
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Computers in Biology and Medicine 135 (2021) 104608

Available online 30 June 2021
0010-4825/© 2021 Elsevier Ltd. All rights reserved.

A stacked ensemble for the detection of COVID-19 with high recall 
and accuracy 

Ebenezer Jangam a,b, Chandra Sekhara Rao Annavarapu b,* 

a Department of Information Technology, VRSiddhartha Engineering College, Vijayawada, Andhra Pradesh, India 
b Department of Computer Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, India   

A R T I C L E  I N F O   

Keywords: 
COVID-19 
False negatives 
Transfer learning 
Recall 

A B S T R A C T   

The main challenges for the automatic detection of the coronavirus disease (COVID-19) from computed to-
mography (CT) scans of an individual are: a lack of large datasets, ambiguity in the characteristics of COVID-19 
and the detection techniques having low sensitivity (or recall). Hence, developing diagnostic techniques with 
high recall and automatic feature extraction using the available data are crucial for controlling the spread of 
COVID-19. This paper proposes a novel stacked ensemble capable of detecting COVID-19 from a patient’s chest 
CT scans with high recall and accuracy. A systematic approach for designing a stacked ensemble from pre-trained 
computer vision models using transfer learning (TL) is presented. A novel diversity measure that results in the 
stacked ensemble with high recall and accuracy is proposed. The stacked ensemble proposed in this paper 
considers four pre-trained computer vision models: the visual geometry group (VGG)-19, residual network 
(ResNet)-101, densely connected convolutional network (DenseNet)-169 and wide residual network (WideR-
esNet)-50-2. The proposed model was trained and evaluated with three different chest CT scans. As recall is more 
important than precision, the trade-offs between recall and precision were explored in relevance to COVID-19. 
The optimal recommended threshold values were found for each dataset.   

1. Introduction 

According to the World Health Organization (WHO), as of 25 March 
2021, globally, there have been 124,535,520 confirmed cases of COVID- 
19, resulting in 2,738,876 deaths [1]. The most frequently reported 
COVID-19 manifestations are cough, fever and difficulties with sense of 
smell and breathing. This virus is detrimental to the public, as many 
people are unaware that they are infected because they are asymptom-
atic. Therefore, rapid detection is of the utmost importance for those 
infected early. Most of the cases are diagnosed using the real-time 
reverse transcription-polymerase chain reaction (RRT-PCR) method. 
However, lower recall of the RRT-PCR may result in more false negatives 
and result in the pandemic’s widespread [2–4]. Studies [5–8] have 
demonstrated that CT scans of symptomatic individuals have signifi-
cantly high recall when compared to RT-PCR. Hence, using chest CT 
scans as a preliminary test for COVID-19 detection could be a better way 
to detect and control the pandemic among symptomatic patients. 

The characteristics of COVID-19 vary based on the progress of the 
disease [9,10]. Furthermore, the diversity of characteristics of 
COVID-19 have been reported in various studies [4,11,12]; however, the 

common characteristics reported in the studies were peripheral distri-
bution and ground glass opacities. Ground glass opaque shadows appear 
during early days [11,13]. In some cases, crazy paving patterns [9] may 
be visible. As the disease progresses, halo and reverse halo signs start 
appearing [14] followed by the appearance of lung lesions resembling 
white lungs [11]. In the next stage, the density of the lesions decreases 
[15]. Samples of COVID-19-positive CT scans and COVID-19-negative 
CT scans are shown in Figs. 5 and 6 respectively. 

Due to the ambiguity in characteristics of COVID-19, extraction of 
the relevant features is a challenging task [16,17]. Moreover, most of the 
characteristics of COVID-19 are similar to other kinds of pneumonia 
[18]. Hence, the hand-crafted features are not suitable for the diagnosis 
of the pandemic [19]; however, convolution neural networks (CNNs) 
have proved their potential in automatic feature extraction for the 
complex tasks in the past [20,21]. Therefore, deep learning (DL) using 
CNN is a promising option for the automatic feature extraction in the 
case of a pandemic like COVID-19. 

On the other hand, during the initial phases of COVID-19, the 
available datasets of chest CT and chest X-ray scans are limited. Due to 
the limited availability of datasets, controlling the spread of the 

* Corresponding author. 
E-mail address: acsrao@iitism.ac.in (C.S.R. Annavarapu).  

Contents lists available at ScienceDirect 

Computers in Biology and Medicine 

journal homepage: www.elsevier.com/locate/compbiomed 

https://doi.org/10.1016/j.compbiomed.2021.104608 
Received 16 March 2021; Received in revised form 4 June 2021; Accepted 22 June 2021   

mailto:acsrao@iitism.ac.in
www.sciencedirect.com/science/journal/00104825
https://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2021.104608
https://doi.org/10.1016/j.compbiomed.2021.104608
https://doi.org/10.1016/j.compbiomed.2021.104608
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2021.104608&domain=pdf


Computers in Biology and Medicine 135 (2021) 104608

2

pandemic during the initial stage using DL-based analysis of CT scans, is 
a challenge. However, using transfer learning (TL) techniques, the 
weights of the pre-trained CNN models of large-scale datasets, such as 
ImageNet, can be transferred to the task of COVID-19 diagnosis. Hence, 
the availability of pre-trained CNN models, such as the visual geomentry 
group (VGG)-19 [22], the residual network (ResNet) [23] and the 
densely connected convolutional network (DenseNet) [24], are prom-
ising options for the detection of COVID-19 from chest CT scans. 

The contributions of the paper are as follows:  

● A novel stacked ensemble was designed using a systematic approach 
to detect COVID-19 from chest CT scans with high recall and 
accuracy.  

● A novel diversity measure was designed to select base classifiers such 
that the stacked ensemble gives high recall and accuracy.  

● The performance of the proposed stacked ensemble was evaluated on 
three different CT-scan datasets.  

● The trade-offs between recall and precision were explored at 
different thresholds to select the optimum threshold for high recall. It 
is crucial to minimise the number of false negatives in the context of 
COVID-19 to control the spread of the virus.  

● The performance of the proposed stacked ensemble was compared 
with the baseline models and the existing models. 

The paper is organised in the following manner. The basic terms and 
concepts used in the paper are defined in Section 2. In Section 3, the 
previous work related to the paper is presented. In Section 4, the pro-
posed stacked ensemble, the diversity measure and the systematic 
approach to generate the stacked ensemble are presented. Section 5 
gives details of the datasets used for experiments and the methodology 
followed during the experiments. Section 6 presents the results obtained 
and the corresponding analysis. Section 7 compares the performance of 
the proposed stacked ensemble with the existing models and Section 8 
concludes the paper. 

2. Preliminaries 

This section explicates the basic concepts used in the paper. 

2.1. Deep learning (DL) 

DL [25] is a sub-field of machine learning that deals with artificial 
neural networks hundreds of layers deep and with about a million pa-
rameters. The performance of deep neural networks can be improved 
with more input data. For image related tasks, CNNs [26] are most 
prevalent. With fewer parameters compared to traditional neural net-
works, CNNs can achieve better performance in most of the image 
processing tasks. 

2.2. Transfer learning (TL) 

TL [27] facilitates a DL model trained on one task to perform another 
related task. Initialisation weights related to the second task can be 
carried out using the weights obtained during the training on the first 
task. The main advantage of TL is the data required for training can be 
minimised. In other words, if the available data are less, TL becomes a 
promising option. 

Suppose that there are two tasks, A and B and both the tasks take the 
input in the form of images. If the data available for task B are less than 
task A, the DL model used to train task A can be fine-tuned for task B, 
even though it has less training data. 

2.3. Stacking 

Stacking is the technique used to combine heterogeneous base 
models to improve performance. There are three phases in the 

generation of a stacked ensemble. In the first phase, a pool of base 
classifiers are generated. In the second phase, a set of base classifiers are 
selected from the pool of base classifiers based on a diversity measure. 
During the third phase, the aggregation of the predictions made by the 
base classifiers is performed using a meta classifier. 

Given a data set D, which is split into D1, D2, … DN. One of the subsets 
Di is kept aside for future use. The remaining subsets generate K base 
classifiers using K learning algorithms. After generating base classifiers, 
the Di set generates the meta-classifier. The meta-classifier’s training set 
consists of predictions from K base classifiers over the instances in Di. 
The meta-classifier data have K-attributes whose values are the pre-
dictions from K base classifiers for each instance in Di. The process is 
repeated for N folds i = 1, 2, …, N. At the end of the cross-validation 
process, each example of the training data for the meta-classifier has 
K-attributes and a target label. Once the data are available for a meta- 
classifier from all instances of D, any learning algorithm can generate 
the meta-classifier model. For the classification of a new example, the 
base classifier produces a vector of predictions used by the meta- 
classifier to predict the class [28]. 

2.4. Visual geometry group (VGG)-19 

VGG-19 is a trained DL model for classification. It consists of 19 wt 
layers (16 convolutional layers, three fully connected layers, five Max-
Pool layers and one SoftMax layer) and has almost 144 million param-
eters. The parameters obtained from training on ImageNet were used to 
solve problems in a variety of areas like computer graphics [29], clas-
sification of flowers [30], classification of retinal figures [31], fault 
diagnosis [32] and histology image classification [32]. 

2.5. Residual network(ResNet)-101 

ResNet 101 [23] is a DL model used for image classification. 
ResNet-101 consists of 101 layers and approximately 45 million pa-
rameters. The uniqueness in ResNet-101 is the presence of skip con-
nections. ResNet has shown promising results when applied in diverse 
areas using TL. These areas include 3D medical image analysis [33], 
papaya fruit classification based on maturity status [34], crop pest 
classification [35], brain image classification [36], seizure type classi-
fication [37], sugar beet and volunteer potato classification [38] and 
COVID-19 detection [39]. 

2.6. Densely connected convolutional network (DenseNet)-169 

DenseNet-169 [24] is a DL model consisting of 169 layers and is 
trained for image classification. The building blocks of the DenseNet 
model are dense blocks. The unique property of DenseNet 169 is the 
connection between each layer in a Dense block and all the subsequent 
layers in that block. Researchers have used DenseNet to solve the clas-
sification tasks related to waste classification [40], multiple sclerosis 
classification [41], monocular depth estimation [42] and lung nodule 
classification [43]. 

2.7. Wide residual network (Wide ResNet)-50-2 

Wide ResNet-50-2 [44] is a DL model trained for image classification. 
The ResNet model was modified at a depth of 50 and a width of 2 to 
obtain Wide ResNet-50-2 with approximately 69 million parameters. 
The applications of Wide ResNet using TL were in classifying malicious 
software [45], classifying plankton [46] and detecting COVID-19 from 
chest X-ray images [47]. 

3. Literature review 

A variety of DL models were trained and tested to detect COVID-19 
from CT scans and chest x-ray images [48–67]. 
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In the early days of the outbreak of COVID-19, the main hurdle was 
the lack of public datasets to build and evaluate DL models [68,69]. Xu 
et al. [70] illustrated how chest CT scans and chest X-rays can be used to 
diagnose COVID-19 using a private dataset. Initially, Yang et al. [71] 
made their dataset public. The accuracy and F1 score reported by their 
DL model were 0.89 and 0.90 respectively. Another public dataset was 
the COVIDx dataset collected by Wang et al. [72]. Their DL model 
achieved an accuracy of 0.93. The accuracy of the COVIDx dataset was 
further improved by Farooq and Hafeez [73] as their model reported an 
accuracy of 0.96. Another dataset was made publicly available by He 
et al. [48]. They integrated self-supervised learning with TL to reduce 
the risk of over-fitting and achieved an F1 score of 0.85 and an Area 
Under Curve (AUC) of 0.94. 

With the availability of the public chest X-rays and CT scans, re-
searchers focussed on DL models with high accuracy and low average 
classification time [74,75]. One such attempt was made by Polsinelli 
et al. [49], who proposed a light CNN design based on the SqueezeNet 
model and their model reported an accuracy of 0.83, a recall of 0.85, a 
specificity of 0.81, a precision of 0.8173, and an F1 score of 0.8333. Loey 
et al. [50] increased the size of their dataset using classic data 
augmentation techniques and CGAN. Lokwani et al. [51] identified the 
site of infection using a 2D segmentation model based on U-Net archi-
tecture and achieved a recall of 0.96428 and a specificity of 0.8839. 

Feature extraction is another challenge in the detection of COVID-19 
from chest CT scan images [76]. Shaban et al. [52] proposed new hybrid 
feature selection methodology by combining both filter and wrapper 
feature selection methods. The authors in Ref. [54] constructed their 
model using two similar levels with different kernel sizes to capture the 
input chest X-ray images’ local and global features. Wang et al. [58] 
further conducted a separate feature normalisation in latent space. Their 
model was able to outperform the COVID-Net model. Most of the models 
extracted the features automatically using DL [43,77–82]. 

TL was used by the researchers to achieve high accuracy and low 
computation time [83]. Among AlexNet, VGGNet16, VGGNet19, Goo-
gleNet, and ResNet50, ResNet-50 provided better accuracy in the 
detection of COVID-19 from CT scan images. Azemin et al. [53] used a 
DL model based on the ResNet-101 architecture. Their model achieved 
an AUC of 0.82, a recall of 0.773, a specificity of 0.718, and accuracy of 
0.719. Taresh et al. [55] evaluated the performance of different models 
on their ability to predict COVID-19-positive cases from chest X-ray 
images correctly. They found that the VGG-16 model had the best per-
formance in overall scores and based-class scores. Yadav et al. [56] 
evaluated the two pre-trained CNN models, namely, VGG16 and 
InceptionV3, using data augmentation techniques. The InceptionV3 
model achieved the highest classification accuracy of 0.9935 for binary 
classifications, whereas the VGG16 model achieved the highest accuracy 
of 0.9884 for multiclass classification. Rahimzadeh et al. [57] proposed 
a novel method for increasing the classification accuracy of CNNs. They 
used the ResNet50V2 network and a modified feature selection pyramid 
network. Their model achieved an accuracy of 0.9849, and their model 
was able to identify 234 out of 245 patients correctly. 

However, the crucial aspect of the detection of COVID-19 from CT 
scans is the minimisation of false negatives. In this direction, Lokwani 
et al. [51] developed a method to convert slice level predictions to scan 
level predictions, which helped them reduce the number of false 
positives. 

To the best of our knowledge, other studies do not consider the 
aspect of minimisation of false positives. Moreover, models proposed in 
Refs. [48–58,84–87] used a single dataset for performance evaluation. 
Attempts were made to use a modified version of the KNN algorithm 
[52], but the execution time is higher for larger datasets when compared 
to DL models. 

4. Proposed model 

This section explains the systematic approach followed to generate 

the proposed stacked ensemble, the diversity measure and the details of 
the proposed model. 

4.1. Systematic approach for the generation of a stacked ensemble 

There are three phases in the generation of stacked ensemble: gen-
eration, selection and aggregation.  

1. In the generation phase, a pool of base classifiers consisting of 
models with different architectures were generated from pre-trained 
models. From each pre-trained model, a set of base classifiers were 
generated by appending a varying number of fully connected layers. 
All the generated base classifiers from the different pre-trained 
models formed the pool of base classifiers. Each base classifier dif-
fers from the other classifiers by at least one fully connected layer. 
Let C = c1, c2, …, cm be the set of pool of base classifiers.  

2. In the selection phase, the base classifiers that constituted the 
stacked ensemble were selected from the pool of base classifiers. 
Diversity and accuracy are the two metrics commonly used to select 
the base classifiers of the ensemble; however, in the case of COVID- 
19, as the focus is on the minimisation of false negatives and hence 
the recall, the selection metrics are accuracy, recall and diversity. 
The diversity measure used in the paper is explained in Section 4.2.  

3. In the aggregation phase, the weighted average of the outputs of the 
base classifiers is given as input to the meta classifier. 

4.2. Diversity measure 

A novel pairwise diversity metric is proposed for the stacked 
ensemble to mimic the COVID-19 pandemic. Let N be the total number 
of examples in the validation set and N1 and N0 be the total number of 
positive and negative examples, respectively; hence N = N0 + N1. Let ci 
and cj be the pair of base classifiers for which the diversity is measured. 
Let Nab

1 be the number of positive examples and a be the value predicted 
by first classifier ci. Let b be the value predicted by the second classifier 
cj. The diversity in the set of false negatives generated by the two clas-
sifiers ci and cj can be measured using Nab

p when a = 0 and b = 1 or a = 1 
and b = 0. If the term N01

p + N01
p is high, the diversity in the pair of base 

classifiers is high. On the other hand, accuracy and recall of the indi-
vidual base classifiers should be high. The metric to select the base 
classifiers that constitute the stacked ensemble is designed with the 
following requirements.  

● Individual base classifiers should have high accuracy. The accuracy 
of the first classifier ci is 

ai =
(N00

0 + N01
0 + N10

1 + N11
1 ).

N    

● The individual base classifiers should give high recall. Recall of the 
first classifier ci is 

si =
(N10

1 + N11
1 )

(N10
1 + N11

1 + N10
1 + N00

1 )

The pair of classifiers should generate a diverse set of false negatives. 

dij =
(N10

1 + N01
1 ).

(N01
1 + N00

1 + N101 + N00
1 )

The metric to select base classifiers with high recall, high accuracy 
and high diversity is the product 

aisi

∑m

j=1
dij 

The pool of base classifiers are evaluated with the above-mentioned 
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metric and the three classifiers that give the best values are selected to 
form the stacked ensemble. 

4.3. Proposed stacked ensemble 

The proposed stacked ensemble consists of three base classifiers that 
are diverse, highly sensitive and highly accurate. The first base classifier 
is comprised of a pre-trained VGG-19 model and one fully connected 
layer, as shown in Fig. 3. The VGG-19 model maps the input volume of 
size (3 × 224 × 224) to a column vector consisting of 1000 rows. The 
fully connected layer converts this column vector into a column vector 
with as many rows as the number of classes (which is two). The fully 
connected layer uses a softmax activation function. A dropout layer with 
a dropout probability of 0.5 is applied between the fully connected layer 
to prevent the model from over-fitting the training data. 

The second base classifier is the pre-trained DenseNet-169 model and 
two fully connected layers, as shown in Fig. 4. The DenseNet-169 model 
maps the input volume of size 3 × 224 × 224 to a column vector con-
sisting of 1000 rows, just like the VGG model. The first fully connected 
layer maps this column vector to a column vector of size 500. The second 
fully connected layer maps this column vector to a column vector with 
two rows a column vector with two rows (equal to the number of clas-
ses). The first fully connected layer uses a ReLU activation function, 
while the second fully connected layer uses a softmax activation func-
tion. This part also uses a dropout layer with a probability of 0.5. 

The third base classifier is the pre-trained ResNet-101 model and one 
fully connected layer, as shown in Fig. 5. 

Finally, the outputs of the three base classifiers are given as an input 
to the single neuron to get the predicted class, as shown in Fig. 6. This 
single neuron uses a softmax activation function. This single neuron 
forms the stacking model, which assigns weights to the outputs of each 
of the three parts, and based on these weights and the outputs of the 
three parts, it predicts the output class, i.e. COVID-19-positive or 
COVID-19-negative. The description of each layer of the model i.e. the 
input size, output size and number of parameters are shown in Table 1. 

The proposed model uses TL so that the model can train faster. The 
weights of the pre-trained models are fine-tuned to the task at hand, 
which is to detect COVID-19. The three models are combined using 
stacking to predict the output class. In this model, the meta-model is a 
single neuron, which correctly predicts the output class based on the 
outputs of the three models discussed above. 

The proposed stacked ensemble achieves better accuracy and sensi-

tivity than the best performing individual base classifier when the in-
dividual base classifiers are heterogeneous. The base classifiers with 
high accuracy and recall were selected from the pool of classifiers to 
form the stacked ensemble. Additionally, the base classifiers that 
generate a diverse set of false negatives were selected to ensure het-
erogeneity. Let N be the total number of examples and N1 be the number 
of positive examples, and N0 be the number of negative examples. Ac-
curacy and sensitivity of the base classifiers are denoted by A1, A2, …, An 
and R1, R2, …, Rn respectively. Initially, three best-performing base 
classifiers p, q, and r were selected and arranged in sorted order of in-
dividual recall values such that Rp > Rq > Rr. This implies that FNp < FNq 
< FNr, where FNi is the false negatives generated by the ith base clas-
sifier. Let FNe be the number of false negatives generated by the stacked 
ensemble. Suppose Nabc

1 denote the number of positive examples for 
which the prediction of p classifier is a, q classifier is b and r classifier is c. 
Similarly, Nabc

0 denotes the number of negative examples for which the 
prediction of p classifier is a, q classifier is b and r classifier is c. The 
following assumptions were made based on the selection criteria of the 
base classifiers. The first assumption is that recall and accuracy of an 
individual base classifier is greater than 50%, i.e., Rp > Rq > Rr > 0.5, 
which implies that true positives are greater than false negatives for a 
base classifier. The second assumption is that the base classifiers p,q, and 
r generate diverse false negatives. 

The number of false negatives of the stacked ensemble can be given 
by the expression FNe = N000

1 + N001
1 + N010

1 + N100
1 and the number of 

false negatives of the best performing base classifier can be obtained 
using FNp = N000

1 + N001
1 + N010

1 + N011
1 . Considering the difference in 

false negatives, FNp − FNs = N011
1 − N100

1 > 0 since TP > FP for a given 
base classifier and the base classifiers generate a diverse set of false 
negatives. Moreover, the term N100

1 is nearly zero as the base classifiers 
generate diverse set of false negatives. Hence, the FN of the stacked 
ensemble is less than the best performing individual base classifier. 
Therefore, the recall of the stacked ensemble is greater than the recall of 
the best-performing base classifier. 

The accuracy of the stacked ensemble is proportional to the sum of 
true positives and true negatives, which is given by the expression Ae =

1 − (N000
1 + N001

1 + N010
1 + N100

1 + N111
0 + N101

0 + N110
0 + N011

0 )/N. The 
accuracy of the individual base classifier p can be obtained using the 
expression Ap = 1 − (N000

1 + N001
1 + N010

1 + N011
1 + N111

0 + N101
0 +

N110
0 + N100

0 )/N. The difference between the accuracies of the stacked 

Fig. 1. COVID-19 Negative CT scan images.  
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ensemble and the base classifier is Ae − Ap = (N011
1 +N100

0 )− (N100
1 +

N011
0 ) > 0 as the false negatives are less than the true positives and the 

false positives are less than the true negatives for a given base classifier. 

Moreover, the term N100
1 is nearly zero as the base classifiers generate 

diverse set of false negatives. Consequently, the accuracy of the stacked 
ensemble is greater than the accuracy of the best performing individual 

Fig. 2. COVID-19 Positive CT scan images.  

Fig. 3. Part 1 Model architecture.  

Fig. 4. Part 2 Model architecture.  
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base classifier. 

5. Experimental data and methodology 

This section discusses the datasets, experimental methodology and 
evaluation metrics. 

5.1. Datasets 

The proposed stacked ensemble was evaluated on three different 
chest CT scan datasets obtained from different countries. 

The following principles were followed in splitting each datset into 
test, training and validation sets. The number of images in the test set 

were limited to the range of 200–400 images to validate the model’s 
generality. The size of the validation set is dependant on the size of the 
test set as the bigger test set gives more prominence to the validation set. 
All the remaining images were included in the training set. Moreover, to 
obtain reliable results, test and validation sets were ensured to contain 
same proportion of positive and negative images.  

1. COVID-CT Dataset [88]: There are 349 COVID-19 CT images and 
397 non-COVID-19 CT images in COVID-CT Dataset. Sample 
COVID-19-negative images and COVID-19-positive images are 
shown in Fig. 1 and Fig. 2 respectively. The dataset is available at 
https://github.com/UCSD-AI4H/COVID-CT.  
● Dataset size: 746 images  
● Number of COVID-19-positive images: 349  
● Number of COVID-19-negative images: 397  
● Train set size: 425 images  
● Validation set size: 118 images  
● Test set size: 203 images 

Data augmentation techniques were used to increase the size of the 
training set to 1275 images to prevent the model from over-fitting to the 
training data.  

2. COVID-CTset [89]: In this original dataset, there are 15,589 and 48, 
260 CT scan images belonging to 95 COVID-19 and 282 normal 
persons respectively. This dataset is from the Negin Medical Center, 
Sari, Iran and is available at/github.com/mr7495/COVID-CTset.  
● Dataset size (considered): 12,058 images  
● Number of COVID-19-positive images: 2282  
● Number of COVID-19-negative images: 9776  
● Train set size: 11,400 images  
● Validation set size: 258 images  
● Test set size: 400 images  

3. SARS-CoV-2 CT-scan dataset [90]: This dataset contains 1252 
COVID-19 positive CT-scans and 1230 COVID-19 negative CT-scans. 
The dataset is available at https://www.kaggle.com/plameneduardo 
/sarscov2-ctscan-dataset and the data are collected from hospitals in 
Sao Paulo, Brazil.  
● Dataset size: 2482 images  
● Number of COVID-19-positive images: 1252  
● Number of COVID-19-negative images: 1230  
● Train set size: 1800 images  
● Validation set size: 282 images  
● Test set size: 400 images 

Fig. 5. Part 3 Model architecture.  

Fig. 6. Combined Model architecture.  

Table 1 
Description of each layer of the proposed model.  

Part 
No. 

Layer Name Input Size Output 
Size 

Number of 
Parameters 

1 VGG19 3 X 224 X 
224 

1000 143667240 

1 Fully Connected 
Layer 1 

1000 2 2002 

2 DenseNet169 3 X 224 X 
224 

1000 14149480 

2 Fully Connected 
Layer 1 

1000 500 500500 

2 Fully Connected 
Layer 2 

500 2 1002 

3 ResNet101 3 X 224 X 
224 

1000 44549160 

3 Fully Connected 
Layer 1 

1000 2 2002 

– Single Neuron 3 X 2 1 X 2 3  
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5.2. Data augmentation techniques 

DL models require large datasets for efficient training. If the avail-
able datasets are small, the size of the training set can be increased using 
data augmentation techniques. Among the three datasets used in the 
study, the COVID-CT Dataset [88] is the smallest. Hence, the following 
data augmentation techniques were used to increase the size of the 
dataset.  

1. Random Rotation: The given image was rotated by an angle chosen 
randomly.  

2. Random Horizontal Flip: The given image was randomly flipped 
horizontally with a given probability.  

3. Colour Jittering: The brightness, contrast, and saturation of the 
given image was changed randomly. 

5.3. Hyper-parameter tuning 

The grid search method was used to tune the values of the hyper- 
parameters, namely the Random Resized Crop size, the Random 
Resized Crop scale, the Random Rotation angle range and the Random 
Horizontal Flip probability. The following are the values considered for 
each of the hyper-parameters:  

● Random Resized Crop size: 128, 200, and 224  
● Random Resized Crop Scale: (0.5, 1.0), (1.0, 0.5) and (0.5, 0.5)  
● Random Rotation angle: [-3◦, 3◦], [-5◦, 5◦], and [-10◦, 10◦] ranges  
● Random Horizontal Flip probability: 0.3, 0.5, and 0.7 

The batch size was initialized with a value of four and was doubled 
until an out of memory error was encountered. The higher the batch size, 
the more is the memory requirement. Finally, the batch size was chosen 
as the maximum possible size without getting an out of memory error. 
The number of epochs were initialized to 50. The number of epochs was 
incremented by ten until the training and validation sets’ accuracy 
varied. When the number of epochs was 100, the training and validation 
sets’ accuracy and F1 score remain almost constant. 

The PyTorch DL framework was used for implementation and the 
Adam optimiser was used for optimisation. Cross entropy loss was used 
as a loss function.  

● Number of epochs = 100  
● Learning rate = 1e-3  
● Batch size = 16  
● Random Resized Crop size = 224  
● Random Resized Crop scale = (0.5, 1.0)  
● Random Rotation angle range = [-5◦, 5◦]  
● Random Horizontal Flip probability = 0.5 

5.4. Evaluation metrics 

The following metrics were used to evaluate the performance of the 
proposed stacked ensemble. 

• Precision: Precision is the fraction of positive predictions that 
actually belong to the positive class. 

Precision =
True Positives

True Positives + False Positives   

• Recall: Recall is the fraction of positive examples in the dataset 
that are predicted as positive. 

Recall =
True Positives

True Positives + False Negatives   

• F1 Score: F1 Score is the harmonic mean of precision and recall. 

F1 Score =
2 × precision × recall

precision + recall   

• Accuracy: Accuracy is the fraction of the total predictions that are 
correct. 

Accuracy=
TruePositives+TrueNegatives

TruePositives+FalsePositives+FalseNegatives+TrueNegatives  

6. Experimental results 

This section explores the performance evaluation of the proposed 
stacked ensemble on three datasets of CT scans. In the first subsection, 
the results obtained for the proposed model were analysed. In the second 
subsection, the performance of the proposed model was obtained by 
varying the threshold value by a constant step size. 

6.1. Performance analysis of the proposed model 

The proposed model was evaluated on three different datasets of 
chest CT scans: the COVID-CT-Dataset [88], the COVID-CTset [89] and 
the SARS-CoV-2 CT-scan dataset [90]. 

The notation used in this study is as follows: i) Model0 denotes the 
model with a softmax layer ii) Model1 denotes the model with a single 
fully connected layer and a softmax layer, and iii) Model2 denotes the 
model with two fully connected layers and a softmax layer. The model 
can be any of the following DL models namely: VGG-19, ResNet-101, 
DenseNet-169 and WideResNet-50-2. 

The proposed model consists of three parts, and each part consists of 
a pre-trained model followed by fully connected layers. Two parts 
contain a pre-trained model followed by one fully connected layer, 
whereas one part contains a pre-trained model with two fully connected 
layers. After eliminating the duplicates from the combinations formed 
by interchanging the pre-trained models, only two distinct combinations 
remained (apart from the proposed model). Combination 1 was obtained 
by interchanging the pre-trained models of part 1 and part 2, and 
Combination 2 was obtained by interchanging the pre-trained models of 
part 2 and part 3. Therefore, the two distinct ensembles resulted by 
interchanging the pre-trained models of the proposed stacked ensemble 
are: i) Ensemble 1, named as Combination 1, was designed using Den-
seNet1691, VGG192, ResNet1011, ii) Ensemble 2, named as Combination 
2, was designed using DenseNet1691, ResNet1012, VGG191. 

The COVID-CT Dataset [88] comprised of 746 images, was split into 
a training set consisting of 425 images, a validation set consisting of 118 
images, and a test set consisting of 203 images. The test set contains 98 
COVID-19-positive images and 105 COVID-19-negative images. The 
model could correctly classify 93 images of the 98 COVID-19-positive 
images resulting in seven false negatives. The proposed model could 
correctly classify 79 images Of the 105 COVID-19-negative images. 
Therefore, the accuracy and F1 score of the proposed model are 0.8473 
and 0.8571, respectively. The experiment results for the proposed 
model, combinations, and various DL models were presented in Table 2. 

The following are the observations of the experiment conducted on 
the COVID-CT Dataset [88]. It is evident from Table 2 that the recall of 
the proposed model is significantly higher than all base classifiers and 
ensembles. The combination 1 and combination 2 have achieved a recall 
slightly better than base classifiers; however, the proposed model has 
outperformed the base classifiers and combinations by a significant 
margin. The accuracy and F1 score of the proposed model were signif-
icantly higher than base classifiers and ensembles. The precision of the 
proposed model is better than the ensembles or combinations. The only 
exception is that the precision of DenseNet1692 was slightly better than 
the proposed model. 
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As a second dataset, COVID-CTset [89] with 12,058 images was 
considered for this study. The dataset was split into a training set, 
validation set, and a test set consisting of 11,258 images, 400 images, 
and 400 images. The proposed model correctly classified 198 images out 
of the 200 COVID-19-positive images, i.e., the number of false negatives 
is two. Therefore, the proposed model achieved an accuracy of 0.99 and 
an F1 score of 0.99. Table 3 summarises the results obtained using the 
COVID-CTset [89] for different models. It is evident from Table 3 that 
the recall, accuracy and F1 score of the proposed model are better than 
base classifiers and ensembles. 

The SARS-CoV-2 CT-scan dataset [90] consists of 2482 CT scans, 
which were split into a training set of 2082 images, a validation set of 
200 images, and a test set of 200 images. The test set comprises Of 200 
COVID-19-positive images and 200 COVID-19-negative images. The 
proposed model correctly classified 198 images and misclassified two 
images, i.e., the number of false negatives is two. Of the 200 
COVID-19-negative images, the proposed model correctly classified 189 
images, i.e., the number of false positives is 11. Therefore, the accuracy 
and F1 score of the proposed model are 0.935 and 0.9378, respectively. 
Table 4 summarises the comparison of the performance of the proposed 
model against other models on the SARS-CoV-2 CT-scan dataset [90]. 

It is evident from Table 4 that the proposed model has yielded better 
recall, accuracy, and F1 score compared to the ensembles. ResNet1010 
has given almost the same recall as that of the proposed model; however, 
the accuracy, precision, and F1 score of the proposed model are slightly 
better than ResNet1010. 

From Tables 2–4, it can be observed that the proposed model per-
formed better than the combination 1, combination 2 and base classi-
fiers in terms of accuracy and F1 score on all of the datasets. 

Table 5 present the training and testing times of the proposed model 
per batch for each dataset. The average time for training the model is 
0.5962 s/batch and the average time for testing the model is 0.2029 s/ 
batch. 

6.2. Evaluation of the proposed model under varied thresholds 

The proposed model was evaluated at different thresholds ranging 
from an initial value of 0.1 to the value of 0.9. Tables 6–8 summarises 
the performance of the proposed model on different datasets. 

The observations for the COVID-CT Dataset [88] are as follows. With 
the increase in threshold, the number of false negatives increased, and 
false positives decreased. Consequently, with the increase in threshold, 
recall decreased, and precision increased. It can be observed that the F1 
score and accuracy are maximal when the threshold is 0.5. The values 
obtained from the experiment at different thresholds are listed in 
Table 6. The evaluation metrics (precision, recall, accuracy, and F1 
score) at different thresholds for the COVID-CT Dataset [88] are shown 
in Fig. 7. 

The observations for the COVID-CTset [89] are as follows. With the 
increase in threshold, the number of false negatives increased, and false 
positives decreased. Consequently, with the increase in threshold, recall 
decreased, and precision increased. It can be observed that the F1 score 
and accuracy are maximal when the threshold is 0.5 and 0.6. The values 

Table 2 
Comparison among the proposed model and other baseline models on COVID-CT 
Dataset [88].  

Model Precision Recall Accuracy F1 Score 

VGG190 0.7957 0.7551 0.7882 0.7749 
VGG191 0.7431 0.8265 0.7783 0.7826 
VGG192 0.7714 0.8265 0.7980 0.798 
DenseNet1690 0.7889 0.7245 0.7734 0.7553 
DenseNet1691 0.8182 0.8265 0.8276 0.8223 
DenseNet1692 0.7767 0.8163 0.798 0.796 
ResNet1010 0.7523 0.8367 0.7882 0.7923 
ResNet1011 0.8043 0.7551 0.7931 0.7789 
ResNet1012 0.7117 0.8061 0.7488 0.756 
WideResNet50 20 0.7545 0.8469 0.7931 0.7981 
WideResNet50 21 0.7196 0.7857 0.7488 0.7512 
WideResNet50 22 0.7664 0.8367 0.798 0.8 
Combination 1 0.7593 0.8367 0.7931 0.7961 
Combination 2 0.7217 0.8469 0.7684 0.7793 
Proposed Model 0.7815 0.949 0.8473 0.8571  

Table 3 
Comparison among the proposed model and other baseline models on COVID- 
CTset [89].  

Model Precision Recall Accuracy F1 Score 

VGG190 0.9899 0.985 0.9875 0.9875 
VGG191 0.9747 0.965 0.97 0.9698 
VGG192 0.9896 0.95 0.97 0.9694 
DenseNet1690 0.9845 0.95 0.9675 0.9669 
DenseNet1691 0.9701 0.975 0.9725 0.9726 
DenseNet1692 1 0.955 0.9775 0.977 
ResNet1010 0.9848 0.975 0.98 0.9799 
ResNet1011 0.9745 0.955 0.965 0.9646 
ResNet1012 0.9845 0.95 0.9675 0.9669 
WideResNet50 20 0.9742 0.945 0.96 0.9594 
WideResNet50 21 0.9895 0.94 0.965 0.9641 
WideResNet50 22 0.9948 0.95 0.9725 0.9719 
Combination 1 0.9898 0.975 0.9825 0.9824 
Combination 2 0.9898 0.97 0.98 0.9798 
Proposed Model 0.99 0.99 0.99 0.99  

Table 4 
Comparison among the proposed model and other baseline models on SARS- 
CoV-2 CT scan dataset [90].  

Model Precision Recall Accuracy F1 Score 

VGG190 0.8899 0.97 0.925 0.9282 
VGG191 0.8812 0.89 0.885 0.8856 
VGG192 0.8033 0.98 0.87 0.8829 
DenseNet1690 0.9216 0.94 0.93 0.9307 
DenseNet1691 0.8257 0.9 0.855 0.8612 
DenseNet1692 0.8763 0.85 0.865 0.8629 
ResNet1010 0.8684 0.99 0.92 0.9252 
ResNet1011 0.8899 0.97 0.925 0.9282 
ResNet1012 0.9263 0.88 0.905 0.9026 
WideResNet50 20 0.9038 0.94 0.92 0.9216 
WideResNet50 21 0.8807 0.96 0.915 0.9187 
WideResNet50 22 0.8687 0.86 0.865 0.8643 
Combination 1 0.9135 0.95 0.93 0.9314 
Combination 2 0.9126 0.94 0.925 0.9261 
Proposed Model 0.8991 0.98 0.935 0.9378  

Table 5 
Comparison of the training and testing time for the proposed model.  

Dataset Training time (per 
batch) 

Testing time (per 
batch) 

COVID-CT Dataset [88] 0.6162s 0.2035s 
COVID-CTset [57] 0.5943s 0.2029s 
SARS-CoV-2 CT scan dataset 

[90] 
0.5781s 0.2024s  

Table 6 
Performance of the proposed model on COVID-CT Dataset [88] under varied 
thresholds.  

Threshold Precision Recall Accuracy F1 Score 

0.1 0.6299 0.9898 0.7143 0.7698 
0.2 0.6761 0.9796 0.7635 0.8 
0.3 0.7142 0.9694 0.798 0.8225 
0.4 0.744 0.949 0.8177 0.8341 
0.5 0.7815 0.949 0.8473 0.8571 
0.6 0.7946 0.9082 0.8424 0.8476 
0.7 0.8137 0.8469 0.8325 0.83 
0.8 0.8933 0.6837 0.8079 0.7746 
0. 0.9138 0.5408 0.7537 0.6795  
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obtained from the experiment at different thresholds are listed in 
Table 7. The evaluation metrics (precision, recall, accuracy, and F1 
score) at different thresholds for the COVID-CTset [89] are presented in 
Fig. 8. 

The observations for the SARS-CoV-2 CT-scan dataset [90] are as 
follows. With the increase in threshold, the number of false negatives 
increased, and false positives decreased. Consequently, with the increase 
in threshold, recall decreased, and precision increased. It can be 
observed that the F1 score and accuracy are maximal when the threshold 
is 0.5. The values obtained from the experiment at different thresholds 
are listed in Table 8. The evaluation metrics (precision, recall, accuracy, 
and F1 score) at different thresholds for the SARS-CoV-2 CT-scan dataset 
[90] are presented in Fig. 9. 

The accuracy and F1 score of the proposed model are compared with 
individual pre-trained models on the three datsets in Fig. 10 and Fig. 11 
respectively. The accuracies of the proposed model and pre-trained 
models are plotted against varying thresholds in Fig. 12. 

The recommended threshold differs for each dataset and depends on 

the preferred metric according to the application. If high precision is 
required, the threshold should be higher, whereas if a high recall is 
preferred, the threshold should be lower. In the detection of COVID-19, 
minimisation of false negatives is a crucial aspect as false negatives 
result in the spread of the pandemic. Hence, recall along with accuracy 
was given preference. It can be observed from Tables 6–8 and Figs. 7–9 
that recall increased with a decrease in the threshold, and hence the 
selection of lower thresholds yields a high recall. 

Table 7 
Performance of the proposed model on COVID-CTset [89] under varied 
thresholds.  

Threshold Precision Recall Accuracy F1 Score 

0.1 0.939 1 0.9675 0.9685 
0.2 0.9479 1 0.9725 0.9732 
0.3 0.966 0.995 0.98 0.9803 
0.4 0.9755 0.995 0.985 0.9851 
0.5 0.99 0.99 0.99 0.99 
0.6 0.99 0.99 0.99 0.99 
0.7 0.9899 0.98 0.985 0.9849 
0.8 1 0.965 0.9825 0.9822 
0.9 1 0.955 0.9775 0.977  

Table 8 
Performance of the proposed model on SARS-CoV-2 CT scan dataset [90] under 
varied thresholds.  

Threshold Precision Recall Accuracy F1 Score 

0.1 0.6993 1 0.785 0.823 
0.2 0.7752 1 0.885 0.8734 
0.3 0.8197 1 0.89 0.9009 
0.4 0.8696 1 0.925 0.9302 
0.5 0.8991 0.98 0.935 0.9378 
0.6 0.9135 0.95 0.93 0.9314 
0.7 0.9082 0.89 0.9 0.899 
0.8 0.9222 0.83 0.88 0.8737 
0.9 0.95 0.76 0.86 0.8444  

Fig. 7. Variation of Precision, Recall, Accuracy and F1 score with threshold on 
COVID-CT Dataset [88]. 

Fig. 8. Variation of Precision, Recall, Accuracy and F1 score with threshold on 
COVID-CTset [89]. 

Fig. 9. Variation of Precision, Recall, Accuracy and F1 score with threshold on 
SARS-CoV-2 CT scan dataset [90]. 

Fig. 10. F1 Score of Different models on different datasets.  
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7. Comparison with existing models 

The performance of the proposed model was compared with the 
existing models [48–50,52,57,58] on the respective datasets used for 
evaluation of the existing models. The models [48–50,52,57,58] were 
chosen for comparison due to similarity in experiments conducted and 
the dataset composition. The evaluation metrics used for the comparison 
were precision, recall, accuracy, and F1 score. 

The comparison of the performance of the proposed model and 
existing models on the COVID-CT dataset [88] are presented in Table 9. 
The objective of the proposed model is to minimise the false negatives 
without compromising the accuracy. Table 9 shows that the recall of the 
proposed model is significantly higher than the existing models due to 
the minimisation of false negatives. Moreover, the F1 score of the pro-
posed model was better than the existing models. The accuracy of the 
proposed model is on par with most of the existing models. 

Tables 10 and 11 present the comparison of the proposed model and 
existing models on the datasets COVID-CTset [89] and SARS-CoV-2 
CT-scan dataset [90], respectively. It can be observed from Table 10 
that the proposed model has performed well on the four metrics 
compared to the existing model. The observation from Table 11 is that 
the proposed model’s recall is significantly higher than the existing 
model. 

The following are the strengths of the proposed model. The proposed 
model used a stacked model of different pre-trained models and hence 
the proposed model could outperform existing models. Moreover, the 
proposed model could learn more features of COVID-19 as it was trained 
on three different datasets and has seen more examples than the other 
models. The proposed model is a stacked ensemble of three different pre- 
trained models and a varying number of fully connected layers. These 
additional fully connected layers helped the model learn the features 

specific to COVID-19, resulting in better performance. 

8. Conclusion 

Minimisation of false negatives is vital in controlling the spread of 
COVID-19. Hence, we proposed a stacked ensemble model of pre-trained 
models and fully connected layers to detect COVID-19 with high recall 
and accuracy. The stacked ensemble consisting of VGG-19, DenseNet- 
169, and ResNet-101 models was generated using a systematic approach 
and a similarity measure. The proposed stacked ensemble model per-
formed better than the baseline and existing models. Moreover, the 
proposed model achieved high accuracy and recall on three chest CT- 
scan datasets. The trade-off between recall and precision was explored 
to select the recommended threshold for each dataset. For all the three 
CT scan datasets, the recall of the model was high when the threshold is 
0.5, and it increased further by decreasing the threshold. Accuracy and 
F1 score were maximal when the threshold is 0.5. Hence, the recom-
mended threshold for the three datasets is 0.5. 

Declaration of competing interest 

There are no known conflicts of interest. 

References 

[1] Coronavirus update (live): 28,988,031 cases and 925,320 deaths from COVID-19 
virus pandemic - worldometer. 

[2] Ai Tao, Zhenlu Yang, Hongyan Hou, Chenao Zhan, Chong Chen, Wenzhi Lv, 
Tao Qian, Ziyong Sun, Liming Xia, Correlation of Chest Ct and Rt-Pcr Testing in 
Coronavirus Disease 2019 (Covid-19) in china: a Report of 1014 Cases, Radiology 
(2020) 200642. 

[3] Yicheng Fang, Huangqi Zhang, Jicheng Xie, Minjie Lin, Lingjun Ying, Peipei Pang, 
Wenbin Ji, Sensitivity of Chest Ct for Covid-19: Comparison to Rt-Pcr, Radiology 
(2020) 200432. 

Fig. 11. Accuracy of Different models on different datasets.  

Fig. 12. Variation of Accuracy with threshold for each dataset.  

Table 9 
Comparison between the proposed model and models proposed in previous 
research papers on COVID-CT Dataset [88].  

Model Precision Recall F1 
Score 

Accuracy 

DL with classical data augmentation 
and CGAN [50] 

0.85 0.78 0.81 0.83 

Self-Trans approach [48] – – 0.85 0.86 
SqueezeNet based light CNN [49] 0.82 0.85 0.83 0.83 
Enhanced KNN classifier [52] 0.75 0.74 0.75 0.96 
Redesigned Net for COVID-19 CT 

Classification [58] 
0.78 0.80 0.79 0.79 

Proposed Model 0.78 0.95 0.86 0.85  

Table 10 
Comparison between the proposed model and models proposed in previous 
research papers on COVID-CTset [89].  

Model Precision Recall F1 
Score 

Accuracy 

A Fully Automated Deep Learning- 
based Network [57] 

0.81 0.95 0.87 0.98 

Proposed Model 0.99 0.99 0.99 0.99  

Table 11 
Comparison between the proposed model and models proposed in previous 
research papers on SARS-CoV-2 CT scan dataset [90].  

Model Precision Recall F1 
Score 

Accuracy 

Redesigned Net for COVID-19 CT 
Classification [58] 

0.96 0.86 0.91 0.91 

Proposed Model 0.90 0.98 0.94 0.94  

E. Jangam and C.S.R. Annavarapu                                                                                                                                                                                                         

http://refhub.elsevier.com/S0010-4825(21)00402-9/sref2
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref2
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref2
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref2
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref3
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref3
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref3


Computers in Biology and Medicine 135 (2021) 104608

11

[4] Jeffrey P. Kanne, Brent P. Little, Jonathan H. Chung, Brett M. Elicker, Loren 
H. Ketai, Essentials for Radiologists on Covid-19: an Update—Radiology Scientific 
Expert Panel, 2020. 
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[85] M Ismael Aras, Abdulkadir Şengür, Deep learning approaches for covid-19 
detection based on chest x-ray images, Expert Syst. Appl. 164 (2021) 114054. 

[86] Asif Iqbal Khan, Junaid Latief Shah, Mohammad Mudasir Bhat, Coronet: A deep 
neural network for detection and diagnosis of covid-19 from chest x-ray images, 
Comput. Methods Progr. Biomed. 196 (2020) 105581. 

[87] Emtiaz Hussain, Mahmudul Hasan, Md Anisur Rahman, Ickjai Lee, 
Tasmi Tamanna, Mohammad Zavid Parvez, Corodet: a deep learning based 
classification for covid-19 detection using chest x-ray images, Chaos, Solit. Fractals 
142 (2021) 110495. 

[88] Jinyu Zhao, Yichen Zhang, Xuehai He, Pengtao Xie, Covid-ct-dataset: a Ct Scan 
Dataset about Covid-19, 2020 arXiv preprint arXiv:2003.13865. 

[89] Mohammad Rahimzadeh, Abolfazl Attar, Seyed Mohammad Sakhaei, A Fully 
Automated Deep Learning-Based Network for Detecting Covid-19 from a New and 
Large Lung Ct Scan Dataset, medRxiv, 2020. 

[90] Eduardo Soares, Plamen Angelov, Sarah Biaso, Michele Higa Froes, Daniel 
Kanda Abe, Sars-cov-2 Ct-Scan Dataset: A Large Dataset of Real Patients Ct Scans 
for Sars-Cov-2 Identification, medRxiv, 2020. 

E. Jangam and C.S.R. Annavarapu                                                                                                                                                                                                         

http://refhub.elsevier.com/S0010-4825(21)00402-9/sref60
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref60
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref60
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref61
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref61
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref61
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref62
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref62
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref62
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref63
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref63
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref63
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref63
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref64
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref64
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref64
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref65
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref65
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref65
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref65
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref66
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref66
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref66
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref67
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref67
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref68
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref68
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref68
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref69
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref69
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref69
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref69
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref70
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref70
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref70
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref70
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref70
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref72
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref72
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref72
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref74
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref74
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref74
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref75
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref75
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref75
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref76
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref76
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref76
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref77
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref77
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref77
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref78
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref78
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref78
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref79
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref79
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref80
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref80
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref80
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref80
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref81
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref81
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref81
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref81
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref82
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref82
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref82
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref83
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref83
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref84
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref84
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref84
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref85
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref85
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref86
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref86
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref86
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref87
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref87
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref87
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref87
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref88
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref88
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref89
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref89
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref89
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref90
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref90
http://refhub.elsevier.com/S0010-4825(21)00402-9/sref90

