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ABSTRACT: Extracting kinetic models from single molecule data is an important
route to mechanistic insight in biophysics, chemistry, and biology. Data collected
from force spectroscopy can probe discrete hops of a single molecule between
different conformational states. Model extraction from such data is a challenging
inverse problem because single molecule data are noisy and rich in structure.
Standard modeling methods normally assume (i) a prespecified number of discrete
states and (ii) that transitions between states are Markovian. The data set is then fit
to this predetermined model to find a handful of rates describing the transitions
between states. We show that it is unnecessary to assume either (i) or (ii) and focus
our analysis on the zipping/unzipping transitions of an RNA hairpin. The key is in
starting with a very broad class of non-Markov models in order to let the data guide
us toward the best model from this very broad class. Our method suggests that there
exists a folding intermediate for the P5ab RNA hairpin whose zipping/unzipping is
monitored by force spectroscopy experiments. This intermediate would not have
been resolved if a Markov model had been assumed from the onset. We compare the merits of our method with those of others.

1. INTRODUCTION

Single molecule (SM) methods give us basic insight into the
mechanics of protein folding and catalysis,1−4 molecular motor
translocation,5 and single nucleic acid dynamics.6 For example,
SM force spectroscopy (Figure 1) monitors transitions between
molecular conformational states (say the folded and unfolded
state of protein) as discrete changes of force as a function of
time.
Simple kinetic models reduce complex and noisy data into a

small set of rules that govern the dynamics. The most
ubiquitous of all kinetic models are simple Markov models.7−9

Two basic ingredients make up such models: (i) the topology
(how states are connected to one another) and (ii) the rates
describing the transition probability from state to state in units
of inverse time. When data are modeled using simple Markov
models, (i) and (ii) are assumed a priori and the best fit rates
are generally found from data using maximum likelihood
methods.10

Much of the technology used to model SM experiments was
first developed to analyze data from patch clamp experi-
ments11−16 where transitions between open (or conducting)
and closed (or nonconducting) states of ion channels are
monitored. Ion channels often exhibit complex kinetics. That is
to say, dwell time distributions in the channels’ open and closed
states can strongly deviate from single exponential behavior. To
account for this nonexponential behavior, the observable states
of the channel (open and closed) can be modeled as aggregates
of microscopic states. In this context, a generalization of simple
Markov models called aggregated Markov (AM) models17−22 is
used. AM models, as applied to SM experiments, assume ahead
of time how many states are in each aggregate and how all
microscopic states are connected to one another, i.e., the
topology, and assume that all allowed transitions between
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microscopic states are Markov. There are unintended
consequences to these assumptions: since there are fewer
observables than there are microscopic states in AM models,
such models are under-determined. Even for very simple
problems, an infinite number of AM models can be consistent
with the data.20 Thus, relationships between some rates can be
specified (or rates assumed identical) to resolve this
indeterminacy.14

Furthermore, SM data is also noisy. For instance, in SM force
spectroscopy, it may not always be clear whether an apparent
excursion from the high force state to the low force state and
then back to the high force state is due to noise or due to an
actual conformational change in the single molecule. Hidden
Markov (HM) models have traditionally been used in SM
experiments to tackle this challenge.10 HM models start by
assuming (i) a model, for example, an AM model with all of its
built-in assumptions and (ii) statistics of the noise. Then, given
(i) and (ii), the HM model picks transitions between states
from the noisy time trace while simultaneously determining the
model parameters (for the case of AM models, the parameters
would be the rates of transition between states). To be clear,
HM and AM models are not mutually exclusive.19 Rather, we
can think of the hidden AM model as being a further
generalization of an AM model. Given multiple reasonable
models, Bayesian approaches have been developed to
discriminate between models.23

Our goal here is to build on this body of work and lift some
of its most stringent assumptions. In previous work, we
presented a method for tackling noisy SM data starting from a
very general non-Markov model class.35 The mathematics
which are relevant to this work are presented in a self-contained
way in the Appendix. Here our main focus is to apply our
method to single molecule force spectroscopy data and
interpret the results we obtain from our analysis.
Our method is called the non-Markov memory kernel

(NMMK) method because, as we will discuss, our dynamics are

governed by memory kernels which are not a priori assumed to
satisfy the Markov property. Our goal is to extract the memory
kernel from the data in a principled fashion from the force
spectroscopy data. We will do so in a two-step process. First, we
pick out transitions from the data in an objective, model-
independent way24,25 and obtain noisy dwell time histograms in
various states. Next, we extract from each histogram a memory
kernel. The memory kernels will turn out to be our model.
They contain a full description of the system dynamicsjust
like the topology and rates contain a full description of the
dynamics for AM models. To extract the memory kernel from
noisy histograms, we will adapt the method of image
reconstruction.26−29 In this way, we will show how we can let
the entire SM data set “speak for itself” by allowing it to select
for the best model. By not assuming a predetermined model,
we neither waste data nor bias our interpretation of the
transitions in the raw data. A Markov model will only emerge
from this analysis if it is warranted by the data; it is not assumed
a priori. Furthermore, the NMMK method provides a model
which is unique given the data, unlike AM models.
We will apply our method to SM force time traces obtained

from P5ab, a 22 base pair RNA hairpin taken from a
Tetrahymena thermophila ribozyme.33 From our analysis
emerges a more textured, complex dynamics than could
otherwise be obtained by forcing the data onto a simple
prespecified model. In particular, the analysis suggests that not
all transitions are Markov, implying the existence of an
intermediate state of the RNA hairpin. The NMMK method
presented here is general and could in principle be applied to
data originating from a wide variety of SM methods, as well as
bulk data. We will also discuss some improvements to the
method we suggest and some of its limitations and compare our
method to other approaches.

2. THEORETICAL METHODS

2.1. The Generalized Master Equation. In the NMMK
model, the dynamicsdescribed by a generalized master
equationare governed by a memory kernel κ(t)

∫ κ κ̇ = − − ≡ − *f t T T f t T t f t( ) d ( ) ( ) ( ) ( )
t

0 (1)

where f(t) denotes a dwell time distribution. This dwell time
distribution can be a marginal distribution in a particular state,
say A, or a conditional distribution for being in A for time t,
given that the system was previously in B for some time t′.
There is a memory kernel for each type of dwell time
distribution. AM models are a special type of model where the
kinetics are fully characterized by the set of marginal dwell time
distributions for each state and the set of conditional dwell time
distributions between all pairs of states.18 A renewal process is
fully described by its marginal dwell time distributions.
For simplicity, we will only consider stationary processes and

focus our attention on marginal dwell distributions. The
mathematics of the memory kernel formulation are developed
in some generality elsewhere.35 Here, we summarize important
highlights relevant to the RNA hairpin.
If f(t) is a single exponential, then the memory kernel, κ(t), is

a δ-function. That is, in such a state, there is no memory. This is
the signature of a Markov process. However, suppose f(t) is a
double exponential

= − + −f t a k t a k t( ) exp( ) exp( )1 1 2 2 (2)

Figure 1. Single molecule force spectroscopy is used to monitor RNA
hairpin zipping−unzipping transitions. This figure (adapted from ref
34) shows a SM force spectroscopy setup with a single P5ab RNA
hairpin33 as it undergoes transitions between a zipped and unzipped
state. The bottom bead in the diagram is held fixed by a micropipet.
The upper bead is held in an optical trap. In “passive mode
experiments”, the optical trap is held fixed. As the hairpin transitions
from the unzipped to the zipped state, it exerts force on the bead
which is converted into units of piconewtons (pN) using a worm-like-
chain model. See ref 34 for details.
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with a1, a2 > 0. Then, the memory kernel shows mathematical
structure beyond the δ-function spike at the origin. See Figures
2 and 3. This type of double exponential implies two competing

time scales for decay from the given state. The resulting
memory kernel is a δ-function at the origin which dips negative
followed by a positive exponential rise back to zero. This
behavior can be understood as follows: The memory kernel’s δ-
function-like behavior at the origin says that the decay is
memoryless for very short times. At later time points, the
slower time scale has the net effect of introducing memory in
the system by reducing the net decay rate. Mathematically, this
amounts to having a negative component to the memory
kernel, as is clear from Figure 3.
The key idea is that we need not commit ourselves to a

particular mathematical form for the decay of the dwell time
distribution in a state. For example, we need not be limited to
exponential decays. Instead, we can ask whether the state from
which we are decaying is truly a single state (i.e., single
exponential decay kinetics). Otherwise, if the memory is not a
sharp δ-function, we can ask: For how long does the memory in
this state last? How does the memory decay in time? What does
this tell us about the dynamics?
The memory kernel describing the escape from a state will

depend on the time scale at which an event is being probed.
That is to say, it depends on the choice of bin size for the

histogram of f(t) and the sampling frequency of the original
data. Large bin sizes used to build dwell histograms reduce the
resolution of the model. If coarse enough bins are used in the
dwell histogram, the memory kernel describing the decay curve
will become Markov. On the other hand, small bins lead to
noisy histograms and large associated errors around each bin
resulting in memory kernels with large associated error bars
themselves.

2.2. Memory Kernels Are Extracted Directly from the
Data. A regularization procedureakin to the method of
image reconstructionis used to extract the memory kernel
from noisy histograms.27−30 Here we only highlight the
essentials; see ref 35 and the Appendix for more mathematical
details.
In discrete time, eq 1 reads

∑ κ− = −+
=

−f f fj j
k

j

k j k1
0 (3)

Our goal is to extract the memory kernel, κ, from the
experimental input, f, which has an associated error for each
time bin

ϵ= +f fj j j
exp

(4)

where f j is the theoretical value of the dwell time histogram at
time point j, while f j

exp is the experimental value with coinciding
error ϵj. In eq 4, we assume that error arises because trajectories
are of finite length. Therefore, the counts for the dwells in bin j
only approach the theoretical value if the trajectory is of infinite
length. We assume that this error is not correlated from bin to
bin. That is, ⟨ϵiϵj⟩ = σj

2δij and ⟨ϵi⟩ = 0, where σj is the noise
standard deviation.
Explicitly solving for κ from eq 3 is numerically unstable

because the experimental input, f, is noisy. In the Appendix, we
detail a recipealready described in ref 35describing one
possible regularization scheme for extracting κ from the data.
This scheme has been benchmarked on synthetic data;35 see
Figures 2 and 3.

2.3. Dwell Time Distributions Are Obtained by Using
Change-Point Algorithms. In the previous section, we
discussed how the memory kernel is extracted from noisy dwell
histograms. Here, we briefly discuss how we back out those
dwell histograms.
We would like the transitions in the data to be determined as

objectively as possible. That is, we want transitions in the data
to be determined independently of a model for the single
molecule dynamics. Change-point algorithms are techniques for
picking out transitions from noisy data by searching for
violations of noise statistics.24,25 In this language, a positive
violation of a noise statistic is indicative of a change point.
Measuressuch as the Schwartz information criterion
(SIC)36set the level of sensitivity to a violation of the
noise statistic. In different albeit equivalent terms, the more
change points are recovered, the more a model for the data is
“complex”. Measures such as the SIC can therefore also be
regarded as modulating the model’s complexity.
After the change-point algorithm has converged and all steps

have been detected, we call the data with no noise the “de-
noised time trace”. See Figure 4 for an example of a de-noised
time trace. In this manuscript, we used a method which invokes
the SIC called PELT (pruned exact linear time)25 to find the
steps in the data because it scales favorably with data set size.
Once steps are detected, it is clear from the de-noised trace that

Figure 2. The memory kernel, κ, is extracted from the noisy dwell time
histogram, f. Left: A noisy dwell time histogram generated synthetically
with 30% noise. Right: The resulting memory kernel. The green curve
is the exact memory kernel (0% noise). The pink curve is obtained by
direct brute force inversion of the data f. The brute force inversion
produces a very noisy memory kernel. For this reason, we introduce a
regularization methoddetailed in the Appendixto invert a kernel
from the data. The red curve is the memory kernel obtained using this
method with a prior shown as a blue dotted line. The prioralso
detailed in the Appendixis our guess as to what the memory kernel
should look like in the absence of data. The memory kernel and the
dwell time histogram are defined by eq 1.

Figure 3. The memory kernel is reliably extracted when dwell time
histograms have little associated noise. Here the noise is set to 1% in f.
Our regularization scheme converges to the exact solution, as
expected.
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the molecule spends most of its time at very well separated
discrete force levels. Usually these are a low force and a high
force level. One assumption made in invoking the SIC is that
the noise is uncorrelated in time. This assumption is not
realized in our data; the bead corner frequency, for instance, is
about 2 kHz (while the data collection frequency was 50 kHz).
However, there was little difference in the change points we
found by applying the SIC to the raw data versus the data
where the time trace was averaged down to remove this
correlation. This result was not surprising because the SIC is
known to underfit data (i.e., find fewer change points than are
actually present); see ref 24 for details.
As a check, we verified that all change points detected by

PELT coincide with change points detected using another
method, namely, an algorithm due to Kalafut.24

Next, we regroup the different force levels using a clustering
algorithm (k-means++) to automate the task of identifying
dwells as high or low force. The input to k-means++ is the
number of clusters desired. K-means++ relies on the
assumption that the traces do not substantially drift in time
(i.e., that the high force state, say, remains at approximately the
same value from the beginning to the end of the trace). This
assumption was reasonable for our time traces. Nonetheless we
also detrended our time traces as follows: (i) took the first 150
000 steps, (ii) took the lowest 10% of those values and found
their median, (iii) repeated the procedure on the last 150 000
steps and took the difference between those two numbers as an
estimate for the total drift, (iv) subtracted the linear drift, and
(v) subsequently removed any overall offset, so that the average
signal is zero.
We call the time traces to which we have applied k-means++

our “quantized time traces”. See Figure 4 for an example. We
can also use k-means++ to merge well separated states (such as
merge two distinct states into one) in order to verify whether
the aggregated state now exhibits conformational memory. We
add that both k-means++ and change-point algorithms depend
on the assumptions of noise statistics, though they are free from
the Markov assumption.

3. DISCUSSION: THE UNFOLDED (LOW FORCE) STATE
OF RNA SHOWS CONFORMATIONAL MEMORY

The SM force spectroscopy data we present was collected in
the passive mode, meaning the trap position is held fixed as the
P5ab RNA hairpin33 transitions between zipped and unzipped
states. See ref 34 for details. Multiple runs, all collected at 50
kHz over a period of 1 min, were carried out on different
physical RNA fibers and at different trap positions for each
fiber. Our focus here is on the majority of time traces collected
where the SM is populating both high force and low force states
for about equal time. Figures 5 and 6 are examples of such

traces which also illustrate just how noisy data can be.
Furthermore, some traces have larger noise amplitude than
others and some traces show excursions to an intermediate
state.
In addition, for simplicity, we only computed the memory

kernel for the marginal dwell time distributions in the low and
high force state. For a renewal process, these memory kernels
would be a complete description of the kinetics. While we
could, in principle, also compute the memory kernel for
conditional dwell distributions, we have not done so here where
our focus is, instead, on marginal distributions.

Figure 4. We use a change-point algorithm to find transitions in the
raw SM force spectroscopy data. Left: Typical time trace obtained by
SM force spectroscopy in the passive mode34 showing the transitions
between a zipped and unzipped state of an RNA hairpin. The high
force (i.e., high signal) state coincides with the zipped state of the
hairpin. The raw data are gray, and their associated histogrammed
signal intensity, also gray, shows substantial overlap between low and
high force states. We apply PELT,25 a change-point algorithm, and
detect the steps in the data shown in red. The histogrammed signal
intensity of this de-noised time trace still shows finite breadth. K-
means++ is used to cluster each dwell to its closest cluster. Here we
specified three clusters, since the red histogram has three well
separated peaks. The resulting quantized steps are shown in blue, and
the resulting signal histogram is, by construction, an infinitely sharp
peak.

Figure 5. Some RNA time traces show apparent excursions to an
intermediate force state. Data is shown in red. The data shown are
only a fraction of the full trace which is collected over a period of 1
min. The offset green curve is the quantized time trace where three
clusters were specified.

Figure 6. Some RNA time traces show no excursions to an
intermediate force state. As with Figure 5, red is the data and green
is the offset quantized time trace. This trace shows no obvious
excursions to an intermediate state. These excursions could be
obscured by the noise. When we cluster the force levels of the time
trace into three states, we recover a state very similar in magnitude to
the high force state. This implies that k-means++ is having difficulty
finding the low intermediate force state it had recovered in Figure 5.
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Figure 5 shows a longer dwell to an intermediate state at
approximately 0.35 s, while Figure 6 shows very few excursions
to an intermediate state, though it is possible that such
excursions are obscured by the noise. We therefore would like
to know if the apparent low force state of Figure 6 shows the
same type of conformational memory as would be expected if
we aggregate the dwells of the low and intermediate force states
of Figure 5. In the passive mode, the low force state in the data
coincides with the unzipped state of the RNA hairpin and the
high force state coincides with the zipped state.
The main conclusions are contained in Figures 7−10. Figures

7 and 8 correspond to the memory kernels for the low and high

force dwell distributions, respectively, of the fiber whose sample
time trace is shown in Figure 5. Figures 9 and 10 correspond to
the memory kernels for the low and high force dwell
distributions, respectively, of the fiber whose sample time
trace is shown in Figure 6.
The fiber probed in Figure 5 shows an intermediate low force

state. The same is not true of the second fiber with a sample
trace shown in Figure 6 which primarily shows a high and low
force state. If we use k-means++ to try to cluster the dwells at

three different force magnitudes in Figure 6, we find a third
state very close in magnitude to the high force state. This
suggests that the change-point algorithm could not detect the
intermediate force state that we had otherwise found in Figure
5.
We show in Figure 7 the memory kernel for the combined

low force as well as low intermediate force states for the first
fiber (whose sample trace is given in Figure 5). This memory
kernel shows evidence of conformational memory, as expected
since we are combining two states into one. However, other
traces, like those for the second fiber (Figure 6), do not show
an intermediate state being populated. Nonetheless, the
memory kernel for the low force state of this fiber, Figure 9,
looks qualitatively similar to that of the other fiber, Figure 7,
indicating the intermediate state is present in both cases. The
same is largely true of all fibers.
Furthermore, the high force state of both fibers is also

qualitatively consistent, Figures 8 and 10. It primarily shows
mostly Markov behaviora strong spike at the origin and few
features beyond this. This indicates that the zipped (or high
force) state behaves as one state. This qualitative consistency in
the memory kernel is the first of our two important theoretical
conclusions drawn from these figures; see figure captions for
more details.
Second, the negative dips from the memory kernelseen in

Figures 7 and 9can be ascribed to a second time scale as we
discussed earlier. However, if we interpret the negative dip as
the result of a second low force stateand thus describe the
low force state as an AM modelwe would then be confronted

Figure 7. The memory kernel for the low force state (unzipped state)
for an RNA hairpin shows non-Markovian behavior. We used k-means
++ to cluster the low force and low intermediate force state. As
expected, the memory kernel for this regrouped state shows evidence
of non-Markovian behavior (or alternatively “conformational memo-
ry”), as evidenced by the negative dip in the memory kernel. A sample
of a time trace of the fiber from which this memory kernel is derived is
shown in Figure 5. The thicker red curve is the average memory kernel
taken from the 10 lighter underlying red curves. The light red curves
are collected at different trap distances.

Figure 8. The memory kernel coinciding with the high force state
(zipped state) shows Markovian behavior. This is the memory kernel
for the RNA fiber considered in Figure 7. This memory kernel
primarily shows a sharp spike at the origin and few features beyond
this. This is a signature of Markov behavior. A sample of a time trace
from the fiber from which this memory kernel is derived is also shown
in Figure 5.

Figure 9. The memory kernel for the low force state of the RNA fiber
whose time trace is given in Figure 6. Unlike in Figure 7, we did not
regroup an intermediate and low force state here to obtain a memory
kernel for the combined state. Rather, the RNA fiber in Figure 6 shows
no transitions to an intermediate state. Nonetheless, the low force
memory kernel shows signs of non-Markovianity consistent with
Figure 7.

Figure 10. The memory kernel coinciding with the high force state
(zipped state) for the fiber considered in Figure 6. This memory
kernel, like Figure 8, also shows a signature of Markovianity, that is, a
sharp spike at the origin.
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with the problem of which AM model to choose from.20 That
is, many AM models can be consistent with data. The latter is
perhaps a counterintuitive consequence of using a discrete AM
model to describe complex dynamics. Furthermore, a two-state
hidden Markov approach would only find the best fit rates
given the data but fail to find evidence of memory because the
state structure is assumed from the onset.
Instead, here we argue that the memory kernel itself can be

interpreted as a model. It indicates the duration and nature of
the conformational memory.
Physically, the memory in the low force state could be

attributed to two interconverting structures (a fully and
partially unzipped state). Both Web servers RNAfold and
AveRNA support the secondary P5ab RNA hairpin structure
given in ref 33 with a bubblea small region of non-base-
pairing nucleotides as shown in Figure 1which suggest that
partial zipping is possible.
Our method is similar to some maximum-entropy-based

methods which try to infer as much as possible regarding the
molecular processes giving rise to the data. For instance, the
method of MemExp (maximum entropy method for
exponentials) extracts kinetic rate distributions from noisy
histograms.30−32 To do so, MemExp posits that the dwell time
distribution, f(t), is a continuous sum of exponentials31

∫= −f t kp k kt( ) d ( ) exp( )
(5)

and tries to extract from the noisy histogram, f(t), the rate
distribution, p(k), using maximum entropy as a regularizing
procedure. This inverse method of rate distribution extraction
is very different from f itting the histogram to a sum of
exponentials. However, since this methodology commits us to a
family of exponential decays, different regularizing procedures
for carrying out this inversion yield different results when the
decay curves, f(t), are not exponential.32 Just as MemExp
derives insight from p(k), our method derives insight from the
memory kernel and the precise way in which it decays to zero.
In addition, NMMK is not commited to exponential decays.

4. CONCLUSION
Simple kinetic models like two-state Markov models can often
be helpful in drawing insight from complex data. However, not
all data naturally lend themselves to such simple theoretical
descriptions.38 For example, flavin reductase exhibits conforma-
tional fluctuations on multiple time scales,3 while the slow
folding kinetics of phosphoglycerate kinase are indicative of
kinetic traps along the folding pathway.37

With growing examples of heterogeneous kinetics in biology,
there is a need for a principled strategy for drawing complex
kinetic models from data. Here our strategy has been to start
from a very broad class of kinetic models (anything that can be
described by a memory kernel) and ask the data to pick the best
model. The NMMK method is one step in developing such a
principled strategy, and its advantages are as follows: (1) All the
data are used in coming up with a model, the memory kernels.
This is not true of fits to particular functional forms. (2)
Models are not intrinsically tied to topologies, nor are they tied
to exponential decay curves. (3) Models are “smooth”
functions. Thus, even asking whether an additional exponential
would substantially improve the fit to data makes little sense
within the context of NMMK. (4) Models are unique, unlike
AM models, for instance. That is, there is a one-to-one
correspondence between a data set and memory kernels.

It is worth investigating whether edge detection and memory
kernel extraction could be combined into a single operation, as
is done with HM models. This approach would help speed up
and simplify the modeling process. In addition, it would
provide an elegant alternative to the binning step required
when dwell durations are turned into histograms.

5. APPENDIX
Brute force inversion of f j+1

exp − f j
exp = −∑k=0

j f k
expκj−κ to extract

{κj} is numerically unstable. Image reconstruction is thus used
to “regularize” the operation. Plugging eq 4 into eq 3, we have

∑ ∑κ ϵ ϵ ϵ κΔ + = − ++
=

− +
=

−f fj j
k

j

k j k j j
k

j

k j k1,
exp

0

exp
1

0 (6)

where Δf j+1,jexp ≡ f j+1
exp − f j

exp. Squaring both sides of eq 6 and
taking the average with respect to the error, we find

∑

∑

κ

σ σ σ κ σ κ

⟨ Δ + ⟩

= + − +

+
=

−

+
=

−

f f( )

2

j j
k

j

k j k

j j j
k

j

k j k

1,
exp

0

exp 2

1
2 2 2

0
0

2 2

(7)

We define a χ2 statistic as a sum over all time intervals

∑χ
κ

σ σ σ κ σ κ
≡

Δ + ∑

+ − + ∑=

+ = −

+ = −

f f( )

( 2 )j

N
j j k

j
k j k

j j j k
j

k j k

2

0

1,
exp

0
exp 2

1
2 2 2

0 0
2 2

(8)

where N here is the number of data points in the histogram. On
average, the ratio within the sum given by eq 8 is equal to 1
according to eq 7. It approaches 1 in the limit that the average
given in eq 7 is taken over a large number of bins, j. If N is large
enough, we can assume that χ2 ∼ N.27−30 Ideally, our goal is to
select the memory kernel that makes χ2 as close to N as
possible. Realistically, many values for the memory kernel can
achieve such values of χ2. We thus have an under-determined
problem which we resolve variationally.
We propose to maximize the objective function, F(θ, {κ}),

with respect to the set {κj}

∑θ κ α κ κ
κ κ

κ

β χ

= − + ̅
+ ̅

Λ + ̅

− −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟F

N

( , { }) ( ) log

2
( )

j
j

j

j

2
(9)

The regularization term is −∑j(κj + κ)̅ log((κj + κ)̅/(Λj + κ)̅);
{α, β} = {cos2 θ, sin θ} are Lagrange multipliers that enforce
the constraints on the data; Λj is the prior on κj; and κ ̅ is a
constant positive parameter which ensures that the argument of
the logarithm is always positive. Our estimate of the set {κj} in
the absence of data is therefore κj

0 = (Λj + κ)̅e−1 − κ.̅ We add
that our choice for the regularizing term (i.e., the entropy) in
our objective function, eq 9, is used because it works for all test
cases we have considered so far.
To ensure ourselves that our choice for the regularizing

function yields the correct answer when we deal with real data,
we benchmarked our method on fictitious data where we know
what {κj} we theoretically expect; see Figures 2 and 3 and ref 35
for more examples.
There are many ways to specify our prior, Λj. We try to take

advantage of the fact that, from brute force inversion, we can
reliably determine the first few points of the memory kernel
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before error begins propagating in the determination of κj for
higher j. Here we set the first two points (j = 0 and j = 1) of Λj
from our brute force memory kernel as the first two points of
the prior, Λj. The rest of the prior is taken to be flat.
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