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Abstract: Meiosis and recombination are the two opposite aspects that coexist in a DNA 

system. As a driving force for evolution by generating natural genetic variations, meiotic 

recombination plays a very important role in the formation of eggs and sperm. 

Interestingly, the recombination does not occur randomly across a genome, but with higher 

probability in some genomic regions called “hotspots”, while with lower probability in  

so-called “coldspots”. With the ever-increasing amount of genome sequence data in the 

postgenomic era, computational methods for effectively identifying the hotspots and 

coldspots have become urgent as they can timely provide us with useful insights into the 

mechanism of meiotic recombination and the process of genome evolution as well. To 

meet the need, we developed a new predictor called “iRSpot-TNCPseAAC”, in which a 

DNA sample was formulated by combining its trinucleotide composition (TNC) and the 

pseudo amino acid components (PseAAC) of the protein translated from the DNA sample 

according to its genetic codes. The former was used to incorporate its local or short-rage 

sequence order information; while the latter, its global and long-range one. Compared with 

the best existing predictor in this area, iRSpot-TNCPseAAC achieved higher rates in 

accuracy, Mathew’s correlation coefficient, and sensitivity, indicating that the new 

predictor may become a useful tool for identifying the recombination hotspots and  

coldspots, or, at least, become a complementary tool to the existing methods. It has not 
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escaped our notice that the aforementioned novel approach to incorporate the DNA 

sequence order information into a discrete model may also be used for many other  

genome analysis problems. The web-server for iRSpot-TNCPseAAC is available at  

http://www.jci-bioinfo.cn/iRSpot-TNCPseAAC. Furthermore, for the convenience of the 

vast majority of experimental scientists, a step-by-step guide is provided on how to use the 

current web server to obtain their desired result without the need to follow the complicated 

mathematical equations. 

Keywords: genome; DNA; recombination spots; hotspots; coldspots; trinucleotide 

composition; pseudo amino acid composition; web-server; iRSpot-TNCPseAAC 

 

1. Introduction 

Meiosis and recombination are two indispensible aspects for cell reproduction and growth (Figure 1). 

The former is a special type of cell division by which the genome is divided in half to generate 

daughter cells for participating in sexual reproduction, while the latter is to produce single-strand ends 

that can invade the homologous chromosome [1].  

Figure 1. An illustration to show the process of meiosis and recombination in a DNA 

system. Adapted from [2]. 

 

Recombination is initiated by double-strand breaks (or broken DNA ends); defecting in meiosis 

may lead to male infertility [3–5]. Meiotic recombination ensures accurate chromosome segregation 

during the first meiotic division and provides a mechanism to increase genetic heterogeneity among 

the meiotic products. Accordingly, identification of recombination spots may provide very useful 

information for in-depth understanding the reproduction and growth of cells. 

DNA molecules 

5’end resection 

Double strand break 

Strand invasion 

Crossover 

Noncrossover 

http://en.wikipedia.org/wiki/Cell_division
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In the past decades, a lot of global mapping studies have been performed to map double-strand 

break sites on chromosomes [6–13]. The following findings were observed through these studies for 

the meiotic recombination events. (i) They generally concentrate in 1:2.5 kilobase regions; (ii) They do 

not occur randomly across the entire genome but with a higher rate in some regions and lower in 

others; the former is a so-called “hotspot” while the latter, “coldspot”; (iii) They do not share a 

consensus sequence pattern. 

With the rapid increasing number of genome sequences, it is important to address the following 

problem. Given a genome sequence, how can we predict which part of it is the hotspot for 

recombination, and which part is not? 

Based on the nucleotide sequence contents, Liu et al. [14] proposed a computational method to deal 

with this problem. However, in their method no sequence-order effect whatsoever was taken into 

account, and, hence, its prediction power might be limited.  

Actually, one of the most important, but also most difficult, problems in computational biology is 

how to formulate a biological sequence with a discrete model or a vector, yet still keep considerable 

sequence order information. This is as all the existing operation engines, such as covariance 

discriminant (CD) [15–20], neural network [21–23], support vector machine (SVM) [24–26], random 

forest [27,28], conditional random field [29], nearest neighbor (NN) [30,31], K-nearest neighbor 

(KNN) [32–34], OET-KNN (optimized evidence-theoretic k-nearest neighbors) [35–38], and Fuzzy  

K-nearest neighbor [39–43], can only handle vector, but not sequence, samples. However, a vector 

defined in a discrete model may completely lose all the sequence-order information. 

To avoid completely losing the sequence-order information for proteins, the pseudo amino acid 

composition [44,45] or Chou’s pseudo amino acid components (PseAAC) [46] was proposed. Ever 

since the concept of PseAAC was proposed in 2001 [44], it has penetrated into almost all the areas of 

computational proteomics, such as identifying cysteine S-nitrosylation sites in proteins [29], predicting 

bacterial virulent proteins [47], predicting antibacterial peptides [48], identifying bacterial secreted 

proteins [49], predicting supersecondary structure [50], predicting protein subcellular location [51–59], 

predicting membrane protein types [60,61], discriminating outer membrane proteins [62], identifying 

antibacterial peptides [48], identifying allergenic proteins [63], predicting metalloproteinase family [64], 

predicting protein structural class [65], identifying GPCRs (G protein-coupled receptors) and  

their types [66,67], identifying protein quaternary structural attributes [68,69], predicting protein 

submitochondria locations [70–73], identifying risk type of human papillomaviruses [74], identifying 

cyclin proteins [75], predicting GABA(A) receptor proteins [76], classifying amino acids [77], 

predicting the cofactors of oxidoreductases [78], predicting enzyme subfamily classes [79], detecting 

remote homologous proteins [80], analyzing genetic sequences [81], predicting anticancer peptides [82], 

among many others (see a long list of papers cited in the References section of [83]). Recently, the 

concept of PseAAC was further extended to represent the feature vectors of nucleotides [15],  

as well as other biological samples [84–86]. As it has been widely and increasingly used, recently two 

powerful soft-wares, called “PseAAC-Builder” [87] and “propy” [88], were established for generating 

various special Chou’s pseudo-amino acid compositions, in addition to the web-server “PseAAC” [89], 

built in 2008. 

Encouraged by the success of introducing PseAAC for proteins, recently, Chen et al. [25] proposed 

the pseudo dinucleotide composition or PseDNC to represent DNA sequences for identifying the 
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recombination spots by counting some sequence effects, remarkably improving the prediction results 

in comparison with those by Liu et al. [14], without including any sequence information. However, in 

PseDNC, only the correlations of dinucleotides along a DNA sequence were considered, and, hence, 

some important sequence order effects might be missed.  

The present study was initiated in an attempt to incorporate the long-range or global correlations of 

trinucleotides along a DNA sequences in hope to further improve the prediction quality in indentifying 

the recombination spots.  

As demonstrated in a series of recent publications [24,42,90–92] and summarized in a comprehensive 

review [83], to establish a really useful statistical predictor for a biological system, one needs to 

consider the following procedures: (i) construct or select a valid benchmark dataset to train and test the 

predictor; (ii) formulate the biological samples with an effective mathematical expression that can 

truly reflect their intrinsic correlation with the target to be predicted; (iii) introduce or develop a 

powerful algorithm (or engine) to operate the prediction; (iv) properly perform cross-validation  

tests to objectively evaluate the anticipated accuracy of the predictor; and (v) establish a user-friendly  

web-server for the predictor that is accessible to the public. Below, let us elaborate how to deal with 

these procedures one-by-one. 

2. Results and Discussion 

2.1. Benchmark Dataset 

The benchmark dataset S used in this study was taken from Liu et al. [14], which contains 490 

recombination hotspots and 591 recombination coldspots, as can be formulated by:  

S S S   (1) 

where subset S
+
 and S

−
 are respectively for the hot and cold spots, while  represents the symbol for 

“union” in the set theory. For reader’s convenience, the 490 DNA sequences in S
+
 and 591 sequences 

in S
−
 are given in the Supplementary Information S1. 

2.2. Formulate DNA Samples by Combining Trinucleotide Composition and Pseudo Amino  

Acid Components 

Suppose a DNA sequence D with L nucleotides; i.e., 

1 2 3 4 5 6 7 LN N N N N N N ND  (2) 

where  

 A (adenine), C (cytosine) G (guanine) T (thymine)iN   (3) 

denotes the i-th (i = 1, 2, …, L) nucleotide in the DNA sequence. If the feature vector of the DNA 

sequence is formulated by its mononucleotide composition (MNC), we have: 

(1) (1) (1) (1)

1 2 3 4

  
(A) (C) (G) (T)

             

f f f f

f f f f

  
  

  
  

T

T

D

 (4) 
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where 
  
f
1

(1) = f (A) , 
  
f

2

(1) = f (C) , 
  
f

3

(1) = f (G) , and 
  
f

4

(1) = f (T)  are the normalized occurrence 

frequencies of adenine (A), cytosine (C), guanine (G), and thymine (T), respectively, in the DNA 

sequence; and the symbol T is the transpose operator. As we can see from Equation (4), all the 

sequence order information is missed if using MNC to represent a DNA sequence. If using the 

dinucleotide composition (DNC) to represent the DNA sequence, instead of the four components as 

shown in Equation (4), the corresponding feature vector will contain 4 × 4 = 16 components, as  

given below: 

D = f (AA) f (AC) f (AG) f (AT) f (TT)é
ë

ù
û

T

   = f1
(2) f2

(2) f3

(2) f4

(2) f16

(2)é
ëê

ù
ûú

T

                        

 (5) 

where 
  
f
1

(2) = f (AA)  is the normalized occurrence frequency of AA in the DNA sequence; 

  
f

2

(2) = f (AC), that of AC; 
  
f

3

(2) = f (AG) , that of AG; and so forth. If represented by the trinucleotide 

composition (TNC), the corresponding feature vector will contain 34 4 4 4 64     components, as 

given below:  

D = f (AAA) f (AAC) f (AAG) f (AAT) f (TTT)é
ë

ù
û

T

  = f1
(3) f2

(3) f3

(3) f4

(3) f64

(3)é
ëê

ù
ûú

T

                                  

 (6) 

where 
  
f
1

(3) = f (AAA)  is the normalized occurrence frequency of AAA in the DNA sequence; 

  
f

2

(3) = f (AAC), that of AAC; and so forth. Generally speaking, if a DNA sequence is represented by 

the K-tuple nucleotide composition, the corresponding vector D for the DNA sequence will contain 4
K
 

components; i.e., 

D = f1
(K ) f2

(K ) f3

(K ) f4

(K ) f
4K

(K )é
ëê

ù
ûú

T

        (7) 

As we can see from Equations (5–7), with increasing the tuple number, although the base  

sequence-order information within a local or very short range could be gradually included, none of the 

global or long-range sequence-order information would be reflected by the formulation.  

Actually, in computational proteomics, we have also faced exactly the same situation; i.e., although 

the dipeptide composition, tripeptide composition, and K-tuple peptide composition were used by 

many investigators to represent protein sequences by incorporating their local sequence order 

information [93–97], their global or long-range sequence order information still could not be reflected. 

As mentioned above, to deal with this kind of problems in proteomics, the concept of PseAAC [44,45] 

was introduced.  

Stimulated by the PseAAC approach [44,45] in computational proteomics, below let us propose a 

novel feature vector to represent the DNA sequence (cf. Equation (2)) by combining its TNC  

(see Equation (2)) and the pseudo amino acid components of its translated protein chain.  
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As is well known, three nucleotides encode an amino acid (see Figure 2). Thus, according the 

conversion table from DNA codons to amino acids (Table 1), the DNA sequence in Equation (2) can 

be translated into a protein sequence expressed by: 

P = A1A2A3 AL*
 (8) 

with  

Ai Î 20 native amino acids{ }

L* = Int L / 3{ }                       

ì

í
ï

îï

 (9) 

where the symbol “Int” is an integer truncation operator meaning to take the integer part for the 

number in the brackets immediately after it.  

Figure 2. A graph to show how a DNA codon of three nucleotides is converted to an 

amino acid. The characters in the first three rings from the center represent four bases in 

DNA, while those in the fourth ring represent the single-letter codes of the 20 native amino 

acids in protein. The symbol * means the “Stop” sign. 

 

Table 1. The conversion code of the 64 trinucleotides in DNA to the 20 amino acids in protein. 

Trinucleotide Amino acid Trinucleotide Amino acid 

AAA Lys (K) GAA Glu (E) 

AAC Asn (N) GAC Asp (D) 

AAG Lys (K) GAG Glu (E) 

AAT Asn (N) GAT Asp (D) 

ACA 

Thr (T) 

GCA 

Ala (A) 
ACC GCC 

ACG GCG 

ACT GCT 

AGA Arg (R) GGA 

Gly (G) 
AGC Ser (S) GGC 

AGG Arg (R)  GGG 

AGT Ser (S) GGT 
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Table 1. Cont. 

Trinucleotide Amino acid Trinucleotide Amino acid 

ATA 
Ile (I) 

GTA 

Val (V) 
ATC GTC 

ATG Met (M) GTG 

ATT Ile (I) GTT 

CAA Gln (Q) TAA Stop! 

CAC His (H) TAC Tyr (Y) 

CAG Gln (Q) TAG Stop! 

CAT His (H) TAT Tyr (Y) 

CCA 

Pro (P) 

TCA 

Ser (S) 
CCC TCC 

CCG TCG 

CCT TCT 

CGA 

Arg (R) 

TGA Stop! 

CGC TGC Cys (C) 

CGG TGG Trp (W) 

CGT TGT Cys (C) 

CTA 

Leu (L) 

TTA Leu (L) 

CTC TTC Phe (F) 

CTG TTG Leu (L) 

CTT TTT Phe (F) 

Now, according to the formulation of Chou’s PseAAC approach [44,45], for the protein chain of 

Equation (8), we have: 

* 1

1 1

1

* 2

2 2

1

* 3

3 3

1

* 1

1

1
( , )

* 1

1
( , )

* 2

      ( *)1
( , )

* 3

1
( , )

*

L

i i

i

L

i i

i

L

i i

i

L

i i

i

A A
L

A A
L

L
A A

L

A A
L

 




































  




 





  



  











 
(10) 

where  ( 1,2,3, , )k k   is called the k-th tier correlation factor that reflects the sequence order 

correlation between all the k-th most contiguous residues along a protein chain. In this study, the 

correlation function in Equation 10 is given by: 

6
2

1

1
( , ) ( ) ( )

6
i j n j n i

n

A A H A H A


      (11) 
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where Hn(Aj ) (n =1,2, ,6)  is the six physicochemical properties of amino acid A j
; they are, 

respectively, hydrophobicity, hydrophilicity, side-chain mass, pK1 (α-COOH), pK2 (NH3), and PI. 

Note that before substituting these physicochemical values into Equation (11), they were all subjected 

to a standard conversion as described by the following equation: 

0 0

0

( )
( )

SD( )

n i n

n i

n

H A H
H A

H


  (12) 

where Hn(Ai ) (n =1,2, ,6)is the  n-thoriginal physicochemical property value for the amino acid 
  
A

i
 

as given in Table 2, the symbol < and > means taking the average of the quantity therein over 20 native 

amino acids, and SD means the corresponding standard deviation. Listed in Table 3 are the converted 

values obtained by Equation (12) that will have a zero mean value over the 20 native amino acids, and 

will remain unchanged if going through the same conversion procedure again.  

Table 2. List of the original values of the six physical-chemical properties for each of the 

20 native amino acids.  

Amino 

acid 

Hydro-

phobicity 
a 

  
H

1

0
 

Hydro-

philicity 
b  

  
H

2

0

 

Side-chain  

mass 
c  

  
H

3

0
 

pK1 
d 

  
H

4

0
 

pK2 
e 

  
H

5

0
 

PI 
f 

  
H

6

0
 

A 0.62 −0.5 15 2.35 9.87 6.11 

C 0.29 −1.00 47 1.71 10.78 5.02 

D −0.90 3.00 59 1.88 9.60 2.98 

E −0.74 3.00 73 2.19 9.67 3.08 

F 1.19 −2.50 91 2.58 9.24 5.91 

G 0.48 0.00 1 2.34 9.60 6.06 

H −0.40 −0.50 82 1.78 8.97 7.64 

I 1.38 −1.80 57 2.32 9.76 6.04 

K −1.50 3.00 73 2.20 8.90 9.47 

L 1.06 −1.80 57 2.36 9.60 6.04 

M 0.64 −1.30 75 2.28 9.21 5.74 

N −0.78 0.20 58 2.18 9.09 10.76 

P 0.12 0.00 42 1.99 10.60 6.30 

Q −0.85 0.20 72 2.17 9.13 5.65 

R −2.53 3.00 101 2.18 9.09 10.76 

S −0.18 0.30 31 2.21 9.15 5.68 

T −0.05 −0.40 45 2.15 9.12 5.60 

V 1.08 −1.50 43 2.29 9.74 6.02 

W 0.81 −3.40 130 2.38 9.39 5.88 

Y 0.26 −2.30 107 2.20 9.11 5.63 
a Taken from [98]; b Taken from [99]; c Taken from any biochemistry text book; d Taken from [100] for 

C -COOH ; e Taken from [100] for NH3; 
f Taken from [101]. 

  



Int. J. Mol. Sci. 2014, 15 1754 

 

Table 3. The corresponding values obtained by the standard conversion of Equation12 on 

the original values in Table 2.  

Amino acid   
H

1
 

  
H

2
 

  
H

3
 

  
H

4
 

  
H

5
 

  
H

6
 

A 0.62 −0.15 −1.55 0.78 0.77 −0.10 

C 0.29 −0.41 −0.52 −2.27 2.57 −0.64 

D −0.90 1.67 −0.13 −1.46 0.24 −1.65 

E −0.74 1.67 0.33 0.01 0.37 −1.61 

F 1.19 −1.19 0.91 1.87 −0.48 −0.20 

G 0.48 0.11 −2.00 0.73 0.24 −0.13 

H −0.40 −0.15 0.62 −1.94 −1.01 0.65 

I 1.38 −0.82 −0.19 0.63 0.55 −0.14 

K −1.50 1.67 0.33 0.06 −1.15 1.56 

L 1.06 −0.82 −0.19 0.82 0.24 −0.14 

M 0.64 −0.56 0.39 0.44 −0.54 −0.29 

N −0.78 0.22 −0.16 −0.03 −0.77 2.20 

P 0.12 0.11 −0.68 −0.94 2.21 −0.01 

Q −0.85 0.22 0.29 −0.08 −0.69 −0.33 

R −2.53 1.67 1.23 −0.03 −0.77 2.20 

S −0.18 0.27 −1.03 0.11 −0.65 −0.32 

T −0.05 −0.10 −0.58 −0.18 −0.71 −0.36 

V 1.08 −0.67 −0.65 0.49 0.51 −0.15 

W 0.81 −1.65 2.17 0.92 −0.18 −0.22 

Y 0.26 −1.08 1.43 0.06 −0.73 −0.34 

By combining the   correlation factors with the 64 components in TNC (see Equation (6)), the 

DNA sequence is formulated by: 

 1 2 64 64 1 64d d d d d  
T

D  (13) 

where:  

(3)

64
(3)

1 1

64

64
(3)

1 1

,        (1 64)              

,        (64 1 64 )

u

i k

i k

u

u

i k

i k

f
u

f w

d
w

u

f w












 



 


 

 


 
    





 

 

 (14) 

where w  is the weight factor which is determined by optimizing the outcome as will be mentioned 

later. The rationale of using Equation (13) to represent the DNA sequence is that the local or  

short-range sequence order effect can be directly reflected via the occurrence frequencies of its  

64 trinucleotides, while the global or long-range sequence order effect can be indirectly reflected via 

the   pseudo amino acid components of its translated protein chain. As three nucleotides encode an 

amino acid, the above approach is both quite rational and natural. 
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2.3. Use Support Vector Machine as an Operation Engine  

Support vector machine (SVM) has been widely to make classification prediction (see,  

e.g., [24,102–105]. The basic idea of SVM is to transform the input data into a high dimensional 

feature space and then determine the optimal separating hyperplane. A brief introduction about the 

formulation of SVM was given in [103,106]. Here, the DNA samples as formulated by Equation (13) 

were used as inputs for the SVM. Its software was downloaded from the LIBSVM package [107,108], 

which provided a simple interface. Due to this advantages, the users can easily perform classification 

prediction by properly selecting the built-in parameters C  and  . In order to maximize the 

performance of the SVM algorithm, the two parameters in the RBF kernel were preliminarily 

optimized through a grid search strategy in this study. To obtain the optimized parameters, the search 

function “SVMcgForClass” was downloaded from http://www.matlabsky.com.  

The predictor obtained via the aforementioned procedures is called iRSpot-TNCPseAAC, where “i” 

means “identify”, “RSpot” means “Recombination Spots”, while TNCPseAAC means a combination 

of “Tri-Nucleotide Composition” and “Pseudo Amino Acid Components.”  

To objectively evaluate the quality of a new predictor, one should use proper metrics [109] and 

rigorous cross-validation [83] to test it. Below, let us address these problems. 

2.4. Four Different Metrics for Measuring the Prediction Quality 

In literature, the following metrics are often used for examining the performance quality of a predictor:  

                                                           

                                                          

                                        

TP
Sn

TP FN

TN
Sp

TN FP

TP TN
Acc

TP TN FP FN

MCC










  

( ) ( )

( )( )( )( )

TP TN FP FN

TP FP TP FN TN FP TN FN









   


   

 

(15) 

where TP represents the number of the true positive; TN, the number of the true negative; FP, the 

number of the false positive; FN, the number of the false negative; Sn, the sensitivity; Sp, the 

specificity; Acc, the accuracy; MCC, the Mathew’s correlation coefficient. To most biologists, 

however, the four metrics as formulated in Equation (15) are not quite intuitive and easier-to-understand, 

particularly for the Mathew’s correlation coefficient. Here let us adopt the formulation proposed 

recently [25,29] based on the Chou’s symbol and definition [110]; i.e., 

1                                           

1                                          

1                                

1

1 1

N
Sn

N

N
Sp

N

N N
Acc

N N

N N

N N
Mcc

N N N N

N













 

 

 

 

 

 

  

  



 

 


 



 
  

 


  
  

  N



















  
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where N   is the total number of the hotspot samples investigated while N 

  the number of the hotspot 

samples incorrectly predicted as coldspots; N  the total number of the coldspot samples investigated 

while N 

  the number of the coldspot samples incorrectly predicted as the hotspots [111].  

Now, it can be clearly seen from Equation (16) that when 0N 

   meaning none of the hotspots was 

incorrectly predicted to be a coldspot, we have the sensitivity 1Sn  . When N N 

   meaning that all 

the hotspots were incorrectly predicted to be the coldspots, we have the sensitivity Sn = 0. Likewise, 

when 0N 

   meaning none of the coldspots was incorrectly predicted to be the hotspot, we have the 

specificity 1Sp  ; whereas N N 

   meaning all the coldspots were incorrectly predicted as the 

hotspots, we have the specificity Sp = 0 . When 0N N 

    meaning that none of hotspots in the 

positive dataset and none of the coldspots in the negative dataset was incorrectly predicted, we have 

the overall accuracy Acc =1  and MCC =1 ; when N N 

  and N N 

   meaning that all the 

hotspots in the positive dataset and all the coldspots in the negative dataset were incorrectly predicted, 

we have the overall accuracy Acc = 0  and 1MCC   ; whereas when / 2N N 

   and / 2N N 

   

we have Acc = 0.5  and MCC = 0  meaning no better than random guess. As we can see from the 

above discussion based on Equation (16), the meanings of sensitivity, specificity, overall accuracy, and 

Mathew’s correlation coefficient have become much more intuitive and easier-to-understand. 

It should be pointed out that the metrics as given in Equation (15) and Equation (16) are valid only 

for the single-label systems as in the current case. For the multi-label systems in which emergence has 

become increasingly frequent in cell’s molecular systems [112–118] and biomedical systems [43,119], 

a completely different set of metrics as defined in [109] is needed. 

2.5. Evaluate the Anticipated Success Rates by Jackknife Tests 

The following three cross-validation methods are often used in statistical prediction to evaluate the 

anticipated accuracy of a predictor: independent dataset test, subsampling (K-fold cross-validation) 

test, and jackknife test [120]. However, as elucidated by a review article [83], among the three methods, 

the jackknife test is deemed the least arbitrary and most objective as it can always yield a unique 

outcome for a given benchmark dataset, and hence has been increasingly used and widely recognized by 

investigators to examine the accuracy of various predictor [48,60,63,65,69,76,121,122]. Accordingly, 

in this study we also used the results obtained by jackknife tests to optimizing the uncertain parameters 

and to compare with the other predictors in this area. 

3. Experimental Section 

The results obtained with iRSpot-TNCPseAAC on the benchmark dataset S of Supplementary 

Information S1 by the jackknife test are given in Table 4, where for facilitating comparison the 

corresponding results by the iRSpot-PseDNC [25] on the same benchmark dataset are also given.  
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Table 4. A comparison of iRSpot-TNCPseAAC with the best existing method. 

Predictor Test method Sn (%) Sp (%) Acc (%) MCC 

iRSpot-PseDNC a Jackknife 73.06 89.49 82.04 0.638 

iRSpot-KNCPseAAC b Jackknife 87.14 79.59 83.72 0.671 
a From [25]; b This paper with 5  ,   w =1.1, C = 32  and 0.5   for the LIBSVM operation engine [107,108]. 

As we can clearly see from the table, the iRSpot-TNCPseAAC predictor is superior to  

iRSpot-PseDNC [25] in three of the four metrics as defined by Equation (16); i.e., it can yield higher 

accuracy Acc, higher Mathew’s correlation coefficient MCC, and higher sensitivity Sn. Therefore, it is 

anticipated that the new predictor will become a useful tool for identifying the recombination spots in 

DNA, or at the very least become a complementary tool to iRSpot-PseDNC, the best existing 

prediction method in this area.  

4. Conclusions 

The above fact has also proved that it is indeed a feasible and promising approach to extend the 

concept of pseudo amino acid composition [44,45,123] developed in computational proteomics to the 

area of computational genomics. As shown by Equation (13) and the related equations in defining its 

64   components, each of the DNA samples investigated in this study was formulated by a 

combination of its trinucleotide composition (TNC) with the pseudo amino acid components 

(PseAAC) that were derived from the protein translated from the DNA sample according to its genetic 

codes. The former can better incorporate its local or short-rage sequence order information in 

comparison with the dinucleotide composition (DNC) used in iRSpot-PseDNC [25]; while the latter 

can incorporate its global or long-range sequence order effects in a more natural or logical manner. 

Accordingly, it is anticipated that the idea or approach by extending the Chou’s pseudo amino acid 

composition [44,45,123] for protein sequences to the pseudo oligonucleotide composition for DNA or 

RNA sequences may also be used to deal with many other genome analysis problems. 

5. Web Server and User Guide 

To enhance the value of its practical applications, a web-server for the iRSpot-TNCPseAAC 

predictor was established. Moreover, for the convenience of the vast majority of experimental 

scientists, here a step-to-step guide is provided for how to use the web server to get the desired results 

without the need to follow the mathematic equations that were presented just for the integrity in 

developing the predictor. 

Step 1. Open the web server at http://www.jci-bioinfo.cn/iRSpot-TNCPseAAC and you will see the 

top page of the predictor on your computer screen, as shown in Figure 3. Click on the Read Me button 

to see a brief introduction about the iRSpot-TNCPseAAC predictor and the caveat when using it. 

  

http://www.jci-bioinfo.cn/iRSpot-TNCPseAAC
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Figure 3. A semi-screenshot for the top page of the web-server iRSpot-TNCPseAAC at 

http://www.jci-bioinfo.cn/iRSpot-TNCPseAAC. 

 

Step 2. Either type or copy/paste the query DNA sequences into the input box at the center of 

Figure 3. The input sequence should be in the FASTA format. For the examples of sequences in 

FASTA format, click the Example button right above the input box.  

Step 3. Click on the Submit button to see the predicted result. For example, if you use the three 

query DNA sequences in the Example window as the input, after clicking the Submit button, you will 

see the following message shown on the screen of your computer: the outcome for the 1st query 

sample is “recombination hotspot”; the outcome for the 2nd query sample is “recombination coldspot”. 

All these results are fully consistent with the experimental observations as summarized in the 

Supplementary Information S1. However, no result was given for the 3rd query sample as it contains 

some invalid characters as warned in the output screen. It takes about a few seconds for the above 

computation before the predicted result appears on your computer screen; the more number of query 

sequences and longer of each sequence, the more time it is usually needed. 

Step 4. As shown on the lower panel of Figure 3, you may also choose the batch prediction by 

entering your e-mail address and your desired batch input file (in FASTA format) via the ‘‘Browse’’ 

button. To see the sample of batch input file, click on the button Batch-example. After clicking the 

button Batch-submit, you will see “Your batch job is under computation; once the results are available, 

you will be notified by e-mail.”  

Step 5. Click the Supporting Information button to download the benchmark dataset used to train 

and test the iRSpot-TNCPseAAC predictor. 

Step 6. Click the Citation button to find the relevant papers that document the detailed development 

and algorithm of iRSpot-TNCPseAAC. 

iRSpot-TNCPseAAC: identify recombination spots with trinucleotide  

     composition and pseudo amino acid components  
| Read Me | Supporting Information | Citation |  

Enter the sequence of query DNA sequences in FASTA format (Example): the 

number of DNA sequences is limited at 100 or less for each submission. It will 

usually take about 10 seconds for each query DNA sequence. 

Submit Clear 

Or, enter your e-mail address and upload the batch input file (Batch-

example).  The predicted results will be sent to you by e-mail once 

completed. 

Upload file: 

Your e-mail address: 

Browser 

Batch-submit 

http://www.jci-bioinfo.cn/iRSpot-TNCPseAAC
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Supplementary Information 

Supplementary Information S1. The benchmark dataset S  consists of a positive dataset S+  and a 

negative dataset S  . The positive dataset contains 490 recombination hot spots, while the negative 

dataset contains 591 recombination cold spots. 
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