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The protozoan parasite Entamoeba histolytica is responsible for invasive intestinal and extraintestinal amebiasis. The virulence of
Entamoeba histolytica is strongly correlated with the parasite’s capacity to effectively kill and phagocytose host cells. The process by
which host cells are killed and phagocytosed follows a sequential model of adherence, cell killing, initiation of phagocytosis, and
engulfment. This paper presents recent advances in the cytolytic and phagocytic processes of Entamoeba histolytica in context of
the sequential model.

1. Introduction

Entamoeba histolytica is an enteric parasite that colonizes the
human intestinal lumen and has the capacity to invade
the epithelium. Although 90% of amebic infections are
asymptomatic and self-limiting, there are an estimated 50
million cases of invasive infection annually [1, 2]. According
to the WHO, Entamoeba histolytica is ranked third as a
cause of death among parasites with 100,000 estimated
deaths annually [1]. The morbidity and mortality of this
parasite is primarily seen in developing countries. Ingestion
of contaminated food or water containing infectious cysts
leads to excystation in the intestine. Each cyst produces
eight motile trophozoites, which colonize the host’s colon.
In those cases where the infection is not self limiting, amebic
dysentery and liver abscess formation can occur [2].

The process of invasion and hepatic abscess formation
has no apparent advantage for Entamoeba histolytica [3].
The logical question would then be why did this organ-
ism evolve to be a pathogen and not a commensal like
its noninvasive cousin, Entamoeba dispar? One theory of
Entamoeba histolytica’s origin of virulence is coincidental

evolution. Host cells may have recognition patterns similar
to those of enteric bacteria that the parasite has evolved to
identify. Entamoeba histolytica has been shown to preferen-
tially phagocytose cells coated with collectins, C-type lectins
involved in recognition of ligands that are common to both
bacteria and apoptotic cells [4]. An effective hijacking of the
host’s own innate immune system to increase phagocytosis
may have led to an invasive phenotype. In further support
of this theory, Ghosh and Samuelson [3] have shown that
several signaling proteins required for Entamoeba histolytica’s
virulence are also utilized to kill and phagocytose bacteria.
Another seemingly plausible explanation is that Entamoeba
histolytica’s invasive phenotype arose in response to host
defense mechanisms [5]. Directed apoptosis and subsequent
phagocytosis may serve to limit host inflammatory mech-
anisms by suppressing necrosis and subsequent Th1-type
immunity [6]. Cysteine proteases that are known to degrade
host extracellular matrix also protect Entamoeba histolytica
from complement, secretory IgA, and serum IgG [7–9].

While the evolutionary basis behind virulence is uncer-
tain, the mechanism behind virulence is slowly becom-
ing clearer. Invasion by Entamoeba histolytica is strongly
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correlated with the parasite’s capacity to kill and phagocy-
tose host cells [10–13]. The function of this review is to
highlight some of the recent advances in understanding the
mechanism of cell killing and phagocytosis, and to place
these findings in the context of previous knowledge. For the
purpose of this review, cell killing and phagocytosis have
been organized in a sequential model involving (i) adherence
to the host cell surface, (ii) contact-dependent cell killing,
(iii) initiation of phagocytosis, and (iv) engulfment (see
Figure 1).

2. Adherence

The d-galactose/N-acetyl-d-galactosamine- (GalNAc-) spe-
cific lectin is the major amebic surface adhesin responsible
for adherence to intestinal mucus and host cells [14]. The
GalNAc lectin is composed of a light subunit (Lgl), heavy
subunit (Hgl), and a noncovalently bound intermediate
subunit (Igl) [15, 16]. The light and heavy subunits are linked
via a disulfide bond and exist predominantly at the parasite
cell membrane as a 260 kDa heterodimer [15]. The heavy
subunit contains a carbohydrate recognition domain (CRD)
that recognizes d-galactose and N-acetyl-d-galactosamine
[17]. MUC-2, the predominant mucin in the host intestine,
is bound by the GalNAc lectin with high affinity (Kd =
8.2×10−11 M), allowing for Entamoeba histolytica to colonize
mucosal surfaces [18, 19]. The CRD also recognizes host cell
surface protein glycoconjugates and inhibition of adherence
to host cells has been shown using monoclonal antibodies
that bind the CRD specifically [20, 21]. Host cell adherence
can also be strongly inhibited using μM concentrations of
either galactose or N-acetyl-d-galactosamine [14, 22, 23].
Inhibition of adherence through the GalNAc lectin invariably
leads to a subsequent decrease in host cell cytotoxicity [23].
Tetracycline-regulated expression of a truncated intracellular
domain of the GalNAc lectin heavy subunit has been shown
to significantly decrease adherence to host cells in vitro
[24]. These data suggest that the lectin participates in
outside-to-inside signaling, which is likely through the β2
integrin homologous intracellular domain of the GalNAc
heavy subunit. These functions in adhesion and signaling
place the GalNAc lectin firmly at the nexus of virulence,
though there are other Entamoeba histolytica proteins that
have been implicated in adherence.

The EhCPADH complex is a 124 kDa heterodimer
formed by a cysteine protease (EhCP112) and an adhesin
(EhADH112). Targeted monoclonal antibodies to the C-
terminus adhesion epitope of ADH112 results in greater than
50% reduced adherence to host cells, and ensuing decreases
in cytotoxicity and phagocytosis [25]. ADH112 has three
putative transmembrane domains, a putative Bro1 domain,
and an intracellular domain with potential phosphorylation
sites [26]. It will be interesting to see whether targeted
mutations to the intracellular region or a truncated version
of this protein produce a parasite with diminished adherence.
The ADH112 intracellular domain is highly divergent from
that of the GalNAc lectin heavy subunit [26]. Adhesion
signaling mechanisms of these complexes are, therefore,
likely to be distinct.

Many of the proteins recently implicated in adherence
have arisen from genomic and transcriptomic analyses of
Entamoeba histolytica and nonvirulent Entamoeba. Sequenc-
ing of the Entamoeba histolytica genome has led to many new
discoveries, truly advancing the field of Entamoeba research
in a manner not seen since Diamond et al. first axenically
cultured the parasite [27–29]. One such discovery is STIRP
(serine-threonine-isoleucine rich protein), a protein family
exclusively expressed in virulent strains of Entamoeba, in
vitro. shRNA-mediated silencing of the STIRP family led to
a 35% decrease in adhesion to host cells and a subsequent
reduction in cytotoxicity [30]. ROM1 is a serine protease
functionally related to the rhomboid proteases first identified
in Drosophila melanogaster [31, 32]. Rhomboid proteases
are seven-pass transmembrane proteases with the ability
to cleave transmembrane proteins at their transmembrane
domain [33]. The ROM1 gene appears to be the only
rhomboid protease expressed by both Entamoeba histolytica
and Entamoeba dispar. shRNA-mediated silencing of ROM1
reduced adhesion to healthy Chinese hamster ovary (CHO)
cells, but not to apoptotic CHO cells, the mechanism of
which is still to be determined. It is hypothesized that the
ROM1 protease could be involved in cleavage and activation
of amebic transmembrane proteins involved in adherence
and phagocytosis. ROM1 silenced ameba were shown to
have an ordinary amount of GalNAc lectin at their cell
surface, but other amebic adhesins may be modulated by
ROM1 [31]. There is experimental evidence of at least
one additional Entamoeba histolytica surface lectin activity
involved in phagocytosis [34].

Another recently described potential adhesin is TMKB1-
9, a member of a large family of transmembrane kinases (the
relevance of which is more thoroughly discussed later) [35].
The expression of TMKB1-9 was shown, quite conclusively,
to correlate with decreased adherence to and destruction
of CHO cell monolayers. Intriguingly, the expression of
TMKB1-9 also correlated to serum content in the culture
medium, suggesting a possible mechanism for sensing
environmental conditions [36]. As this exciting new research
unfolds, we shall hopefully better understand what serum
component(s) is regulating TMKB1-9 expression, and how
TMKB1-9 modulates cell adherence.

Trophozoites of Entamoeba histolytica express GPI-
anchored lipoglycoconjugates on their cell surface, referred
to as lipopeptidophosphoglycans or EhLPPG [37, 38]. These
molecules have been implicated in host-parasite interactions
based on the finding that nonvirulent and virulent strains
of Entamoeba histolytica express different amounts and
structures of EhLPPG [39–42]. Recent research has shown
that EhLPPG are the primary NKT cell ligands, helping to
explain why CD1d−/− mice show significantly larger liver
abscesses [43, 44]. Marinets et al. [45] found that passive
immunization with antibody to LPPG conferred protection
from invasive amebiasis in the severe combined immunod-
eficient (SCID) mouse model of hepatic abscess. This effect
was also seen using a SCID intestinal xenograph model of
invasion [46]. LPPG antibody also caused agglutination of
ameba in vitro, which may have been a confounding factor
in an earlier report showing an LPPG antibody-mediated



Journal of Parasitology Research 3

CPADH
GalNAc

TMK
STIRP ROM1

Host

Entamoeba

cell

lectin

B1-9

Adherence

(a)

Phospholipases

?

Amoebapores

Ca
Phosphorylation
Caspase 3
ROS

GalNAc
lectin

Cell killing

(b)

Host

SREHP TMKs CP5

PS

GalNAc
lectin

collectins

Initiation of phagocytosis

(c)

Figure 1: Sequential model of cell killing and phagocytosis by Entamoeba histolytica. Adherence, cell killing, and initiation of phagocytosis
leading to engulfment of host cells are depicted from left to right. Abbreviations: cysteine protease adhesin (CPADH), transmembrane
kinase (TMK), serine-threonine-isoleucine rich protein (STIRP), reactive oxygen species (ROS), serine-rich Entamoeba histolytica protein
(SREHP), cysteine protease 5 (CP5), and phosphatidylserine (PS).

decrease in adherence [47]. LPPG may be vitally important
in immune recognition, but the role it plays in host cell-
parasite adherence remains uncertain. Finally, the lysine and
glutamic acid-rich protein, KERP1, remains an attractive
potential adhesion, as it has been shown to bind epithelial
cells and is absent in the Entamoeba dispar genome [48]. Its
role in adhesion has yet to be formally tested, but KERP1
has recently been evidenced to play a role in liver abscess
formation [49].

3. Cell Killing

The GalNAc lectin is a striking example of a crossover
function between adherence and cell killing. Antibodies
targeting the heavy subunit (Hgl) on a separate domain from
the CRD decrease cell killing by approximately 50% [50].
It should be noted that exclusion of any adherence protein
from the subsequent processes of cell killing and initiation of
phagocytosis does not rule out their involvement, only a lack
of evidence to suggest significant involvement in the latter
two. It is quite possible that many of the proteins involved in
the recognition of healthy host cells are also involved in the
cytolysis and/or recognition of apoptotic cells, much like the
GalNAc lectin.

The Entamoeba histolytica genome encodes three amoe-
bapore proteins that can be secreted upon contact, and the
purified proteins cause target host cell membrane permeabil-
ity at μM concentrations [51, 52]. When inserted into host
cell membrane, amoebapore proteins oligomerize through
peptide-peptide interactions to produce ion channels [53].
Antisense silencing of amoebapore A expression significantly
impairs Entamoeba histolytica’s ability to kill baby hamster
kidney (BHK) cells, assayed by trypan blue exclusion [54].
The G3 strain of Entamoeba histolytica has an almost
complete transcriptional silencing of the amoebapore A

protein [55]. The G3 strain was also shown to be deficient
in cell monolayer destruction and incapable of forming
liver abscess in the hamster model of hepatic abscess [55].
Conversely, the G3 strain produced abscesses, though of
smaller size, in the SCID mouse model [56]. The authors
speculate this difference may have been due to the increased
susceptibility of the SCID mice, variable timing of liver
assessment, or variation in the role that amoebapore plays
in different animal models.

While target host cells and bacteria are susceptible to
amoebapore, Entamoeba histolytica is surprisingly resistant
at μM concentrations. Experiments using liposomes with
Entamoeba histolytica cell membrane composition demon-
strated that the phospholipid composition of the parasite
plasma membrane, along with its high cholesterol con-
tent, prevents binding of fluorescently labeled amoebapore
[57]. The plasma membrane of Entamoeba histolytica is
also resistant to another protein implicated in host cell
killing, phospholipase [58]. Pharmacological inhibitors of
eukaryotic phospholipase A significantly reduced CHO cell
killing, as measured by trypan blue exclusion criteria [58].
The predominant phospholipid found on the Entamoeba
cell membrane is ceramide aminoethylphosphonate (CAEP),
which is a phospholipase resistant species of phospholipid
[59, 60]. While phosphonolipids have been found in small
amounts in various mammals, such large amounts of
CAEP have only been seen in marine bacteria, gastropods,
and bivalve mollusks [61]. CAEP was also detected in
the plasma membrane of Entamoeba histolytica’s reptil-
ian relative, Entamoeba invadens [62]. It is possible that
CAEP confers resistance to Entamoeba histolytica’s resident
phospholipases.

Following contact with Entamoeba histolytica host cells
undergo the morphological and phenotypic changes of
apoptosis, including nuclear chromatin condensation, DNA
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fragmentation, and membrane blebbing [63]. These cells
stain positive by terminal deoxynucleotidyl-transferase-
mediated dUTP-biotin nick-end labeling (TUNEL) and
by annexin V, indicating DNA degradation and phos-
phatidylserine increases on the outer leaflet of the host cell
plasma membrane [64]. Although one study has shown
necrotic features of Entamoeba histolytica-induced cell death,
predominant amount of the literature supports an apoptotic
result [65–71]. The mechanism by which this host-cell
apoptosis is initiated in a variety of different cell types is
still unclear, but there are some common factors. Target
cells show a sustained increase in intracellular Ca2+ con-
centration, protein tyrosine dephosphorylation, and caspase
3 activation following contact with Entamoeba histolytica
[66, 72, 73]. Recent work has shown that pretreatment of
Jurkat lymphocytes with the calpain inhibitor calpeptin leads
to a decrease in protein tyrosine dephosphorylation. It is
hypothesized that the increase in host cell intracellular Ca2+

concentration activates calpain, which cleaves and activates
host SHP-1 and SHP-2. SHP-1 and SHP-2 then act as protein
tyrosine phosphatases. Although calpeptin pretreatment
leads to a decrease in protein tyrosine dephosphorylation,
it is insufficient to halt ensuing apoptosis [74]. Caspase 8
deficiency and caspase 9 inhibition have likewise been shown
to be ineffective in abrogating apoptosis in target Jurkat
lymphocytes. Conversely, the caspase 3 inhibitor Ac-DEVD-
CHO was found to block Jurkat cell apoptosis, measured by
DNA fragmentation and 51Cr release [66]. In a C57BL/6
mouse model of hepatic abscess, Entamoeba histolytica-
induced apoptosis was also found to be Fas/Fas ligand
independent [64]. These findings support a Fas/Fas ligand
and caspase 8/9 independent activation of caspase 3.

Recent research using a CBA mouse model of colitis has
shown that intraperitoneal injection with the pan-caspase
inhibitor ZVAD reduced the mouse parasite burden and,
further, that caspase 3 knockout C57BL/6 mice showed
an even lower parasite burden [6]. The fact that caspase
3 knockout mice were not fully protected from Entamoeba
invasion suggests a possible second mechanism of cell
death. Sim et al. [70] have shown in neutrophils that
intracellular reactive oxygen species (ROS) are induced upon
contact from Entamoeba histolytica. This induction also
coincides with an increasing ERK1/2 activation. Incubation
with a MEK1 inhibitor decreased ERK1/2 activation and
neutrophil apoptosis. Recent work from this group indicates
that apoptosis in neutrophils is also inhibited by host cell
preincubation with monoclonal antibodies to CD18 [75].
CD18 is a β2 integrin that mediates neutrophil adhesion and
is known to promote activation of NADPH oxidase [76].
Treatment with an NADPH oxidase inhibitor also partially
decreased neutrophil apoptosis, as measured by annexin-
V staining of phosphatidylserine [70]. Previous studies
have shown GalNAc lectin deposition on target host cell
membranes following parasite contact [77]. It is interesting
to speculate that, if integrated into the host cell membrane,
the β2 integrin domain of the GalNAc lectin heavy subunit
may be capable of stimulating NADPH oxidase. Whether
the ROS-dependent pathway and the caspase 3-dependent
pathway are part of the same mechanism of apoptosis or

separate, the end result is membrane blebbing and increased
phosphatidylserine exposure on the outer leaflet of the host
plasma membrane [13, 67].

4. Initiation of Phagocytosis

Experiments have shown, conclusively, that Entamoeba
histolytica more readily phagocytoses host cells that have
already undergone apoptosis [13, 67]. Apoptotic Jurkat
lymphocytes and Ca2+ ionophore-treated erythrocytes are
both phagocytosed at a higher rate than their viable coun-
terparts. Jurkat lymphocytes made artificially apoptotic by
insertion of phosphatidylserine into the outer leaflet are
also phagocytosed by Entamoeba histolytica at a higher
rate [67]. When healthy Jurkat lymphocytes were incubated
with Entamoeba histolytica in vitro, caspase 3 activity was
detected by immunofluorescence using an antiactive caspase
3 antibody in virtually all intact cells ingested [67]. Thus,
apoptosis appears to be a requirement for phagocytosis to
occur, though it remains possible that viable cells are just
engulfed less efficiently.

Galactose inhibition of the GalNAc lectin leads to a
22% reduction in amebic adherence to Ca2+ ionophore-
treated erythrocytes, in contrast to healthy erythrocytes
which show approximately 81% reduction in adherence
[13]. Similarly, d-galactose inhibits adherence to apoptotic
Jurkat lymphocytes inefficiently [67]. These results clearly
implicate other Entamoeba histolytica receptors in adhesion
to apoptotic host cells and initiation of phagocytosis.

Ideal candidates for apoptotic receptors are members of
the Entamoeba histolytica transmembrane kinase family of
proteins. Entamoeba histolytica has over 90 transmembrane
kinases (TMKs), categorized into subfamilies (A, B1-3, C,
D1-2, E, F) based on signature motifs in their kinase domains
[35]. Single-cell microarray analysis of Entamoeba histolytica
has shown that multiple TMKs are expressed by individual
parasites in vitro [78]. A small subset of these proteins
has been characterized, thus far, with surprising results.
Certain members of the TMK family have been implicated
in proliferation, possibly due to signaling involving the
extracellular milieu [36, 78, 79]. TMKB1-9 levels have been
shown to correlate with serum levels in culture media;
in fact, many of the TMKs have expression patterns that
fluctuate over time [35, 36]. Other TMKs have exhibited a
role in the uptake of host cells, specifically in the recognition
of apoptotic host cells [78, 80]. Expression of a carboxy-
truncated version of TMK39, possessing only extracellular
and transmembrane domains, decreased uptake of apoptotic
Jurkat lymphocytes by approximately 50% [78]. Similarly,
expression of a truncated version of TMKB3-96 (PATMK)
decreased uptake of Ca2+ ionophore-treated erythrocytes
[80]. This decrease was also shown using shRNA-mediated
knockdown and using polyclonal antiserum specific for
PATMK, which localized to the phagocytic cup during
erythrophagocytosis.

Exactly what these TMKs are recognizing on apoptotic
cells is unknown. Phosphatidylserine exposure is a hallmark
of host cell apoptosis, making it a strong candidate ligand
[81, 82]. Annexin V masking of phosphatidylserine on
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Figure 2: Venn diagram summarizing results of Entamoeba his-
tolytica BLAST searches using the extracellular domains of CED-
1 (C. elegans), eater (D. melanogaster), and STAB2 (H. sapiens).
Fifty-five members of the E. histolytica transmembrane kinase gene
family share significant homology to these representative scavenger
receptors.

apoptotic erythrocytes leads to a decrease in phagocytosis
[13]. Annexin V treatment along with galactose inhibition
of the GalNAc lectin also leads to an astonishing >95%
reduction in erythrophagocytosis. If phosphatidylserine were
the only driving force behind apoptotic cell recognition,
then annexin V treatment of other apoptotic cell types
should also decrease phagocytosis. Interestingly, this effect
is not seen. Annexin V treatment of Jurkat lymphocytes
does not affect the rate of phagocytosis in vitro (C. Huston,
unpublished data). These findings lead us to believe that,
while phosphatidylserine may be a strong signal for initiation
of phagocytosis, other ligands present on nucleated apoptotic
host cells must be also capable of stimulating Entamoeba
histolytica phagocytosis.

Research on macrophage uptake of apoptotic cells has
shown that recognition of phosphatidylserine alone involves
multiple receptors [83, 84]. As previous studies have noted,
the extracellular domain of TMKs contain many epidermal
growth factor- (EGF-) like repeats characteristic of scavenger
receptors conserved in eukaryotes [78, 85]. A Boolean
exploration of BLAST searches involving the extracellular
domains of the representative scavenger receptors CED-1
(C. elegans), eater (D. melanogaster), and STAB2 (H. sapiens)
returns 55 members of the Entamoeba histolytica TMK family
(Figure 2). This number is remarkable considering that
many of the transmembrane kinase genes encode truncated
forms, lacking substantial extracellular domains [35, 79].
Proteomic analysis of the Entamoeba histolytica phagosome
using carboxylated paramagnetic beads as bait identified
22 TMKs over various time points (Table 1) [80]. It is an
attractive hypothesis that TMKs are acting as scavenger
receptors, yet more research is needed to characterize TMK
ligands and the downstream signaling induced. Buss et al.
[78] observed heterodimerization of wild type and truncated
TMKs in transfected parasites. It will be interesting to
see whether TMK homodimerization alone is sufficient to
initiate phagocytosis, and whether TMKs are able to dimerize
with other family members.

Another large family of genes in Entamoeba histolytica
is the cysteine proteases, of which there are 50 known

Table 1: Members of the Entamoeba histolytica transmembrane
kinase family found in phagosome preparations at various time
points [80, 86].

TMK Pathema ID

EhTMKA-4 EHI 068720

EhTMKA-85 EHI 128430

EhTMKB1-1 EHI 103240

EhTMKB1-5 EHI 062090

EhTMKB2-14 EHI 068160

EhTMKB2-31 EHI 180320

EhTMKB2-36 EHI 074740

EhTMKB2-41 EHI 064490

EhTMKB2-75 EHI 092260

EhTMKB3-29 EHI 050820

EhTMKB3-96 EHI 167650

EhTMKC-13 EHI 025280

EhTMKC-71 EHI 030420

EhTMKD1-3 EHI 201270

EhTMKD1-40 EHI 064500

EhTMKD1-70 EHI 189290

EhTMKD1-79 EHI 180150

EhTMKD2-19 EHI 081790

EhTMKD2-44 EHI 127000

EhTMKD2-64 EHI 086050

EhTMKE-22 EHI 186990

EhTMKE-54 EHI 188110

members [87]. EhCP1, EhCP2, and EhCP5 appear to make
up nearly 90% of the cysteine protease transcripts in cultured
parasites [88, 89]. At different time points of infection, the
expression of cysteine proteases can shift greatly, leading
to the increase of EhCP4 and others [90]. In cultured
parasites, antisense knockdown of EhCP5 resulted in a 90%
decrease in cysteine protease activity compared to wild type
[91]. Strangely, this strain of Entamoeba histolytica had a
decrease in phagocytosis, while having no apparent defect
in hemolytic activity or monolayer destruction. This is in
stark contrast to the known roles of cysteine proteases
that include degradation of extracellular matrix, mucin,
complement proteins, immunoglobulins, and cytokines [7–
9, 92]. EhCP5-attenuated parasites were also unable to
penetrate the colonic lamina propria in an ex vivo human
colonic model of invasion [93]. Targeted inhibitors to EhCP1
and EhCP4 have also been shown to be protective in the
SCID mouse-human intestinal xenograph model and in the
SCID mouse hepatic abscess model, respectively [94, 95].
The connection between cysteine proteases and phagocytosis
has not been determined, but their importance for host
invasion has been proven ex vivo and in vivo. The availability
of pharmacologic inhibitors for cysteine proteases makes
them attractive targets for drug design, and the inhibitors
are potential tools to dissect the roles of individual cysteine
proteases in phagocytosis.
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The serine rich Entamoeba histolytica protein (SREHP)
was first identified based on its strong immunogenic prop-
erties, and characterized as a potential parasite chemoat-
tractant [96]. These results are perplexing considering that
the SREHP does not appear to be secreted, but does
show localization to the plasma membrane of Entamoeba
histolytica. An in vitro screen of 43 monoclonal antibodies
raised against Entamoeba histolytica membrane preparations
identified a single antibody that inhibited phagocytosis,
which was found to be specific for SREHP [97]. This
antibody blocked uptake of apoptotic Jurkat lymphocytes by
over 90%, and the reduction was shown to be GalNAc lectin-
independent via saturating amounts of galactose. Adherence
and induction of apoptosis were also reduced to a much
lesser degree. The SREHP has a putative transmembrane
domain but no appreciable cytoplasmic domain, implicating
a possible coreceptor that is still to be identified.

The host collectins C1q, SP-A, and MBL have all been
shown to be ligands that stimulate Entamoeba histolytica
phagocytosis [4]. Structurally, the collectin family all have a
collagenous N-terminal tail and a globular C-terminal head
generally involved in opsonization [98]. Collectins are found
throughout the host mucosal lining, including those of the
intestine [99–101]. Collectin-mediated opsonization of bac-
teria and apoptotic host cells is stimulatory for Entamoeba
histolytica as well as macrophages [4, 102] (A. Sateriale,
unpublished data). Pretreatment with C1q increased amebic
uptake of apoptotic Jurkat lymphocytes in vitro, but not
of viable Jurkats, even though C1q was detectable on the
surface of both. The localization of C1q to apoptotic Jurkat
membrane blebs in these experiments indicates possible
concentration dependence. C1q and MBL were also found to
be chemoattractants for Entamoeba histolytica, via a transwell
migration assay [4]. As the host collectins have been shown
to be structurally similar, a single receptor may show cross-
reactivity. However, a putative Entamoeba histolytica collectin
receptor has yet to be identified.

5. Engulfment

The process of host-cell engulfment following initiation
of phagocytosis has been shown to be actin and myosin
dependent [103]. Rhodamine-labeled phalloidin localizes
to the phagocytic cup during target cell ingestion, and
cytochalasin D blocking of actin polymerization has been
shown to inhibit phagocytosis [104–106]. An Entamoeba
histolytica strain with a threefold overexpression of myosin
1B exhibited marked deficiency in erythrophagocytosis
[107]. Recent research has also posited that Entamoeba lipid
rafts are involved in the organization of host-cell adhesion
and endocytosis [108]. In a cholesterol-rich organism such
as Entamoeba histolytica, it is not difficult to imagine the
large role lipid rafts could play in organizing pathogenic
events [59]. Entamoeba histolytica signaling proteins that
have been shown to regulate host-cell engulfment include
p21 activated kinase (PAK), protein kinase C (PKC), RacA,
and phosphatidylinositol 3-kinase (PI3 kinase) [3, 109, 110].
Recent proteomic research involving purified phagosomes
has given supporting evidence to these observations and

offers a more complete picture of the various proteins
involved in amebic endocytosis [80, 111–113]. Okada and
Nozaki [114] and Marion and Guillén [85] offer very concise
and comprehensive reviews of the endocytosis mechanism.

6. Future Directions

Some of the original mysteries surrounding Entamoeba
histolytica pathogenicity still plague researchers today. The
Zulu word for Entamoeba histolytica-derived liver abscess
is isigwebedhla, which translates to disease of the strong
young men [115]. The cause behind the gender bias still
remains unknown. This is not particularly surprising, con-
sidering that the mechanism by which Entamoeba histolytica
causes host cell apoptosis is largely uncertain. Models for
assaying parasite invasion such as the SCID mouse-human
xenograph model and the recent ex vivo human intestinal
model may allow for a better understanding of host-parasite
interactions [93, 116]. While animal models are invaluable,
discrepancies between species and even between strains
highlight the variability of the host-parasite interface. Models
better representing the parasite’s natural human host may
allow for a better understanding of the invasive phenotype.
Many of the proteins described in this sequential model of
invasion also happen to be the most immunogenic [117].
The characterization of novel proteins involved in adherence,
cell killing, and phagocytosis still holds the promise of
identifying future vaccine candidates.
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