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Abstract
Neuroimaging experiments can generate impressive volumes of data and many
images of the results. This is particularly true of multi-modal imaging studies
that use more than one imaging technique, or when imaging is combined with
other assessments. A challenge for these studies is appropriate visualisation of
results in order to drive insights and guide accurate interpretations.
Next-generation visualisation technology therefore has much to offer the
neuroimaging community. One example is the Imperial College London Data
Observatory; a high-resolution (132 megapixel) arrangement of 64 monitors,
arranged in a 313 degree arc, with a 6 metre diameter, powered by 32
rendering nodes. This system has the potential for high-resolution, large-scale
display of disparate data types in a space designed to promote collaborative
discussion by multiple researchers and/or clinicians. Opportunities for the use
of the Data Observatory are discussed, with particular reference to applications
in Multiple Sclerosis (MS) research and clinical practice. Technical issues and
current work designed to optimise the use of the Data Observatory for
neuroimaging are also discussed, as well as possible future research that could
be enabled by the use of the system in combination with eye-tracking
technology.
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Introduction
A natural trend in many scientific disciplines is towards greater 
size and complexity of the empirical data sets that are collected. 
This may be driven by the development of entirely new research 
methodologies or diagnostic tests, further refinements of existing 
technology (e.g. greater resolution of imaging, or higher speed 
of sampling), or by the incorporation of multiple measurement  
methods to examine a single question. In the era of ‘Big Data’ 
(Katal et al., 2015; Marx, 2013) some scientists are now developing 
specialist techniques to handle truly enormous data sets.

This trend is certainly evident in the field of neuroimaging. Func-
tional Magnetic Resonance Imaging (fMRI) is now the workhorse 
method in cognitive neuroscience and can generate impressively 
large and complex data sets. Recent advances in fMRI acquisition 
software to achieve increased spatial and temporal resolution (e.g. 
Moeller et al., 2010) have driven a further increase in data volumes. 
Large scale endeavours such as the Human Connectome Project 
(HCP; Van Essen et al., 2013) aim to gather a variety of differ-
ent data from large cohorts. The HCP is currently acquiring data 
using four different MRI procedures (structural, resting-state 
fMRI, task fMRI, and diffusion imaging), from 1200 subjects, 
with a sub-set also completing magnetoencephalography (MEG) 
and electroencephalography (EEG) scans, and a further sub-set 
also completing additional scans on a high-field strength (7 Tesla) 
MRI scanner. With additional demographic, behavioural, and 
questionnaire measures, the final HCP data set will be a tremen-
dous resource, but its sheer size will require specialist methods of 
data-handling and analysis.

The HCP illustrates two common features of modern neuroimaging 
research. First is the collection of multiple types of data from a set 
of subjects using a single imaging modality, most commonly MRI. 
These may include task fMRI, resting-state fMRI, diffusion MRI, 
Arterial Spin Labelling (ASL), Magnetic Resonance Spectroscopy 
(MRS), or a number of other specialist techniques. The second 
is the advent of true multi-modal neuroimaging research, where 
combinations of two (or more) methods are used, either simulta-
neously or independently. Combined fMRI-EEG studies (Huster 
et al., 2012) combine the high spatial resolution of MRI with the 
high temporal resolution of EEG, often with simultaneous acqui-
sition. MRI and MEG have also been used successfully (e.g. 
Carhart-Harris et al., 2016) and provide similarly complementary 
data, though not simultaneously. MRI and Positron Emission Tom-
ography (PET) data can be collected independently (e.g. Colasanti 
et al., 2016; Rabiner et al., 2011) or simultaneously (using the new 
generation of combined PET/MR scanners; Bailey et al., 2015) and 
combine PET-derived information on neurochemistry with struc-
tural or functional MRI measures. Multimodal imaging has also 
begun to filter through into clinical practice with some diagnostic 
criteria now incorporating imaging markers of neurodegenerative 
disorders (e.g. in Multiple Sclerosis; Polman et al., 2011).

These multi-paradigm and multi-modality studies are of great 
value in providing complementary and converging evidence to 
characterise healthy brain function, examine various disease states, 
and in drug development (Matthews et al., 2011). The challenges 
involved in analysing and manipulating large multi-modal datasets 
have been partly addressed by advances in hardware and software. 

For example, the issue of fusing images from different modalities 
has largely been solved by modern software (e.g. Gunn et al., 2016) 
using automated co-registration algorithms that generally produce  
good-quality results. One remaining challenge is the provision of 
appropriate visualisation technologies that can provide an overview 
of a set of (sometimes disparate) results images, and can enable 
accurate interpretations to be made. Many specialised software 
tools now exist for visualising neuroimaging data (a comprehen-
sive list, and a useful guide to visualisation can be found in Madan, 
2015) however, their utility is necessarily constrained by the users 
display hardware; typically a single, or several standard desktop 
computer monitors. Advances in display technology have only 
been incompletely addressed, with most tools not optimised for 
larger displays, and also not incorporating modern user-interface 
features such as touch input. This occurs for two reasons, firstly 
that physical display hardware has only recently begun to support 
the higher resolutions required to display the higher fidelity data 
which are now routinely captured. Secondly the software used 
to display scientific data has not benefited from the revolution in 
distributed, cloud computing which data processing systems such 
as Map-Reduce and Hadoop provide (Patel et al., 2012).

To address these challenges and enable high-resolution collabo-
rative exploration of detailed scientific data a new generation of 
advanced visualisation suites are being developed (Febretti et al., 
2013). One example is the KPMG Data Observatory (DO) at 
Imperial College London. This is a panoramic display covering 
a 313 degree arc with a 6 m diameter, providing an immersive 
and collaborative space for exploration of data (see Figure 1 and 
Figure 2). The key differentiator of the space is its high resolution 
which totals 132 megapixels, in contrast with the low-resolution 
projector based approach of traditional CAVE systems. The sys-
tem is driven by 32 rendering nodes that enable distributed analysis 
and rendering of data, and the display area can be flexibly config-
ured into either a single display surface, or a number of sections 
displaying different information sources or applications. The key 
goal of the observatory is to provide a collaborative space for 
research teams to explore and discuss data in a visual format.

This collaborative, high-resolution approach to visualisation has 
much to offer the neuroimaging community. Particularly: 

1)   The ability to view images at full resolution without the 
need for interruptive actions such as zooming or panning 
through an image.

2)   The ability for multiple practitioners to share the same, high 
resolution, view of data for discussion in a collaborative 
environment.

3)   The ability to simultaneously show many views of the 
same or complementary data; large-scale visualisation 
allows complementary data to be shown simultaneously 
and accessed by a turn of the head, which enables easy 
comparison.

These benefits are of particular value to collaborative interdis-
ciplinary groups exploring such multi-modal imaging studies. 
One case study under exploration at Imperial College involves 
Multiple Sclerosis.
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Figure 1. Neuroimaging data presented on the Data Observatory. Professor Oliver Howes presenting multimodal imaging data at the MRC 
Clinical Sciences Centre’s “Hearts and Minds” public engagement event, 23 June 2016. Photo Credit: Susan Watts, MRC Clinical Sciences 
Centre, Imperial College London, reproduced with permission.

Figure 2. Panoramic image of the Data Observatory. A panoramic image of the Data Observatory, with all five sections displaying a different 
neuroimaging modality and/or visualisation type. Photo credit: Authors MW and DB.

Case study: Multiple sclerosis (MS)
MS is an autoimmune disease that affects more than 100,000 
people in the United Kingdom alone (Mackenzie et al., 2014). It 
has a debilitating effect on various body functions including vision, 
motor and cognition; while there are treatment options avail-
able there is currently no known cure. MS assessments are made 
using objective clinical criteria, supplemented by findings of lesions 
in the central nervous system that are detectable on MRI scans 
over a period of time and space (Polman et al., 2011). T1 images, 

T2 images, and contrast-enhanced MRI using gadolinium are all 
useful techniques in this regard (Bakshi et al., 2008). Other diag-
nostic tests include assessment of visual function (as visual dete-
rioration occurs in over 80% of patients) using a Low-Contrast 
Sloan Letters Chart (Baier et al., 2005). Optical Coherence Tom-
ography (OCT; Petzold et al., 2010) or Visual Evoked Potentials 
(VEP; Schlaeger et al., 2014) can also provide measures of reti-
nal integrity and central nerve damage, respectively. Finally, func-
tional tests and questionnaires can register cognitive and functional 
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impairments. There are currently no known specific blood or cer-
ebrospinal fluid (CSF)-borne biomarkers for MS (Polman et al., 
2011), so diagnosis depends on a combination of these measures, 
and the relationship between these tests and disease progression 
(particularly in a predictive sense, e.g. Neema et al., 2009) is an 
area of active research.

Synthesising and visualising the results of these varied tests is 
a challenge that is being addressed by current work on the DO. 
Lesion volume change and brain volume change data from analy-
sis of MRI images are a critical components for tracking disease 
progression. Images from each contrast type (T1, T2, gadolinium-
enhanced) provide unique information along with complementary 
limitations. The ability to register and view all modalities simul-
taneously enables the viewer to crosscheck the same regions of 
interest across large screens without the current need to toggle 
between screens or windows.

In addition, tools can be built to replicate inputs across imaging 
modalities, and between image sessions. A tool that highlights a 
region of interest on one modality can automatically replicate the 
marking of the same region across other modalities, on other sec-
tions of the DO display. Similarly, a lesion may be marked in the 
baseline image and have that mark replicated in a registered image 
from a follow-up session. The ability to view changes in these images 
simultaneously in the context of data collected from other tests such 
as OCT, VEP, functional criteria or radiological reports enables 
viewing of disparate sources of information in tight context.

The large display-area provides space to fit a timeline that 
incorporates imaging data, clinical events, treatments, written 
reports, and clinical test results; this gives a unique visualisation 
of the cause and effects of disease progression, treatments, and 
relapse events in MS. The flexibility and size of the display space 
enables novel visualisations, such as the scope to concurrently view 
individual results from a group of research subjects, or to view 
multiple sets of longitudinal data from a single subject. Clinicians 
and researchers can view, correlate, and cross-validate findings 
across heterogeneous data types within a single environment. As it 
is designed to be a collaborative environment for exploring images, 
multiple clinicians can highlight and share findings from different 
modalities and sources.

Environments such as the DO may one day become common-
place, however currently they are an expensive rarity, with only a 
few comparable systems existing worldwide (e.g. the ‘HIPerWall’ 
at University of California, San Diego). This currently strongly 
limits their accessibility to many researchers and clinicians. 
These constraints make the use of a tool such as the DO in current  
clinical practice impractical. The DO is more effectively deployed 
for clinical research purposes, or perhaps in consultant meetings, 
when high-level discussion of an individual case is required.

Technical considerations
From a technical perspective, software used within such high- 
resolution environments must be adapted to cope with higher pixel 
densities and to work across a network of rendering computers. 
This is rarely a straightforward change, although with the advent 
of new rendering systems it is becoming easier. In general, vector- 
based graphics systems that display neuroimaging data as a 3D 

mesh using rendering engines like OpenGL (e.g. Surf Ice) work 
better than bitmap-based display tools, that are limited by the 
(often poor) underlying resolution of the images themselves. Ide-
ally, display software needs to evolve to support distributed visu-
alisation systems able to support display across a large rendering 
surface, and scalability to support high-resolution environments. 
Also important will be the development of appropriate algorithms 
to support decision-making, for instance to highlight areas of 
potential interest to clinicians for review. This method of focussing 
attention and insight will be a critical area of development in the 
near future, and will need to have extremely high levels of robust-
ness and reliability, particularly if algorithms will eventually 
have some input into clinical decision-making. Machine-learning 
platforms such as Google’s Tensorflow (Abadi et al., 2016) are 
likely to be important components of such systems.

One potential area of investigation enabled by the DO is the quan-
tification of how images are used within a visualisation space, par-
ticularly which data and which image regions are of most interest 
to clinicians. The key means to doing this is via head- and eye- 
tracking systems, which are starting to become available within 
such visualisation spaces. This would provide a means of identify-
ing patterns of behaviour in how clinicians use images to identify 
the most salient features. One hypothesis worthy of further inves-
tigation is to explore how clinicians with different levels of experi-
ence explore, manipulate, and interpret a set of different images. 
Eye tracking can also be used to improve user experience, to 
ensure that the most commonly accessed information is placed in 
prominent display areas.

Conclusions
Visualisation spaces such as the DO are relatively novel environ-
ments, and discovering the most effective ways of using them is 
still an on-going process. High-resolution spaces like the DO offer 
greater fidelity over previous large-scale systems, which can poten-
tially drive greater insights. The large size of the space enables easy 
comparison and synthesis of multiple types of data, most obviously 
imaging formats, but also other clinical or research data types. 
Finally, the immersive collaboration space it provides can help to 
initiate and strengthen multi-disciplinary collaboration between cli-
nicians, researchers, and data scientists. Large format displays like 
the DO have much to offer and will likely form an important part of 
future research and clinical practice.
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