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Inmalignancies, cellular senescence is critical for carcinogenesis, development,

and immunological regulation. Patients with acute myeloid leukemia (AML)

have not investigated a reliable cellular senescence-associated profile and its

significance in outcomes and therapeutic response. Cellular senescence-

related genes were acquired from the CellAge database, while AML data

were obtained from the GEO and TCGA databases. The TCGA-AML group

served as a training set to construct a prognostic risk score signature, while the

GSE71014 set was used as a testing set to validate the accuracy of the signature.

Through exploring the expression profiles of cellular senescence-related genes

(SRGs) in AML patients, we used Lasso and Cox regression analysis to establish

the SRG-based signature (SRGS), which was validated as an independent

prognostic predictor for AML patients via clinical correlation. Survival analysis

showed that AML patients in the low-risk score group had a longer survival time.

Tumor immune infiltration and functional enrichment analysis demonstrated

that AML patients with low-risk scores had higher immune infiltration and active

immune-related pathways. Meanwhile, drug sensitivity analysis and the TIDE

algorithm showed that the low-risk score group was more susceptible to

chemotherapy and immunotherapy. Cell line analysis in vitro further

confirmed that the SRGs in the proposed signature played roles in the

susceptibility to cytarabine and YM155. Our results indicated that SRGS,

which regulates the immunological microenvironment, is a reliable predictor

of the clinical outcome and immunotherapeutic response in AML.
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1 Introduction

Acute myeloid leukemia (AML) is a variable disease that

arises from the malignant clonal expansion of myeloid

progenitor cells, which are mainly located in the bone marrow

and peripheral blood (Jiang et al., 2021a). It is the most prevalent

form of adult leukemia, accounting for about 2.5% of new cases

and about 3.1% of new deaths globally in 2020. This data ranks

AML among the top causes of cancer-related mortality (Sung

et al., 2021). Chemotherapy, as well as stem-cell transplants,

remain the principal treatment options for AML patients at

present (Jiang et al., 2021b). Over the last few decades,

breakthroughs in our knowledge of the biology of AML, along

with the aggressive consolidation of chemotherapy regimens,

improved supportive care, and better stem-cell transplantation

methods (Coombs et al., 2016), contribute to higher overall

survival (OS) time for AML patients (Jiang et al., 2021c).

However, the overall results remain dismal. Consequently, it is

vital for us to investigate appropriate treatment techniques for

AML patients in order to enhance their prognosis.

Cellular senescence is an essential aspect of aging (Campisi,

2013) and a relationship between aging and cancers (Liu et al.,

2020; Partridge et al., 2018). However, the relationship between

senescence and cancers is still complicated and poorly understood.

Previous research has shown that senescence is a double-edged

sword in cancer development. First, senescence maintains tissue

homeostasis and inhibits the genesis of tumors when senescent

cells enter and suffer permanent cell cycle arrest (Kumari et al.,

2021; Perez-Mancera et al., 2014). In early carcinogenesis,

senescence works as a barrier to tumor formation when it is

followed by immune clearance and tissue remodeling (Ray and

Yung., 2018; Xue et al., 2007). Second, cellular senescence may

have negative consequences if the immune system does not

eliminate senescent cells and the senescent cells accumulate.

This buildup leads to the development of senescence-associated

secretory phenotype (SASP), resulting in both aging and tumor

formation (Cuollo et al., 2020) by triggering the release of growth

factors, cytokines, extracellular matrix enzymes, and extracellular

matrix components (Liu et al., 2016; Lopes-Paciencia et al., 2019;

Menicacci et al., 2017). To formulate innovative therapy paradigms

for malignancies, a better knowledge of the influence of senescence

on tumor immunology in relation to invasion and development is

necessary. Recent research indicates that tumor cells might

experience senescence as an evolutionary process, which

involves both tumor intrinsic traits and external immunological

load (Berben et al., 2021; Kumari and Jat., 2021; Zhou et al., 2021).

Notably, the negative consequences of SASP outweigh its positive

features (Cuollo et al., 2020). Thereby, we hypothesized that along

with the accumulation of senescent cells, SASP remodels the tumor

microenvironment (TME) through recruiting immunosuppressive

cells, thereby promoting the evasion of tumor cells from

immunosurveillance and leading to poor clinical outcomes

in AML.

In order to thoroughly analyze the relationships between

cellular senescence and AML patients’ prognosis, we developed a

new signature according to cellular senescence-related genes

(SRGs). We then investigated the potential value of serving as

prognostic and immunotherapy response biomarkers. According

to the SRG-related signature (SRGS), the interactions between

risk groupings and immunological checkpoints, as well as

immune cell infiltration, were then carefully investigated.

Additional investigation of the processes revealed that cellular

senescence in AML influenced the TME through SASP. In a

word, this work gave new insights into the potential regulatory

mechanisms related to cellular senescence and relevant

immunotherapeutic treatments for AML.

2 Methods

2.1 Data acquisition and processing

Clinical information and transcriptional profiles of AML

patients were from The Cancer Genome Atlas (TCGA, https://

portal.gdc.cancer.gov) and the Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo). The TCGA-AML cohort

(Weinstein et al., 2013) containing 129 samples was enrolled

as the training set for constructing a prognostic risk model, while

the GSE71014 cohort (Wang et al., 2021; Chuang et al., 2015; Lee

et al., 2017) containing 104 AML samples was enrolled as testing

set for validation. Since the samples in TCGA-AML were all

tumor samples, we downloaded the whole blood cohorts from

GTEx from the UCSC Xena database as control samples. The

batch effect of the expression profiles from the standardized

RNA-seq data of TCGA and GTEx was removed through the

“sva” package to eliminate the influence between the two

datasets.

2.2 Development and validation of the
cellular senescence-related signature

The genes associated with cellular senescence were obtained

from CellAge (Avelar et al., 2020) (https://genomics.senescence.

info/cells/). A total of 279 SRGs (Supplementary Table S1) were

included in this study. We first screened differentially expressed

SRGs (DESRGs) between normal and AML samples according to

the SRGs’ levels. Univariate Cox analysis was carried out to

identify SRGs with prognostic values. The LASSO Cox regression

analysis was carried out to construct the model for predicting the

survival of AML patients. Through tenfold cross-validations, the

best values for the penalty parameter lambda were identified. On

the basis of the median risk score derived by SRGS, patients in the

training or testing cohorts were separated into high- and low-risk

groups, and SRGS’s performance was then assessed. To

investigate the independence of the signature in prediction, we
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carried out univariate and multivariate Cox analyses for the

variables in clinic and SRGS in the TCGA-AML set. The

chosen clinical variables mainly included gender, peripheral

blood (PB) blasts percent (PB-blast), bone marrow (BM) blast

percent (BM_blast), hemoglobin, white blood cell (WBC), and

platelets levels, all of which have been found important for the

prognosis of AML patients (McQuilten et al., 2022; Acharya et al.,

2018; Just et al., 2019; Liu et al., 2019; Ogawa et al., 2018; Short

et al., 2016; Ustun et al., 2021).

2.3 Functional enrichment pathway
analysis and correlation between immune
cell infiltration and cellular senescence-
related signature

Estimation of immune infiltration was carried out using the

EPIC algorithm (Racle et al., 2017), XCELL algorithm (Aran

et al., 2017), CIBERSORT algorithm (Newman et al., 2015),

MCPCOUNTER algorithm (Petitprez et al., 2020), and

QUANTISEQ algorithm (Finotello et al., 2019) in R software.

Tumor-infiltrating lymphocyte features were also carried out to

estimate the immune cell infiltration using the gsva algorithm. In

addition, we conducted the Pearson correlation analysis to clarify

the relationship between the built SRGS and immune cell

infiltration. We further utilized the ESTIMATE algorithm to

explore the infiltration degree of tumor and normal cells to

determine the levels of StromalScore, ImmuneScore, and

EstimateScore (Yoshihara et al., 2013). Besides, tumor stem

cell features, which were extracted from the transcriptome and

epigenetics of TCGA-AML samples, were carried out to estimate

the stem cell-like features (Dib et al., 2017).

2.4 Assessment of cellular senescence-
related signature and response to immune
checkpoint inhibitors and chemotherapy
drugs

Tumor Immune Dysfunction and Exclusion (TIDE) (Fu et al.,

2020; Jiang et al., 2018), http://tide.dfci.harvard.edu/) is developed for

assessing the immune evasion mechanisms. Hence, TIDE is often

used as another robust biomarker for predicting immunotherapy

response. While a higher TIDE score usually suggests a lower

response rate for tumor cells to immunotherapy. The tumor

mutation burden (TMB) for each AML patient was measured by

the nonsynonymous mutation numbers per mega-base. The

pRRophetic package (Geeleher et al., 2014) in R software was

utilized for predicting the half-maximal inhibitory concentration

(IC50) of cytarabine and YM155 in each TCGA-AML sample. In

addition, the Pearson correlation analysis was carried out to explore

the positive relationships between the prognostic SRGS and

sensitivity to cytarabine or YM155.

2.5 In vitro experiments

AML cell line (U937) was obtained from the American Type

Culture Collection (ATCC, USA). All cells were grown in an

incubator at 37°C and 5% CO2 in a humid environment. Cells

were grown in RPMI-1640 media supplemented with 10% fetal

bovine serum, 100 IU/mL penicillin, and 100mg/mL streptomycin,

respectively. Cytarabine and YM155 were acquired from Selleck

Chemicals (United States). Using the Cell Counting Kit-8 (CCK-

8) test (Dojindo, Japan), the viability of cells was determined. Twenty

thousand cells per well were seeded in a 96-well plate and incubated

at 37°C in a humidified cell incubator containing 5% CO2. After 48 h

of exposure to the chemical at the prescribed concentrations, the

CCK-8 reagent was added, and incubation continued for an

additional 2 h. Optical density (OD) was determined using the

Tecan Spark TM10M at 450 nm (TECAN, Switzerland). For

Western Blot analysis, cells were centrifuged at 1000 rpm for

5 min after 48 h of exposure to the drug at various doses. This

was followed by a 0.5-hour resuspension in protease and phosphatase

inhibitor-containing RIPA lysis buffer (PHYGENE, China). Before

being centrifuged at 12000 rpm at 4°C for 15 min, the lysates were

subjected to vortex and sonication in a bath of cold water for 5 min

on high with 30-second intervals and 1min off. After determining

the protein concentration, the protein was combined with loading

buffer and boiled for 10 min at 100°C, followed by electrophoretic

separation on a 10% SDS-PAGE and transferred to PVDF

membranes. The membrane was then treated with 5% skim milk

powder for 2 h at room temperature to eliminate nonspecific

interaction, followed by overnight incubation with antibodies

against GAPDH (Proteintech, China), BAX (CST, United States),

and BCL-2 (CST, United States) at 4°C, and subsequent incubations

in secondary antibodies (CST, United States), prior to visualization

with enhanced chemiluminescence (ECL) western (GBCBIO

Technologies, China). For the detection of mRNA levels, we used

SYBR green I dye from Takara (Dalian, China) and the ABI 7500

real-time PCR machine (Applied Biosystems, United States).

Sequences of primers were designed in PrimerBank (http://pga.

mgh.harvard.edu/primerbank/). We used the following primers:

KDM5B (Primer Bank ID: 57242795c1), SMURF2 (Primer Bank

ID: 56550041c1), MAP4K1 (Primer Bank ID: 110611904c1), G6PD

(Primer Bank ID: 108773794c2), CDK18 (Primer Bank ID:

262527294c1), SOCS1 (Primer Bank ID: 4507232c1), ETS2

(Primer Bank ID: 372466581c3), AKR1B1 (Primer Bank ID:

24497579c2), and GAPDH (Primer Bank ID: 378404907c2).

2.6 Statistical analysis

All the data analysis and the graph generation in this study

were carried out in R version 3.5.1, SPSS version 25.0, and

GraphPad Prism version 8.0. Unpaired Student’s t-test was

applied for comparisons of two groups to analyze the

statistical significance. The Kaplan-Meier survival analyses for
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the OS of AML patients were performed using the R package

named “survminer”. Receiver operating characteristic (ROC)

curves for survival evaluated the predictive efficacy of the

SRGS (Blanche et al., 2013). Univariate and multivariate Cox

analyses were carried out to explore the relationship between OS

and SRGS scores, as well as clinical characteristics. p < 0.05 was

considered statistically significant.

3 Results

3.1 Identification of DESRGs with
prognostic value

A total of 278 SRGs were compared between AML samples

from TCGA and normal samples from GTEx to characterize

their expression in AML. We identified a total of 227 DESRGs

(Figure 1A). Next, a univariate Cox analysis was initially carried

out on the 278 SRGs to identify the ones associated with the AML

patients’ OS. A total of 11 SRGs were then found significantly

related to OS, all of which overlapped with the DESRGs and were

considered risk factors (Figure 1B). Nine of the 11 genes

(AKR1B1, BAG3, CDK18, ETS2, G6PD, GRK6, ITPK1,

KDM5B, MAP4K1, SMURF2, and SOCS1) were upregulated,

while the other two genes were downregulated in AML

(Figure 1C). Besides, 11 prognostic DESRGs were correlated

with each other closely (Figure 1D).

3.2 Development and validation of the
cellular senescence-related signature in
acute myeloid leukemia

To construct an SRGS for the survival prediction in AML, the

11 OS-associated SRGs were analyzed using LASSO Cox analysis.

An 8-gene SRGS was then built (Figures 1E,F). A score formula

was established as followed: risk score = (−0.0838 × KDM5B

level) + (0.1467 × MAP4K1 level) + (−0.5299 × SMURF2 level) +

(0.2210 × G6PD level) + (0.2415 × CDK18 level) + (0.2543 ×

SOCS1 level) + (0.0803 × ETS2 level) + (0.0411 × AKR1B1 level).

The score of each AML patient from the TCGA was then

calculated. AML patients were stratified into different risk

FIGURE 1
Identification of DESRGs with prognostic value. (A) Volcano plot of SRGs in the TCGA dataset. (B) Eleven overlapping genes in SRGs, DESRGs,
and prognostic genes. (C) Results of the univariate Cox analysis based on the identified candidate 11 SRGs. (D) Correlation network of the
11 candidate SRGs. (E) LASSO analysis on the 11 candidate SRGs. (F) Cross-validation in the LASSO regression.
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groups using the median value to serve as the cutoff. Kaplan-

Meier survival analysis results in Figure 2A demonstrated that

AML patients in the high-risk group had shorter OS time. The

distribution of SRGS scores and the survival status of samples

were presented in Figure 2B. The heatmap exhibited the chosen

eight genes’ expression profiles in two risk groups (Figure 2C).

The areas under the curve (AUCs) for 1-, 3-, and 5-years OS were

respectively 0.821, 0.785, and 0.930 (Figure 2D). These results

indicated that the prognostic SRGS could classify AML patients

with different OS.

To further validate the predictive value of the constructed

SRGS, an external AML dataset named GSE71014 from the

GEO database was enrolled. Kaplan-Meier survival analysis

in Figure 3A also showed that patients with higher SRGS

scores had shorter OS time. The distribution of score, the

survival status, and genes’ expression profiles in Figures 3B,C

had the same trend as those in Figures 2B,C. The AUC values

for 1-, 3-, and 5-years OS in GSE71014 were all greater than

0.7 (Figure 3D), confirming that SRGS was a good predictive

factor for AML.

3.3 Independent prognostic value of
cellular senescence-related signature and
construction of clinical nomogram

Univariate and multivariate Cox analyses for the variables in

clinic and SRGS were carried out to determine the independence of

SRGS’s prognostic value for OS of AML patients. As shown in

Figure 4A, the scores of SRGS for samples in the TCGA-AML cohort

were significantly related to the patients’ clinical OS. The results of

multivariate Cox analysis in Figure 4B showed that the SRGS

remained an independent predictor. Apart from the SRGS, we

found age could also serve as an independent predictor, while the

other chosen clinical variables showed no significant difference (p >
0.05; Figures 4A,B). Combining the above factors, we then established

FIGURE 2
Development of SRGS in TCGA-AML cohort. (A) Kaplan-Meier curve analysis of the OS in the TCGA-AML patients. (B) The risk score distribution
and survival status scatter plots of TCGA-AML patients. (C)Heatmap of the eight signature genes in the risk groups. (D) Time-dependent ROC analysis
of the SRGS.
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a nomogram to help broaden the application of the SRGS in the clinic

(Figure 4C). Every AML patient from the TCGA cohort was assigned

a value by adding all the prognostic parameters’ points. And patients

with higher total points owned worse clinical outcomes. The

calibration plot in Figure 4D showed that the established clinical

nomogram an excellent performance.

3.4 Analyses of enrichment pathways and
the alterations in SASP and immune cell
infiltration in acute myeloid leukemia

The evaluation above confirmed the predictive value of the

constructed SRGS, prompting us to further explore the possible

mechanism. Gene set variation analysis (GSVA) was done to

elucidate the biological functions of various risk groups in the

tumorigenicity and progression of AML (Supplementary Figure

S1). AML samples from the lower risk group showed heightened

activities of the MYC targets pathway. While, the majority of high

expressed genes in the high-risk AML group were enriched in the

PPAR signaling pathway, chemokine signaling pathway, and calcium

signaling pathway. SASP demonstrates that senescent cells release a

vast number of secretory proteins, which may promote alterations in

the TME (Jiang et al., 2022), hence encouraging tumor recurrence

and progression (Green, 2008; Kuilman et al., 2008; Li et al., 2012;

Richardson et al., 2021). In the AML group with higher SRGS scores,

a number of SASP types were overexpressed, per our findings

(Figure 5A). Chemokines (CCL3, CXCL1, CXCL3, CXCL5, and

CXCL11), interleukins (IL-7, and IL-16), growth factors and

regulators (EREG, ANG, AREG, FGF7, and HGF), soluble or

shed receptors or ligands (TNFRSF11B, PLAUR, ICAM3, and

ICAM1), and proteases and regulators (CTSB, and SERPINE1)

were significantly upregulated. These results confirmed higher

SASP levels in high-risk AML patients.

Some upregulated SASPs possess immunosuppressive properties

(Lamano et al., 2019; Sharma et al., 2017). Consequently, we

anticipated that individuals with high SRGS scores and elevated

SASP levels could have an immunosuppressive phenotype through

FIGURE 3
Validation of the SRGS in an external GEO cohort. (A) Kaplan-Meier curve analysis of OS in AML patients from the GSE71014 dataset. (B) The risk
score distribution and survival status scatter plots. (C) Heatmap of the eight genes in the proposed SRGS in two risk groups from GSE71014 dataset.
(D) Time-dependent ROC analysis of the SRGS.

Frontiers in Pharmacology frontiersin.org06

Mao et al. 10.3389/fphar.2022.987398

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.987398


SASP. RNAseq-derived infiltrating immune cell populations were

calculated in order to define the immunological landscape associated

with SRGS.We discovered that groups stratified by SRGS had unique

patterns of immunological infiltrates. The infiltration levels of

activated mast cells, follicular T helper cells, NK cells, resting mast

cells, cancer-associated fibroblasts, and regulatory T cells were

negatively correlated to SRGS scores. In contrast, higher SRGS

scores indicated greater abundances of the M2 macrophages,

B cells, monocytes, myeloid dendritic cells, and M1 macrophages

(Figure 5B).

3.5 Correlation of chosen immune
checkpoints and the risk score and their
impact on clinical outcome of TCGA-
acute myeloid leukemia patients

Previous research has shown the significance of immune

checkpoint genes in regulating immune infiltration (Juneja et al.,

2017; Kumagai et al., 2020). To further study the complicated

interplay between immune checkpoints and the established SRGS,

we evaluated their expression patterns across SRGS-based groups. As

shown in Figures 6A,D, AML patients with higher SRGS scores

expressed higher levels of two chosen immune checkpoint genes

(PD-1 and CTLA4) in the TCGA cohort. Another checkpoint,

LAG3, which is considered an exhausted T cell marker, also

showed an overexpression trend in the group with higher SRGS

scores, suggesting that the SRGS owned the ability to identify

immune dysfunction (Figure 6G). Meanwhile, the expression

levels of the three chosen checkpoint genes showed positive

correlations to the SRGS scores (Figures 6B,E,H). Then, we

analyzed SRGS in conjunction with immune checkpoint

expression to determine if SRGS affects the OS of AML patients

with comparable checkpoint genes’ expression. Survival analysis was

carried out on four groups stratified by SRGS and immune

checkpoint gene expression. Figure 6C illustrated that those

individuals with low PD-1 expression levels and low SRGS scores

had a longer OS than those with low PD-1 expression levels and high

SRGS scores. In individuals with strong PD-1 expression levels, a

lower risk score indicated a survival rate that was significantly

FIGURE 4
The independence of predictive value of the SRGS and construction of the clinical nomogram in TCGA-AML cohort. (A) Results of the univariate
Cox analysis based on OS-related factors. (B) Results of the multivariate Cox analysis based on OS-related factors. (C) Nomogram constructed in
conjunction with the SRGS and clinical characterization. (D) The calibration plot of the nomogram.
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improved. In the TCGA-AML cohort, similar survival trends were

identified across the four AML patient groups stratified by the SRGS

scores and CTLA4 (Figure 6F) or LAG3 (Figure 6I) expression.

3.6 Correlation between the cellular
senescence-related signature and tumor
microenvironment

To completely characterize the immunological aspects of AML,

samples from the TCGA-AML cohort were evaluated. Based on the

SRGS scores and hierarchical clustering method, all AML samples

were grouped cleanly into two groups (Figure 7A). The features of the

TME between the two AML groups were discovered based on the

findings of ESTIMATE. We discovered that the groups with the

higher SRGS scores had higher EstimateScore, ImmuneScore, and

StromalScore levels than the other group, which had lower values

(Figure 7B). RNA stemness score (RNAss) and DNA stemness score

(DNAss) may be used to quantify tumor stemness (Malta et al., 2018;

Zheng et al., 2021). The correlation analysis was carried out to

determine whether the SRGS was related to tumor stem cells and the

TME. The results in Figure 7C showed that the SRGS was not

FIGURE 5
Analyses of SASP and immune cell infiltration levels. (A) Expression of different types of SRGS-associated secretory phenotype factors between
two risk groups. (B) Correlation analysis between SRGS and immune cell infiltration abundance.
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significantly correlated to the DNAss, but was positively correlated

with RNAss, stromal score, and immune score. Moreover, we also

found that most of the HLA genes were highly expressed in groups

with higher SRGS scores (Figure 7D).

3.7 Relationship of the cellular
senescence-related signature with tumor
mutation burden and immunotherapy

Recent studies (Rizvi et al., 2015; Chan et al., 2019;

McGranahan et al., 2016) have shown that a high TMB is

strongly relatedtoh an excess of CD8+ T lymphocytes that

may recognize tumor cells and elicit an antitumor immune

response. For this reason, we hypothesized that TMB

mamightperate as a non-negligible predictive factor of

antitumor immunotherapy responsiveness. Initially, we

discovered that individuals with higher SRGS scores in the

TCGA-AML cohort had significantly lower TMB (Figure 8A).

The correlation study of SRGS and TMB revealed a similar

pattern (Figure 8B). Survival analysis demonstrated that AML

patients with higher TMB had longer OS (Figure 8C). As seen in

Figure 8D, patients in the group with higher SRGS scores had

unfavorable OS regardless of TMB level, which indicated that

SRGS in combination with TMB might serve as a potential and

prognostic predictor for AML patients’ clinical outcomes. In

FIGURE 6
Correlation of chosen immune checkpoints and the SRGS score and their impact on clinical outcome of TCGA-AML patients. (A,D,G)
Comparison of the PD-1, CTLA-4 or LAG3 expression level between different AML risk groups. (B,E,H)Correlation between SRGS score and the PD-1,
CTLA-4 or LAG3 expression level. (C,F,I) Kaplan-Meier survival analyses of OS in the four groups grouped by the SRGS and the level of PD-1, CTLA-4
or LAG3.
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addition, the distribution of gene mutations in both the high- and

low-risk score subcategories was investigated and shown

graphically. The entire landscape of somatic variations

depicted the mutation patterns and clinical characteristics of

the top 20 driver genes with the most commonmutation (Figures

8E,F). These results may shed new light on the inherent

relationship between cellular senescence and somatic

variations in AML immunotherapy.

Meanwhile, growing evidence shows that immune

checkpoint inhibitors (ICIs) could improve the clinical

outcomes of AML patients, but responses vary. Hence,

accurate predictive biomarkers for AML are urgently needed.

Given the association between SRGS, immune infiltration, and

checkpoints, we analyzed the correlation between the proposed

SRGS and the recognized immunotherapy predictor TIDE (Fu

et al., 2020; Jiang et al., 2018). We discovered that patients with

higher SRGS scores tended to achieve higher TIDE scores

(Figure 9A), indicating that patients in the low-risk group

may benefit from ICIs. Since the SRGS score was associated

with poor prognosis in AML, the relationship between the SRGS

score and chemoresistance was explored. The IC50 was calculated

to predict the treatment response to cytarabine (Donnette et al.,

2021) and YM155 (de Necochea-Campion et al., 2015). Lower

SRGS AML samples were more sensitive to cytarabine (Figures

9B,C), widely used in treating patients with AML. Meanwhile,

YM155, an effective survivin inhibitor, seemed to have a better

curative effect on AML patients with lower SRGS scores

(Figures 9D,E).

To further confirm the results of drug-relevant analysis, we

investigated the expression of SRGs in the proposed signature in

U937 cells treated with cytarabine or YM155. Firstly, we tested

cell viability following exposure to cytarabine or YM155 of AML

cell lines. As shown in Supplementary Figures S2A,S2D, cells

were exposed to cytarabine or YM155 for 48 h, prior to cell

viability analysis via CCK-8. As predicted, our results revealed

that cytarabine or YM155 treatment could induce apoptosis

(Supplementary Figures S2B,S2E). Further experiments

demonstrated that KDM5B and SMURF2 were positively

related to the apoptosis of AML cells. At the same time,

MAP4K1, G6PD, CDK18, SOCS1, ETS2, and

FIGURE 7
Correlation between SRGS and TME. (A) Landscape of the immune characteristics and TME. (B) Correlations between SRGS score and TME
score. (C) The relationships between SRGS scores and DNAss, RNAss, Stromal Scores, and Immune Scores. (D) Comparison of HLA gene expression
levels between two risk AML groups.

Frontiers in Pharmacology frontiersin.org10

Mao et al. 10.3389/fphar.2022.987398

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.987398


AKR1B1 showed opposite trends (Supplementary Figures

S2C,S2F), suggesting that KDM5B and SMURF2 might be

protective factors for AML patients. These results confirmed

that eight genes in the SRGS may play essential roles in the

efficacy of cytarabine or YM155 in AML patients, similar to the

previous analysis (Figure 9).

4 Discussion

Senescence is a complicated process, which involves cell-

autonomous and paracrine effects, and is found to have a

substantial influence on the microenvironment (Hernandez-

Segura et al., 2018; Lasry and Ben-Neriah.,2015). There is

growing evidence that senescent cells may be removed by an

immunological response triggered by SASP that includes both

innate and adaptive immunity (Schneider et al., 2021). It is

conceivable that the SASP has numerous beneficial short-term

roles. However, in the immunosuppressive environment of

cancer, these capabilities may turn deleterious and encourage

tumor formation over time (Basisty et al., 2020; Birch and Gil.,

2020). However, it has not been described how senescent cells

interact with immune infiltration in tumors or their utility in

assessing the immune infiltration of malignancies. Determining

if senescence molecular factors remodel TMEs and whether this

transformation has any consequences for the clinical prognosis

and therapeutic response of AML patients will need modeling

AML. Importantly, understanding how cellular senescence

affects the TME might pave the way for senolytic medicines

that successfully ameliorate the immunosuppressive

environment (van Deursen, 2019).

In this study, we explored the expression patterns of SRGs, as

well as their predictive values, effects on the TME, and drug

sensitivity in AML. In detail, we constructed a novel prediction

model named SRGS. Then, the predictive value of the SRGS was

well validated in the TCGA-AML set and an external public GEO

dataset. We also explored the features of the TME in AML

patients with different SRGS scores, which included immune

cell distribution and the activities of the inflammatory response.

Significantly, we recognized distinct SASP influencing TME

remodeling as possible immune evasion and tumor growth

pathways. In addition, we discovered that the SRGS was an

independent predictor for AML patients when combined with

immune checkpoints or TMB.

This is one of the first studies to analyze SRGs’ expression

patterns and discover their prognostic values via utilizing the

TCGA and GEO datasets. Six highly upregulated and two

considerably downregulated genes were found and included in

the SRGS proposed in this work. Intriguingly, these hallmark

genes have been identified as regulators of cellular senescence in a

variety of malignancies and play crucial roles in tumor formation

(Ao et al., 2017; Francica et al., 2016). The ectopic expression of

FIGURE 8
Relationship of the SRGS with TMB. (A) Comparison of TMB between two risk groups. (B) Correlation between the SRG and TMB. (C) Kaplan-
Meier analysis on the TMB in the TCGA-AML cohort. (D) Kaplan-Meier analysis for the groups that stratified by combining the TMB and the SRGS
score. (E,F) OncoPrints constructed using the high scores (E) and the low scores (F).
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KDM5B suppressed AML growth (Ren et al., 2022).

MAP4K1 has been found not only can regulate drug

resistance but also can independently predict AML prognosis

(Ling et al., 2021). The acetylation regulation of G6PD is also

found to be involved in the metabolic reprogramming of AML

(Xu et al., 2016). The SOCS1’s ubiquitin-mediated degradation

plays a vital role in the genesis of AML (Wu et al., 2018). The

expression of ETS2 is linked to the biology of AML in not only DS

but also non-DS children (Ge et al., 2008). These published

efforts provide evidence that further support the SRGS has the

potential to predict AML prognosis.

As the significance of cellular senescence in cancer is mainly

unexplored, it is essential to get a deeper understanding of the

relationships among cancer, senescence, and the immunological

milieu. To yet, however, the effect of cellular senescence on the

tumor immune infiltration has been inadequately investigated, as

well as whether or not this might influence the therapeutic

response to ICIs. By undertaking a comprehensive assessment,

we showed that SRGs might have significant impacts on the

composition and location of the tumor immune cell infiltration.

Moreover, we found that the SRGS score was negatively

correlated with the infiltration levels of activated mast cells,

resting mast cells, follicular T helper cells, cancer-associated

fibroblasts, NK cells, and regulatory T cells. In contrast, it was

positively correlated with the infiltration levels of

M2 macrophages, B cells, monocytes, and myeloid dendritic

cells in AML. This data revealed that individuals with higher

SRGS scores might have a tumor microenvironment that is

immunosuppressive, preventing the immune system from

eliminating tumor cells. Then, to further investigate the

processes of immunological remodeling caused by the rising

number of senescent cells, we discovered that SASP changes

might influence TME establishment, which leads to immune

evasion and promotes tumor progression. The group with higher

SRGS scores demonstrated increases in inflammatory regulators,

such as IL-16 and CXCLs; growth factors, including ANG,

AREG, EREG, FGF7, and HGF; receptors, including ICAMs,

PLAUR, and TNFRSF11B; and proteases, including CTSB and

SERPINE1. These variables may influence the recruitment of

immune cells and promote tumor growth (Basisty et al., 2020;

Hari and Acosta., 2017; Lau and David., 2019). In addition,

immunological remodeling associated with cellular senescence

may explain the reduced efficiency of immune checkpoint

blockade. Intriguingly, PD-1, CTLA-4, and LAG3, three

fatigued T cell markers, were abnormally elevated in AML

samples with higher SRGS scores, showing that T cells might

FIGURE 9
Correlation between SRGS and immunotherapy. (A) Distribution of TIDE scores between two TCGA-AML risk groups. (B–E) Correlation
between the SRGS score and chemotherapeutic sensitivity.
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become more hypofunctional and hyporesponsive as the increase

of senescence. These results may also explain why elderly

individuals have a lower immunotherapy response rate.

Consequently, our results have clear clinical value. On the one

hand, individuals with low SRGS scores had considerably longer

longevity, indicating that high-risk AML patients should get more

frequent monitoring and appropriate treatments. In contrast, given

that only a subset of patients may get long-term advantages from

ICIs, we want more precise biomarkers with therapeutic usefulness.

The created SRGSmay be used as a prognosis tool as well as a guide

for customized immunotherapy. In addition, small compounds

targeting SRGs have been discovered and have exhibited

anticancer potential in vitro and in vivo (Gormally et al., 2014;

Li et al., 2020; Polson et al., 2018). And these results demonstrate the

potential for future therapeutic uses of these drugs. In addition, we

hypothesize that reducing inflammation associated with cellular

senescence by targeting particular inflammatory mediators may

have a favorable impact on the treatment of cancer. A novel class of

medications known as senolytic drugs has garnered significant

interes,t and accumulating preclinical and clinical evidence

points to its potential significance in conjunction with

immunotherapy. Thus, this class of medications may have far-

reaching consequences (Kolb et al., 2021; Prasanna et al., 2021;

Waltenberger et al., 2018).

Despite the fact that our research indicated the advantages of

immunotherapy and the prognosis for AML, it still had

significant drawbacks. First, the eight-gene risk model was

created and verified using a publicly available dataset; hence,

external validation in multicenter cohorts is required. Second,

prospective clinical studies are required to confirm the relevance

of our study findings to AML patients undergoing

immunotherapy. Third, in vivo and in vitro studies of the

mechanisms through which SRGs remodel the TME in AML

are necessary. In addition, further research is required to

demonstrate how the aging TME contributes to AML

development. The early assessment of the processes behind

the connection between SRGs and a worse response to ICIs

needs to be clarified by utilizing fundamental investigations.

In conclusion, our work discovered and validated an SRGS

with independent prognostic value for AML patients. Notably,

the SRGS was strongly related to the immune cell infiltration

levels and was implicated in the control of the immunological

milieu in AML by SASP. At the end of this study, we

characterized the complex interaction between the SRGS and

immune checkpoint genes in AML. Meanwhile, we suggested the

potential usage of the SRGS in combination with specific

checkpoints as the predictive biomarkers of ICI response,

which enabled a more accurate selection for AML patients

who might benefit from ICI immunotherapy. Consequently,

identifying SRGs influencing tumor immune responses and

further investigating their regulatory mechanisms should aid

in the risk classification and present intriguing targets which

could enhance the immunotherapeutic response of AML.
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