press the button as fast as you can as soon as

you see a [target valence] word. Remember to respond as fast as you can, whilst

trying not to make any mistakes.’’ The words in each target are matched

for word length and frequency. Examples include ‘‘joyful’’ for

positive; ‘‘failure’’ for negative; and ‘‘range’’ for neutral. After two

practice blocks, there are 18 test blocks balanced for valence of

targets/distractors. Commission errors (failure to ignore distrac-

tors) were used as dependent variables. The task has previously

been used with adolescents but without the neutrally valenced

words [62].

Paired Associates Learning (PAL). This test assesses simple

visuo-spatial memory ability which is in contrast to the AGN and

PRT in that there is no overt emotional content in the task. White

boxes are displayed on the screen and automatically opened in a

randomised order revealing either a geometric pattern or a blank

space. After all boxes are opened in a given trial, each pattern is

subsequently displayed in succession in the centre of the screen

and participants are asked to touch the box where they think the

pattern was originally displayed. Each stage (1–6) can include up

to 10 trials. If participants get all locations correct, they proceed to

the next stage which includes an additional geometric shape to

remember. If the location is not correctly identified (up to 9 further

attempts are allowed), the test terminates. Participants were given

the following instructions: ‘‘In this test you will see six white boxes and

they will open up in a random order. There will be a pattern in [stage number]

of the boxes. You have to remember which pattern is in which box.’’ The total

number of errors was used as the dependent variable.

IQ
Wechsler Intelligence Scale for Children-III (WISC). IQ

was estimated using a short form dyad (block design and

vocabulary) of the Wechsler Intelligence Scale for Children-III

[64]. These scales have been validated for use outside the full

assessment [65] and ultimately combine to represent a prorated

full-scale IQ score.

Analysis
The distributions in the data were inspected and where

appropriate square root transformations were applied (MFQ,

RCMAS and AGN) in order to better align the data with normal

distributions (see Table S1). In all other cases (PRT and PAL),

variables followed a negative-binomial distribution and were

treated as count data.

We first explored the previously reported [66] 5-HTTLPR6CA

interaction on current depressive symptoms. We also conducted

this analysis with anxiety symptoms to test for specificity of any

effects. We then moved to testing 5-HTTLPR6CA interactions on

the cognitive and emotional variables. To test the 5-HTTLPR6CA

interaction hypothesis, multigroup modelling was employed using

genetic status as the grouping variable and allowing CA to predict

the self-report mood and the cognitive and emotional variables in

each gene group. These analyses were carried out in the Mplus

programme (version 6.1).

In our multigroup modelling, an interaction is tested for by

comparing an unconstrained model, where CA is freely associated

with the dependent variables, against a more restricted (nested)

model that constrains the regression coefficients between CA and

dependent variables to be equal in all three gene groups. Our null

hypothesis, therefore, was that the associations between CA and

the dependent variables in the LL, LS and SS gene groups would

be equal. This tested for no meaningful difference in how CA was

related to mood or cognitive variables across the gene groups. A

difference between the two models provides evidence for an

interaction. For normally distributed variables (MFQ, RCMAS

and AGN), linear regression models were specified; negative

binomial regression was used for count data variables (PRT and

PAL). To formally test for these model differences, we used a Dx2

difference test in the normal linear regression models and the

Wald test in the count data models to compare the effects of CA in

each gene group. The former is used where x2 for model fit was

available. In the latter set of models, x2 is not available so an

equivalent method using the Wald test was used.

A significant x2 or Wald test, therefore, suggested the presence

of a 5-HTTLPR6CA interaction effect. The significant interac-

tions were decomposed by assessing the relationship between CA

and the dependent variables in each genotype group. As a

correction for multiple comparisons in these follow up tests we

used the sequentially rejective multiple test procedure described by

Holm [67], which is similar but a more powerful alternative to the

Bonferroni method [68]. This technique applies a sequential

correction of a/n for the highest ranked p-value in a set of tests,

moving to a/n-1 until a/1 is reached. The procedure is stopped at

any point when there is a failure to reject the null hypothesis. For 3

gene groups the following levels of alpha were therefore used:

a,0.016, followed by a,0.025 and a,0.05.

A maximum likelihood mean and variance adjusted estimator

(MLMV) was chosen for our linear multigroup models which is

suitable for use with a priori groupings of different size [69] and is

also robust to non-normality [70]. Cohen’s e
2 effect sizes are given

for the overall linear regression models using the following formula

e
2 = R2/1- R2. Confidence intervals for e

2 were computed using an

online calculator [71]. Cohen gives the following guide to

estimating the magnitudes of these effect sizes:.02 = small;

.15 = medium; $.35 = large [72]. For the negative binomial

regression models, R2 was not available and so the incidence rate

ratio (IRR) was used as an alternative, which is analogous to an

odds ratio and is computed by finding the exponent of the

regression coefficient. In this way we estimate the difference in rate

of task error (PAL and PRT) and probability of switching (PRT) by

independent groups (5-HTTLPR and CA).

Given the known sex difference on reported mood and

diagnosis of an emotional disorder, effects on these variables were

adjusted for sex. That is, the binary variable sex was included in

these models as a predictor. In order to assess the potential for the

cognitive and emotional variables to act as intermediate markers

between 5-HTTLPR6CA interactions and psychopathology, per

se, we assessed their association with the presence or absence of an

emotional disorder. To explore this relationship, we used logistic

regression models where the reference group included individuals

with no disorder. The Odds Ratios (OR) and 95%CIs were

adjusted for sex.

Thus our data analytic strategy was to test for:

i) A 5-HTTLPR6CA effect on depressive and anxiety symp-

toms to assess for specific vulnerability for emotional

symptoms.

ii) A 5-HTTLPR6CA effect on attentional bias for negative

words and a deleterious response to negative feedback with

no effect on memory functions.

iii) A significant association between neuropsychological deficits

and the probability of receiving a diagnosis of an emotional

disorder.

5-HTTLPR6Adversity and Cognition & Emotion
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We expected SS carriers to report more emotional symptoms

and commit more errors on the cognitive and emotional

computerised tasks given a negative early environment (CA).

Whereas we expected LL carriers to be less affected within a

similar negative environment (CA). In exploratory secondary

analyses, we tested the effect of removing the LG allele or

reallocating it to form bi-allelic groups, after Parsey et al. [9]. We

have taken these 2 approaches because previous human in vivo

imaging studies do not agree on the effect of the rs25531 SNP on

expression of serotonin transporter [9]. Although there are in vitro

studies reporting differential expression of mRNA by the rs25531

SNP [7,10], some studies have not supported this finding [8]. In

addition, the results from the in vitro studies mentioned above

suggest that the L and S alleles are the highest and lowest

functioning of all alleles, in absolute terms. Therefore we test a

triallelic interaction model and one where the LA and S alleles only

are included.

Results

The 5-HTTLPR genotypes were distributed according to

Hardy-Weinberg equilibrium: LL (n = 87; 36.6%), LS (n = 107;

44.9%), SS (n = 44; 18.5%); x2 = 1.18, df = 1, p = 0.28. This

distribution was not statistically different from that in the overall

ROOTS sample (LL = n = 352; 30.3%; LS = n = 596; 51.3%;

SS = n = 214; 18.4%), x2 = 3.99, df = 2, p = .14. There were also

equal numbers of males and females in the test sample

(females = 121; 50%; males = 120; 50%) a distribution which was

not significantly different to the overall ROOTS sample

(females = 674; 54%; males = 564; 46%; x2 = 1.46, df = 1,

p = 0.23). In order to rule out gene-environment interplay in the

data other than an interaction [14,73] we first tested for a gene-

environment correlation (rGE). There was no association between

5-HTTLPR and maternal reports of exposure to adversity

(polychoric r = .02, p = 0.86). The sample characteristics by

genotype and CA are shown in Table S2 and the cognitive and

emotional scores in Table 1. Correlations between study variables

are shown in Table 2. IQ was consistently and negatively

correlated with the cognitive and emotional neuropsychological

test variables and was therefore included as a covariate in

following analyses involving these variables.

Symptoms of Depression and Anxiety
There were significant main effects with the presence of CA

being associated with higher MFQ scores (B = .63, SE = .17,

p = 0.0001, e
2 = 0.06, 95%CI 0.00 to 0.13). There was also a

significant main effect of being a 5-HTTLPR S carrier with lower

MFQ scores (B = 2.51, SE = .23, p = 0.026, e
2 = 0.03, 95%CI

20.01to 0.08). This main effect for the S allele was explained by a

significant 5-HTTLPR6CA interaction (Dx2 = 12.59, df = 2,

p = 0.002). The interaction was decomposed by assessing the

relationship between CA and MFQ in each gene group. Follow up

comparisons using the Holm correction showed that CA was

significantly related to higher depressive symptoms for S carriers in

both the LS (B = .71, SE = .25, p = 0.004, e
2 = 0.13, 95%CI 0.00 to

0.29) and SS (B = 1.49, SE = .33, p,0.0001, e
2 = 0.55, 95%CI

0.17 to 1.30) groups. In contrast, there was no impact of CA on

depressive symptoms in the LL group (B = 20.01, SE = .27,

p = 0.961, e
2 = 0.17, 95%CI 0.01 to 0.39) (see Figure 2). Com-

pared to males, females reported significantly higher MFQ scores

in the LL (B = .94, SE = .25, p = 0.0001) and LS (B = .54, SE = .24,

p = 0.03) groups but not in the SS group (B = .17, SE = .32,

p = 0.60).

We also found a significant 5-HTTLPR6CA interaction on self-

reported anxiety scores (RCMAS; Dx2 = 8.03, df = 2, p = 0.02) that

was similar in pattern to that revealed on MFQ scores (see

Figure 3). CA was significantly related to higher anxiety in the SS

(B = 2.10, SE = .53, p,0.0001, e
2 = 0.66, 95%CI 0.20 to 1.69) and

LS (B = .89, SE = .53, p = 0.005, e
2 = 0.17, 95%CI 0.01 to 0.38)

groups but not the LL group (B = .25, SE = .40, p = 0.53, e
2 = 0.20,

95%CI 0.01 to 0.46). Females reported higher anxiety scores in

the LL (B = 1.41, SE = .40, p = 0.0004) and LS (B = .940, SE = .31,

p = 0.002) but not SS groups (B = .61, SE = .51, p = 0.23).

Attentional Bias
There were no main effects of 5-HTTLPR or CA on AGN

commission errors. There were, however, significant 5-

HTTLPR6CA interactions on negative (Dx2 = 6.23, df = 2,

p = 0.04) and neutral (Dx2 = 6.12, df = 2, p = 0.05) (see Figure 4)

but not positive (Dx2 = 1.75 df = 2, p = 0.42) commission errors.

Follow up comparisons using the Holm correction showed that CA

was significantly related to more errors on the task for neutral

(B = .61, SE = .25, p = 0.01, e
2 = 0.33, 95%CI 0.00 to 0.65) but not

negative word conditions (B = .70, SE = .34, p = 0.04, e
2 = 0.28,

Table 1. Cognitive and emotional test scores by 5-HTTLPR and CA groups.

LL LS SS

N = 87 N = 107 N = 44

CA No CA CA No CA CA No CA

AGN positive 11 (5.6) 9.6 (7.6) 9.3 (6.9) 9.2 (6.1) 11.4 (7.5) 7.4 (5.2)

AGN neutral 14.3 (5.5) 14.5 (7.1) 13.4 (7.7) 13.7 (6.2) 17.1 (7.7) 11.4 (4.7)

AGN negative 10.1 (5.2) 9.2 (7.4) 7.8 (6.8) 8.6 (5.9) 11.8 (8.6) 6.8 (6.1)

PRT s1 errors 1.4 (2.7) 1.4 (2.7) 1.4 (3.2) 1.6 (3.9) 4.9 (5.2) 0.6 (1.4)

PRT s2 errors 6.3 (4.5) 3.9 (2.0) 6.0 (5.0) 5.9 (5.1) 4.0 (5.0) 8.6 (6.9)

PRT s1 switching 0.7 (1.4) 0.6 (1.1) 0.5 (1.1) 0.6 (1.0) 1.3 (1.5) 0.3 (0.6)

PRT s2 switching 1.2 (1.6) 0.7 (0.8) 0.6 (0.8) 0.6 (0.9) 1.4 (1.8) 0.3 (0.5)

PAL errors 6.7 (7.9) 7.9 (9.1) 6.7 (5.3) 6.6 (8.0) 6.9 (7.1) 6.6 (4.2)

Note. AGN = Affective Go/No-Go; PRT = Probability reversal task (stage 1&2); PAL = Paired associates learning. In the statistical analyses the PRT and PAL variables were
analysed using a negative binomial approach to the data, and not the mean scores.
doi:10.1371/journal.pone.0048482.t001

5-HTTLPR6Adversity and Cognition & Emotion

PLOS ONE | www.plosone.org 6 November 2012 | Volume 7 | Issue 11 | e48482



95%CI 0.02 to 0.72) for the SS gene group only. By comparison,

CA was not related to error-making, before or after the Holm

correction, in the negative condition for the LL (B = .12, SE = .22,

p = 0.59, e
2 = 0.13, 95%CI 20.01 to 0.31) or LS groups (B = 2.28,

SE = .23, p = 0.22, e
2 = 0.12, 95%CI 0.00 to 0.28), or in the

neutral condition for the LL (B = 2.06, SE = .18, p = 0.75,

e
2 = 0.11, 95%CI 20.02 to 0.27) or LS groups (B = 2.03,

SE = .18, p = 0.88, e
2 = 0.03, 95%CI 20.03 to 0.11). These results

are all adjusted for the effects of IQ. We additionally tested for 5-

HTTLPR6CA interaction effects on AGN reaction times as a

comparison. There were no significant effects for neutral, negative

or positive conditions (see Table S3).

Response to Negative Feedback
There were no main effects of 5-HTTLPR or CA on any PRT

variables except that CA was associated with more stage 2

switching (B = .46, SE = .20, p = 0.02, IRR = 1.59). There was,

however, a significant 5-HTTLPR6CA interaction on errors made

before reaching task criterion in stage 1 (Wald = 11.16, df = 2,

p = 0.004) (see Figure 4A). In the SS group CA was significantly

related to the number of errors made to reach criterion (B = 1.78,

SE = .43, p,0.0001, IRR = 5.93). This was contrasted with null

effects in the LL (B = .11, SE = .43, p = 0.79, IRR = 1.12) and LS

groups (B = 2.16, SE = .48, p = . 0.75, IRR = 0.86). There was also

a significant interaction in stage 2 (Wald = 6.23, df = 2, p = 0.04),

Table 2. Correlation matrix for study variables.

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

1.IQ

2.MFQ 20.09

3.RCMAS 20.02 0.55**

4.AGN positive 20.36** 0.07 20.03

5.AGN neutral 20.27** 0.17* 0.08 0.74**

6.AGN negative 20.36** 0.08 0.01 0.82** 0.75**

7.PRT s1 errors 20.21** 0.01 0.07 0.17* 0.22** 0.17*

8.PRT s2 errors 20.18* 20.03 0.03 0.26** 0.24** 0.24** 0.48**

9.PRT s1 switching 20.22** 0.07 0.10 0.10 0.11 0.12 0.66** 0.40**

10.PRT s2 switching 20.25** 0.08 0.07 0.23** 0.22** 0.24** 0.43** 0.55** 0.57**

11.PAL errors 20.30** 20.07 20.12 0.28** 0.13* 0.21** 0.07 0.10 0.06 0.03

Note.
*,.05;
**,.01 IQ = Weschler intelligence scale for children (III); MFQ = Mood and Feelings Questionnaire; RCMAS = Revised Children’s Manifest Anxiety Scale; AGN = Affective
Go/No-Go; PRT = Probability reversal task (stage 1/2); PAL = Paired associates learning.
doi:10.1371/journal.pone.0048482.t002

Figure 2. Mean scores of self-reported depressive symptoms by gene variants in 5-HTTLPR and early childhood adversities (CA).
Error bars represent 61 SE of the mean. * p,0.05; ** p,0.001.
doi:10.1371/journal.pone.0048482.g002
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where increased errors were associated with CA in the SS (B = .65,

SE = .23, p = 0.004, IRR = 1.91) and LL groups (B = .47, SE = .16,

p = 0.004, IRR = 1.60) when compared with the LS group

(B = .01, SE = .17, p = 0.94, IRR = 1.01). These results are all

adjusted for the effects of IQ.

There was a non-significant trend for 5-HTTLPR6CA interac-

tion on the probability of switching response in the face of negative

feedback in stage 1 (Wald = 5.36, df = 2, p = 0.07) and the pattern

of data suggested that CA was significantly associated with

switching in the SS group (B = 1.24, SE = .46, p = 0.007,

IRR = 3.46) but not in the LL (B = .17, SE = .48, p = 0.72,

IRR = 1.19) or LS groups (B = 2.10, SE = .37, p = 0.79,

IRR = 0.91). In stage 2 there was a significant 5-HTTLPR6CA

interaction (Wald = 7.56, df = 2, p = 0.02), whereby CA was

associated with switching in the SS group (B = 1.13, SE = .38,

p = 0.003, IRR = 3.09) but not in the LS (B = 2.13, SE = .28,

p = 0.64, IRR = 0.88) or LL groups (B = .52, SE = .31, p = 0.10,

IRR = 1.68) (see Figure 5B).

Paired Associates Learning
There were no main effects of 5-HTTLPR or CA on the PAL

test, or any interaction (Wald = 1.35, df = 2, p = 0.510). CA was

not significantly related to memory in the SS (B = 2.01, SE = .27,

p = 0.96, IRR = 0.99), LS (B = 2.01, SE = .16, p = 0.91,

IRR = 0.99) or LL gene groups (B = 2.31, SE = .22, p = 0.19,

IRR = 0.73). These results are all adjusted for the effects of IQ.

Emotional Disorder
Females were more likely to receive a diagnosis of an emotional

disorder (anxiety or depressive disorder) (OR = 3.51, p = 0.002,

95%CI, 1.56 to 7.87). We also found significant associations

between the AGN commission errors for neutral (OR = 1.82,

p = 0.006, 95%CI, 1.19 to 2.78) and negative (OR = 1.46, p = 0.02,

95%CI, 1.04 to 2.02), but not positive valenced words (OR = 1.35,

p = 0.09, 95%CI, .96 to 1.89) and any emotional disorder at 17

years. The effects for neutral and negative errors remained

significant after the Holm correction. Similarly, there was an

association between response to negative feedback and disorder for

stage 1 errors (OR = 1.10, p = 0.04, 95%CI, 1.05 to 1.21; but not

stage 2 errors, OR = 1.03, p = 0.34, 95%CI, .96 to 1.11) and the

probability of switching in stage 2 (OR = 1.47, p = 0.02, 95%CI,

1.01 to 2.05; but not in stage 1 OR = 1.27, p = 0.11, 95%CI, .95 to

1.71). These effects were not however significant after applying the

Holm correction.

Conversely, there was no significant association between simple

memory (PAL) and disorder (OR = 1.04, p = 0.12, 95%CI, .99 to

1.09). These results are all adjusted for the effects of sex.

The results of the triallelic genotyping analysis are shown in

Table S4. There was a similar pattern in these analyses in that the

majority of associations between CA and the dependent variables

were significant in the S9S9 or S0S0 groups only. In the S0S0

analysis the interaction effects were broadly similar, with the

exception for RCMAS (p = 0.06), PRT stage 2 errors stage

(p = 0.10) and PRT stage 2 switching (p = 0.06). Re-allocating the

LG allele had the effect of removing the majority of significant

interactions with the exception of MFQ (p = 0.01).

Discussion

In a large sample of adolescents, we found that 5-HTTLPR in

combination with exposure to CA up to the age of 6 years

explained individual differences in self-reported depression and

anxiety symptoms, which is consistent with prior research

[17,18,66,74]. Results of recent G6E meta-analyses on depression

have been equivocal [19,20,75] and there is some evidence to

suggest that methodological differences between studies may partly

explain this discrepancy. Using a rigorous interview method to

ascertain the nature of the individual’s early environmental

experience rather than questionnaires may enable the better

detection of G6E effects [51,52]. Consistent with this suggestion,

Figure 3. Mean scores of self-reported anxiety symptoms by gene variants in 5-HTTLPR and early childhood adversities (CA). Error
bars represent 61 SE of the mean. * p,0.05; ** p,0.001.
doi:10.1371/journal.pone.0048482.g003
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the positive findings in the present study may have in part been

revealed by the robust measure of CA.

The 5-HTTLPR6CA interactions for the self-report depression

and anxiety scores were driven by being homozygous for the S

allele. Within this group, however, was a further subset of raised

scores for those who had experienced CA but lowered scores for

those with no history of CA (see Figures 2 and 3). These results

provide indirect support for a differential susceptibility [25] and

not just a diathesis-stress effect. Caution is required however as this

is not a direct test of susceptibility as the absence of adversity may

not equate to the presence of a positive environment. The finding

is consistent however with Fox et al. [31] who showed that

attentional biases towards emotional stimuli were increased by 5-

HTTLPR SS genotype, by both negative and positive attentional

bias induction procedures.

Turning to the neuropsychological test results, we demonstrated

that SS carriers exposed to CA displayed more attentional bias on

neutral but not positive stimuli conditions on the AGN task. This

finding is consistent with prior research in the literature that SS

carriers exposed to adversities have greater difficulty in classifying

ambiguously valenced stimuli [45,76,77]. There was also a

suggestion in the data that a similar interaction was operating

on negative words, which extends previous research with 5-

HTTLPR S homozygote children who were poor at recognising

fearful faces [38], by showing that the social environment interacts

with 5-HTTLPR. However, this latter effect did not remain

significant after corrections for multiple comparisons. The same

pattern of interaction was found on the PRT task where response

to ambiguous negative feedback led to significantly more errors

and an increased likelihood of switching responses.

Finally, we found a positive association between the aforemen-

tioned differences in AGN and PRT task performance and any

emotional disorder occurring an average of 1 year after testing.

These findings are consistent with current cognitive models of

emotional psychopathology that argue that such cognitive and

emotional processing lies intermediate between G6E and disorder

[33]. Taking these findings together, the results lend support to our

hypothesis that aberrant cognitive processing of emotion occurs in

adolescents who are SS carriers and were exposed to CA nearly a

decade earlier. This may however reflect only the negative pole of

indviduals who carry the SS variant and the trend in these results

may reveal that SS carriers are more susceptible to their social

environments both good as well as bad. From the psychopathology

perspective, however, these findings clearly support the hypothesis

that there is an intermediate phenotype for depression and anxiety

indexed by aberrant information processing present in the

adolescent years [33]. The study was not designed nor powered

to undertake longitudinal analyses so we cannot fully test the

temporal links between all variables measured. Thus the results

presented here cannot fully test the hypothesis, but provide strong

Figure 4. Mean number of emotionally valent neutral and
negative commission errors by gene variants in 5-HTTLPR and
early childhood adversities (CA). Error bars represent 61 SE of the
mean. * p,0.05.
doi:10.1371/journal.pone.0048482.g004

Figure 5. PRT results by gene variants in 5-HTTLPR and early
childhood adversities (CA). Panel A shows the proportion of
participants making 3+ errors to reach task criterion in stage 1 in
response to negative feedback. Panel B shows the probability of
switching in response to negative feedback in stage 2. * p,0.01.
doi:10.1371/journal.pone.0048482.g005
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proof of principle for it. Recent evidence that polymorphisms in 5-

HTTLPR predict the magnitude of experimentally induced

attentional bias to emotional stimuli [31] provides further support

for the findings reported in this paper.

In order to explain the apparent lack of association between

pathology in the brain and clinical symptoms [78], theoretical

models of a third factor, ‘cognitive reserve’, have been developed

in psychopathology research. Such models may be passive,

focusing on the ‘hardware’ of the brain, and imply that a high

neural capacity or threshold can act as a protective factor against

pathology. Active models refer to the cognitive processing or

‘software’ of the brain which may be employed as a compensatory

mechanism, again buffering against the negative effects of

pathology. Active models are often indexed by markers such as

IQ [79]. Crucially, the interaction effects on the cognitive and

emotional variables in the present study remained significant when

IQ was taken into account. Finally, as hypothesised, we

demonstrated no such 5-HTTLPR6CA effects on a visuo-spatial

memory task that did not include any explicit emotional content.

Together these findings suggest that the low cognitive reserve

hypothesis of psychopathology [80] is not of itself sufficient to

explain the 5-HTTLPR6CA interaction effects in the current

findings.

From the findings in the current cross-sectional study our

hypothesised developmental model starts with the interaction

between allelic variation in 5-HTTLPR and CA and leads to

cognitive and emotional processing style that may lead some

individuals to develop one of a range of emotional disorders.

Nevertheless, an equally plausible model is one where gene-

environment interplay leads directly to an emotional disorder and

then subsequently to differences in cognitive and emotional

processing. But because the latter is associated with emotional

disorders, a third reciprocal model is possible, where a cycle of

emotional psychopathology and cognitive emotional processing

exacerbate one another. Further research should test these

possibilities.

Interestingly and perhaps regardless of which 5-HTTLPR6CA

process is mechanistic, the current findings point to a transdiag-

nostic intermediate cognitive phenotype for a range of anxiety and

depressive disorders rather than one specific to a particular clinical

typology. Our secondary triallelic analyses were somewhat less

clear cut. With the LG allele removed and thereby testing for

effects between groups with the highest and lowest transcriptional

activity, the results were similar in pattern but weaker overall.

When the LG was re-allocated to either the LS or SS biallelic

groups however the only significant interaction found was for

MFQ. As noted the assumption is that the triallelic classification is

more sensitive through reallocation of the LG SNP as it is deemed

functionally equivalent to the S allele in 5-HTTLPR [5]. We noted

in the introduction that these findings have been inconsistent [8,9]

and it is also unclear what the impact of the rs25531 A.G SNP

has on the S allele [81]. One explanation for the lack of

significance in the triallelic (S9S9) results in the present study may

be that the LG allele acts to dilute the impact in the interaction

with CA, thereby rendering the individuals less susceptible or

sensitive than their SS counterparts. This view is consistent with

the findings of Hu et al. [7] who found that although levels of

mRNA expression between LG LG and SS groups were not

statistically different from one another, the latter displayed the

lowest levels in absolute terms. The current findings removing the

LG allele may be reflecting a more sensitive distinction with regard

to the putative interactions with the social environment. Further

research is required to test the interaction hypothesis using both

genotyping variations.

Strengths and limitations
A main strength of the current study was the use of a detailed

interview method (CAMEEI) with an informed respondent to

capture early childhood adversities [53]. The study had, however,

low statistical power overall due to the natural low prevalence rates

for adolescents with CA also possessing short copies of the 5-

HTTLPR allele. In particular, this precluded the examination of

any 5-HTTLPR6CA effects on the presence of emotional disorder

(see Table S2). Therefore, type II errors may have occurred in the

analysis. Conclusions should therefore still be drawn with caution

and future replication studies should endeavour to use larger

sample sizes to resolve these issues.

Additionally it is possible that past episodes of depression or

other mood related psychopathologies in childhood could have

resulted in permanent residual effects leading to cognitive

differences [82]. Nevertheless, should any traces of previous

episodes of depression (physiological or psychological) exist, they

could either be due to prior psychiatric symptomatology embed-

ded and measured in the depression and anxiety symptoms or to

the triggers that are the primary cause of such symptoms [83], i.e.

genes and the environment. The results of this study suggest that

both symptoms of anxiety and depression and cognitive and

emotional processing are affected by the 5-HTTLPR6CA

interaction whilst being only weakly related to one another.

Similarly, whether the current results are truly a serotonergic

mediated psychological precursor for individual differences in

emotion processing [3,11] remains to be determined by prospec-

tive research.

Overall we suggest these findings from a community ascertained

population provide evidence that aberrant cognitive and emotion-

al processing is a testable transdiagnostic intermediate marker for

emerging emotional disorders in adolescents and young adults.

Finally we do not underestimate the neural complexities that may

underlie the deficits in cognitive and emotional processing

revealed in this study. It is important to recall that behavioural

outputs occur as an end stage product of multiple neurobiological

pathways not measured here [84]. Neither do we make claims that

we have in any way refuted a genetic association with early

adversities or cognitive and emotional processes using other gene

variants [85]. In a recent meta-analysis on the association between

5-HTTLPR polymorphisms and unipolar depression, a small but

significant association was found (OR = 1.16) for a recessive (i.e.

SS versus L+) but not dominant model (i.e. S versus LL). The

findings of the meta-analysis first show that the likely influence of

single genes in explaining psychopathology is going to be small

[86]. Secondly, these findings reinforce the necessity for taking into

account the social environment. Lastly, they suggest that a

recessive model may be most likely to reveal 5-HTTLPR6CA

interaction effects on depressive psychopathology. This hypothesis

should be further tested in psychiatric studies and also requires

more genetic work. For example recent evidence suggests that 5-

HTTLPR may contain further functional alleles [10].

In conclusion, this is one of the first studies to reveal a putative

gene-environment basis for individual differences in a cognitive-

emotionally mediated pathway as a transdiagnostic intermediate

phenotype to psychopathology that requires replication and

validation in future longitudinal designs.
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