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ABSTRACT Microorganisms drive much of the marine nitrogen (N) cycle, which jointly
controls the primary production in the global ocean. However, our understanding of the
microbial communities driving the global ocean N cycle remains fragmented. Focusing
on “who is doing what, where, and how?”, this study draws a clear picture describing
the global biogeography of marine N-cycling microbial communities by utilizing the Tara
Oceans shotgun metagenomes. The marine N-cycling communities are highly variable
taxonomically but relatively even at the functional trait level, showing clear functional
redundancy properties. The functional traits and taxonomic groups are shaped by the
same set of geo-environmental factors, among which, depth is the major factor impacting
marine N-cycling communities, differentiating mesopelagic from epipelagic communities.
Latitudinal diversity gradients and distance-decay relationships are observed for taxonomic
groups, but rarely or weakly for functional traits. The composition of functional traits is
strongly deterministic as revealed by null model analysis, while a higher degree of sto-
chasticity is observed for taxonomic composition. Integrating multiple lines of evidence, in
addition to drawing a biogeographic picture of marine N-cycling communities, this study
also demonstrated an essential microbial ecological theory—determinism governs the as-
sembly of microbial communities performing essential biogeochemical processes; the
environment selects functional traits rather than taxonomic groups; functional redundancy
underlies stochastic taxonomic community assembly.

IMPORTANCE A critical question in microbial ecology is how the complex microbial
communities are formed in natural ecosystems with the existence of thousands different
species, thereby performing essential ecosystem functions and maintaining ecosystem
stability. Previous studies disentangling the community assembly mechanisms mainly focus
on microbial taxa, ignoring the functional traits they carry. By anchoring microbial functional
traits and their carrying taxonomic groups involved in nitrogen cycling processes, this study
demonstrated an important mechanism associated with the complex microbial community
assembly. Evidence shows that the environment selects functional traits rather than
taxonomic groups, and functional redundancy underlies stochastic taxonomic community
assembly. This study is expected to provide valuable mechanistic insights into the com-
plex microbial community assembly in both natural and artificial ecosystems.
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The global ocean is the largest reservoir of reactive nitrogen (N) on Earth and con-
tains five times more biologically available N than the terrestrial ecosystem (1). As

an essential element and limiting nutrient, the cycling of marine N jointly controls the
ocean productivity, supports marine ecosystems, and facilitates interactions among dif-
ferent organisms (1–4). Similar to other element cycles, the marine N cycle is also
mainly driven by microbial communities, via eight main pathways/processes, including
nitrification, denitrification, assimilatory nitrate reduction, dissimilatory nitrate reduc-
tion, nitrogen fixation, anammox and organic nitrogen metabolism (a detailed illustra-
tion of the N-cycling pathways is also available in Fig. 5, below) (2, 5). In addition to the
earlier discovery of anammox (6, 7), during the past few years, additional novel discov-
eries have been made and have greatly expanded our knowledge about this critical
biogeochemical cycle. These include but are not limited to novel N2-fixing marine
microorganisms (4, 8), widespread distribution of ammonia-oxidizing Thaumarchaeota
in the ocean (9–11), and the discovery of comammox microorganisms (12, 13).
However, our understanding about the diversity patterns of microbial communities in
the global ocean remains surprisingly poor (14), including the microbial communities
mediating the marine N cycle.

Characterizing the biogeography and diversity patterns of microbial communities
mediating the marine N cycle and the associated geo-environmental drivers in the
global ocean is of critical importance to unraveling the ecology of N-cycling commun-
ities and further predicting how global environmental changes will alter the marine N
cycle and vice versa (15–18). Microbial functional traits have recently been integrated
with ocean biogeography and biogeochemistry models (19). Previous studies have
suggested clear latitudinal gradient patterns for marine plankton, with temperature as
the main environmental driver for such patterns (14, 20–22), though some exceptions
have also been observed (23, 24). Besides temperature, factors including oxygen, chlo-
rophyll a, ocean primary production, pH, and salinity are also reported to be important
environmental parameters shaping the biogeography of marine microbial commun-
ities (18, 20, 21, 23). However, identifying the geo-environmental factors shaping the
marine N-cycling communities at the global scale has remained elusive.

The large volume of metagenomic data generated by the Tara Oceans expedition
(20) allows us to now comprehensively relate the functional traits mediating different
steps in the marine N cycle to the distribution of those traits among different microbial
taxa and associated geo-environmental factors. In this study, we aimed to address a
set of fundamental questions to advance our understanding of the microbial commun-
ities driving the global marine N cycle. (i) How are N-cycling functional traits and taxo-
nomic groups distributed in the global ocean? Previous studies suggested that either
in the human gut or natural ecosystems, essential ecosystem functions are maintained
by a set of core functional genes/traits (25–27). We therefore expected that the compo-
sition of N-cycling functional traits would be relatively even globally, while their taxo-
nomic composition may vary dramatically. (ii) Do N-cycling functional traits and taxo-
nomic groups follow any biogeographic patterns such as latitudinal diversity gradients
(LDG) and distance-decay relationships (DDR)? We expected such patterns for N-cy-
cling taxonomic groups, but the patterns should be much weaker or even not exist for
functional traits, as functional traits should be relatively stably distributed in the envi-
ronment to maintain essential ecosystem functions. (iii) What geo-environmental fac-
tors shape observed diversity patterns? The marine N cycle is coupled with many other
element cycles, in particular, carbon and phosphorus (1, 2). Besides temperature and ox-
ygen (20), we also expected biologically available nitrogen and phosphorus to have big
impacts on the marine N cycle. (iv) What roles do deterministic and stochastic assembly
processes have in structuring N-cycling microbial communities? As an essential nutrient
cycle, we expected the marine N cycle to be under strong selection pressure by the eco-
system (i.e., deterministic assembly), especially the functional traits. However, owing to
functional redundancy of microbial communities (25), taxonomic groups would be sub-
ject to a higher degree of stochasticity than functional traits.
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RESULTS AND DISCUSSION
How are N-cycling functional traits and taxonomic groups distributed in the

global ocean? Different compositional patterns were observed for functional traits
and taxonomic groups. The overall relative abundance of different functional traits was
relatively even across different samples, though a few exceptions were observed
(Fig. 1A). In contrast, their taxonomic composition varied dramatically, even at the phy-
lum level (Fig. 1B), showing clear functional redundancy scenarios (25). Proteobacteria
(17.3 to ;82% relative abundance) dominated the marine N cycle across all Tara
Oceans samples. Consistent with many other observations, Cyanobacteria were abun-
dant in the epipelagic zone (surface water and deep chlorophyll maximum layers; here,
SRF and DCM) samples, but not in the mesopelagic layer (here, MES) samples (Fig. 1B).
Also consistent with past observations of soil (28) and marine systems (2), certain proc-
esses showed a high degree of specialization by taxonomic group (Fig. 1C) (28). For
instance, functional traits for nitrogen fixation, anammox, and ammonia oxidation are
mainly mediated by Cyanobacteria, Planctomycetes, and Thaumarchaeota, respectively,
in marine systems (4, 9, 29, 30).

FIG 1 The composition of N-cycling functional traits and taxonomic groups in the global ocean as revealed by the
Tara Oceans metagenomes. (A) The relative abundance of microbial functional traits in different oceans and layers. Only
representative gene families with high relative abundances were annotated in the figure. The exact relative abundance
for each gene family can be found in Table S2. (B) The relative abundance of microbial phyla in different oceans and pelagic
zones. Here, Proteobacteria was further divided into Alpha-, Beta-, and Gammaproteobacteria. (C) The composition of microbial
phyla mediating different N-cycling pathways. Here, the same color code as in panel B was used. (D) The relative abundance
of N-cycling pathways in epipelagic and mesopelagic zones. Significant differences between epipelagic and mesopelagic are
marked with asterisks (**, P , 0.01; ***, P , 0.001). NPO, North Pacific Ocean; SPO, South Pacific Ocean; NAO, North Atlantic
Ocean; SAO, South Atlantic Ocean, SO, Southern Ocean; MS, Mediterranean Sea; RS, Red Sea; IO, Indian Ocean; SRF, surface
water layer; DCM, deep chlorophyll maximum layer; MES, mesopelagic zone. DNRN, dissimilatory nitrate reduction to nitrite;
DNRA, dissimilatory nitrite reduction to ammonia; ANRN, assimilatory nitrate reduction to nitrite; ANRA, assimilatory
nitrite reduction to ammonia.
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Both the composition of functional traits and taxonomic groups differed dramati-
cally between epipelagic and mesopelagic zone samples, but not between different
oceans (Fig. S1, Table S1). Different N-cycling pathways localize to the epipelagic and
mesopelagic regions of the water column. The relative abundance of key functional
traits involved in nitrification, denitrification, dissimilatory nitrate reduction to nitrite
(here, DNRN), dissimilatory nitrite reduction to ammonia (here, DNRA), and anammox
was significantly higher in MES than in epipelagic samples, while those involved in N2

fixation, assimilatory nitrate reduction to nitrite (here, ANRN), assimilatory nitrite reduc-
tion to ammonia (here, ANRA), and ammonification that produces ammonia via or-
ganic decomposition (e.g., ureABC and gdh) were significantly lower (Fig. 1D, Table S2).
Archaeal amo gene families, representing functional traits converting NH4

1 to NH2OH,
were dominant. The archaea to bacteria ratio for amoA was ;29.5 in the epipelagic
layer and ;355 in the mesopelagic layer (Table S2, Fig. S2A). This was consistent with
previous studies (10, 31, 32) and suggested that archaea rather than bacteria are
mainly responsible for ammonia oxidation in deep ocean layers. A much higher abun-
dance of nxr gene families was also observed in mesopelagic layers (Fig. S2B), indicat-
ing potential interactive interdomain relationships between ammonia-oxidizing arch-
aea and nitrite-oxidizing bacteria (33). The relative abundance of the key gene family
nosZ, which represents a functional trait that converts N2O to N2, did not differ significantly
between epipelagic and mesopelagic layers, confirming that N2O consumption takes place
both in and above oxygen-deficient zones (34). However, nirS and nirK, gene families re-
sponsible for nitrite reduction to nitric oxide, were abundant and differed dramatically by
layers. Of these, nirK was more abundant in the mesopelagic than in the epipelagic layer,
while nirS showed the opposite pattern. Such different patterns between nirK and nirS
could be due to the different availability of iron and copper in different layers (35) and the
potential competition for iron by phototrophs in the epipelagic layer (36). Taxonomic com-
position mediating different N-cycling pathways was generally more similar between SRF
and DCM layers, but those mediating anammox were more similar between DCM and MES
layers (Fig. S3). In fact, anammox gene families were mainly found in oxygen minimum
zones (Fig. S2C). Such results suggested that marine N-cycling communities were subject to
clear niche differentiation (37) at both the taxonomic and functional trait levels.

Do N-cycling communities follow LDG and DDR patterns? Two types of biogeo-
graphic diversity patterns, including LDG and DDR, were examined for N-cycling func-
tional traits and taxonomic groups. Although the distribution of functional traits is rou-
tinely studied in macroecology and characterizing the biogeography of microbial
functional traits is of recognized importance (17), there are relatively few examples of
this analysis applied to microorganisms (28, 38, 39). Here, considering the essential
ecosystem function they perform, we expected N-cycling functional traits to be preva-
lently and relatively stably distributed in the ocean. Biogeographic patterns for N-cy-
cling functional traits were therefore expected to be much weaker than that for taxo-
nomic groups, or even to not exist.

LDG. LDG describes the pattern in which species richness decreases with increasing
latitude (40). It is a well-recognized pattern for both plants and animals (16, 40) and
has also been observed for planktonic marine bacteria and terrestrial microbes (21, 41).
This pattern, however, was not clearly observed in the Tara Oceans metagenomics
data analysis, in which species richness peaks at the midlatitude (20). Consistent with
the Tara Oceans observations (20), both the N-cycling taxonomic group and functional
trait richness increased with depth (Fig. 2A and C). Inconsistently, our analysis did
reveal strong LDG patterns for N-cycling taxonomic groups in all samples and samples
in different layers (Fig. 2B). For functional traits, this pattern was only observed in the
MES layer, but not globally or in epipelagic layers (Fig. 2D). Thus, our study has empha-
sized the importance of incorporating depth-resolved patterns of diversity in an analy-
sis of latitudinal gradients.

DDR. DDR, in which community similarity decreases as geographic distance increases,
is another fundamental pattern in ecology (42, 43). DDR is well recognized for microbial
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communities (44–46) and has also been observed for the entire microbial community in
the Tara Oceans database (20). Consistent with our expectation, steeper DDR patterns
were observed for N-cycling taxonomic groups (S = 20.04, P , 0.001) than for functional
traits (S =20.01, P, 0.001), on the basis that taxonomic composition was more dissimilar
than functional trait composition (Fig. 2E and F, Fig. S4A and B). Notably, the slopes for
taxonomic DDRs were similarly steep in different layers (S =20.11 to;20.09, P, 0.001)
(Fig. S4A). However, the slopes for functional trait DDRs were only steep in the MES layer
(S = 20.07, P , 0.001), but relatively flat in the SRF and DCM layers (S = 20.04 and
20.03, P , 0.01) (Fig. S4A). Such distinct spatial patterns between taxonomic groups and
functional traits have also been observed in freshwater ponds, though different techni-
ques have been used to measure functional traits (47). Taking the LDG pattern, the results
suggested that N-cycling communities in the MES layer might have been subject to stron-
ger environmental selection and weaker dispersal (43).

What geo-environmental factors drive marine N-cycling community diversity
patterns? Multiple statistical tests, including linear regression analysis, partial Mantel
tests, and random forest modeling, were carried out to disentangle the importance of
geo-environmental factors behind the variations of N-cycling community diversity and
composition. Besides factors such as temperature and oxygen that drive the whole Tara
Oceans microbiome (20), multiple geo-environmental factors such as depth, salinity, sili-
cate, nitrate, phosphorus, and NO2NO3 (NO2

–1NO3
–), were also strongly associated with

the overall diversity and compositional variations of marine N-cycling communities
(Fig. 3A and B, Fig. S5). Among these, factors such as depth, salinity, and silicate have
been previously noted to influence ocean microbiomes (18, 21, 48). Notably, in the soil
ecosystem, environmental drivers were only identified for N-cycling functional traits, but
not for taxonomic composition (28). Here in the ocean ecosystem, the N-cycling taxo-
nomic groups and functional traits were shaped by the same set of geo-environmental
factors, including depth, temperature, oxygen, NO3

–, PO4
–, NO2NO3, Si, and salinity

(Fig. S5), suggesting that the responses of marine N-cycling functional traits and taxo-
nomic groups to geo-environmental conditions were coupled. This is in variance with a
soil N cycle study (28), as well as another study in the ocean, together showing that

FIG 2 Biogeographic diversity patterns of N-cycling taxonomic groups and functional traits in the ocean. The
vertical and latitudinal diversity patterns of taxonomic richness (AB) and functional trait richness (CD), as well
as the community dissimilarity and the distance-decay relationship of taxonomic groups and functional traits
(EF) were investigated. The black line in panels B and D represents the latitudinal diversity pattern for N-cycling
communities across the whole upper ocean. The observed number of microbial species and gene families
involved in N cycling is used here for richness. Statistical significance was indicated with asterisks (**, P , 0.01;
***, P , 0.001).
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environmental factors strongly influence marine microbiome functional groups but
weakly influence taxonomic composition within the groups (49).

Among these geo-environmental factors, depth was the most influencing factor,
differentiating MES from epipelagic layer samples both taxonomically and functionally
(Fig. 1A and B, Fig. 3, Fig. S1, Table 1). Weakened correlations with the rest of the geo-
environmental factors were observed for samples recovered from individual layers, i.e.,
when depth effect was removed, confirming the importance of depth (Fig. 3A and B).

FIG 3 The importance of geo-environmental factors explaining the variations of N-cycling community diversity and composition. (A) Associations
between geo-environmental factors and community diversity (Shannon-Wiener index). (B) Associations between geo-environmental factors and
community composition (first axis of principal-component analysis). (C) Relationship between different geo-environmental factors (upper right,
Pearson correlation coefficient; lower left: Spearman’s rho). (D) Variations explainable by different geo-environmental factors at functional trait
level; in the left panel, the associations between the relative abundance of individual functional traits and geo-environmental factors are indicated
by the heatmap, whereas the importance of geo-environmental factors in explaining the variations of individual functional traits by random forest
analysis is indicated by different sizes of circles; in the right panel, variations explained by the best geo-environmental factor (the one with the
largest circle) are indicated by bar plots. DNRN, dissimilatory nitrate reduction to nitrite; DNRA, dissimilatory nitrite reduction to ammonia; ANRN,
assimilatory nitrate reduction to nitrite; ANRA, assimilatory nitrite reduction to ammonia. For panels A to C, significance levels for association
analyses are marked with asterisks (*, P , 0.05; **, P , 0.01; ***, P , 0.001). For panels A to D, the same scaling color bar was used.
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Similar to other ocean studies, since some of the geo-environmental factors were
strongly correlated with each other, it was therefore statistically difficult to identify the
“most” important one (Fig. 3C, Fig. S5). Temperature (Spearman’s r = 20.47) and oxy-
gen (r = 20.36 and 20.46) were negatively associated with the overall N-cycling com-
munity diversity and composition, while nitrate (r = 0.65 and 0.58), NO2NO3 (r = 0.62
and 0.54), phosphorus (r = 0.57 and 0.54), and silicate (r = 0.52) were positively associ-
ated (Fig. 3A and B, Fig. S5). This suggested that the overall marine N-cycling commun-
ities favored lower-temperature and lower-oxygen environments (50), though individ-
ual pathways may differ. Strong associations of N-cycling community diversity with
nitrate and NO2NO3 were observed, but not for the entire ocean microbiome (20). This
suggested that nitrate, which sources from the deep ocean reservoir and/or terrestrial
runoff (51), could be an important driver for the marine N-cycling communities. The
strong association with phosphorus also suggested that marine N and phosphorus
cycles may also be highly coupled (1, 2, 39).

Geo-environmental factors influencing the whole N-cycling community were also
strongly associated with individual functional traits. Functional traits catalyzing the
same pathway were generally driven by the same geo-environmental factors (Fig. 3D).
For example, all functional traits (hdh, hzo, and hzsABC) involved in anammox were
mainly influenced by oxygen and PO4

–. The amo gene family, representing the func-
tional trait for converting NH4

1 to NH2OH, were all mainly driven by depth and temper-
ature, and functional traits (hao, nxrAB) that oxidize NH2OH to NO3

– were mainly driven
by oxygen. Taxonomically, oxygen was the factor strongly influencing most taxonomic
groups, including the dominant Proteobacteria and Thaumarchaeota (Fig. S6), and
depth was strongly associated with Thaumarchaeota, Actinobacteria, Verrucomicrobia,
Chloroflexi, Chlorobi, and Acidobacteria (Fig. S7). Interestingly, similar patterns of envi-
ronmental factors affecting Verrucomicrobia, Chloroflexi, Chlorobi, and Acidobacteria
were observed, suggesting that these taxonomic groups may have adapted to similar
ecological niches and carry out similar N-cycling pathways.

Which process governs marine N cycle community assembly? Another important
question we would like to address here is which process governs N-cycling community
assembly in the global ocean. Macroecologists have used species as a basic unit of com-
munity composition (52, 53). In keeping with that established metric, microbial ecologists
have primarily used the operational taxonomic unit (OTU) or, more recently, the amplicon
sequence variant (ASV) derived from 16S rRNA gene sequencing as a surrogate for species
(54) but rarely have considered the associated functional traits. Several recent studies sug-
gest that the environment selects for functional genes rather than species (26–28, 55). In
addition, the recognized widespread functional redundancy among species in microbial
communities suggests that species composition is of less importance than the functional
traits they encode (25). A consensus reached recently by microbial ecologists is that both
deterministic and stochastic processes structure microbial community assembly, and the
question to resolve is their relative importance (54, 56). Here, considering the potential
functional redundancy in marine N-cycling communities (Fig. 1A and B), we hypothesized
that the composition of N-cycling functional traits was highly deterministic, while taxo-
nomic groups were relatively more stochastic.

We first characterized the contributions of geographic distance and environmental
factors (i.e., deterministic factors) in explaining the compositional variations of taxo-
nomic groups and functional traits (Fig. 4A and B). A higher proportion of the composi-
tional variation of functional traits could be better explained by geographic distance
and environmental factors than by taxonomic group composition. For functional traits,
a total of 61.9% of compositional variations could be explained by geographic distance
and environmental factors, which respectively, achieved a pure explanation rate of
14.8% and 30.1% (Fig. 4A). For taxonomic groups, a total of 43.7% of compositional
variations could be explained by geographic distance and environmental factors,
respectively, with 18.8% and 16.3% pure explanation rates (Fig. 4B). Notably, environ-
mental factors were mainly responsible for the compositional variations of functional
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traits, while geographic distance was more important in explaining the compositional
variations of taxonomic groups.

Null model analysis was then employed to analyze the relative importance of determinis-
tic and stochastic processes in structuring the N-cycling communities. Here, stochastic ratios
(57, 58) were calculated for assessing the stochasticity of the composition of taxonomic
groups and functional traits. Consistent with the variation partitioning analysis (VPA) results
and our hypothesis, functional traits were highly deterministic. Stochastic processes only
contributed 37.6% relative importance in shaping the compositional variations of functional
traits. Taxonomic composition was overall relatively less deterministic such that the contribu-
tion of stochastic processes to taxonomic compositional variations was 53.9% (Fig. 4C). The
same patterns were observed at individual layers (Fig. 4C and D). Such discrepant patterns
between taxonomic groups and functional traits suggested that the ocean ecosystem selects
for functional traits rather than taxonomic groups.

A functional-trait-based model for microbial community assembly. Integrating
all of the above-described information, we propose a functional-trait-based model to
explain the complex microbial community assembly (Fig. 5A). First, multiple ecological
niches (e.g., epipelagic and mesopelagic zones) are generated in the ocean ecosystem
by various geo-environmental factors, such as depth, temperature, and oxygen.
Microorganisms that are able to survive in these ecological niches form the regional
species pools. Second, in order to maintain essential ecosystem function, the environ-
ment selects microbial functional traits rather than species (55), unless the microbial
species are highly specialized in particular functions, such as anaerobic or aerobic am-
monia oxidation. Third, owing to functional redundancy (25), there usually exist exces-
sive microbial taxa executing the same ecosystem function in a typical ecosystem.
Such functional redundancy of microbial communities correlates positively with eco-
system stability and resilience (59). Finally, microbial taxa executing the same ecosys-
tem functions are filtered by environmental conditions. The ones better adapted to the
ecosystem are highly selected. Stochasticity is associated with this selection process,
leading to varied microbial taxonomic composition but stable ecosystem function.
Therefore, in addition to taxonomic groups, functional traits should be considered in
analyzing microbial community assembly.

Conclusions. This study draws a biogeographic picture of the N-cycling microbial
communities in the global ocean (Fig. 5B). The dominance of different N-cycling path-
ways was observed in different layers, but not in different oceanic provinces, suggest-
ing that depth-related parameters were the major environmental factors driving the
vertical variations of N-cycling pathways. Approximately 0.65% of the captured
sequences encode functional traits mediating this critical biogeochemical cycle in the
ocean. However, at least 57.64% of them cannot have taxonomic information assigned,
mainly due to limitations of current genomic databases (60). This shortage hampers
full understanding of the microbial taxa mediating the marine N cycle, especially in
that new discoveries in the N cycle are still being made (8, 9, 12).

FIG 4 Mechanisms governing the assembly of N-cycling microbial communities. (A and B) Variation partitioning analysis of the contributions of
geographic distance and environmental factors in explaining the variations of N-cycling taxonomic groups and functional traits. (C and D) Stochastic ratio
representing the stochasticity of community assembly for N-cycling taxonomic groups and functional traits, as revealed by null model analyses. At both the
global scale and individual layers, higher stochasticity could be observed for the community assembly of taxonomic groups than functional traits.
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In addition to describing the biogeography and the geo-environmental drivers of
the marine N cycle, this study anchored functional traits to disentangle the underly-
ing ecological mechanism governing the complex microbial community assembly.
Such attempts run counter to conventional studies that mainly rely on microbial spe-
cies (54), which are usually considered the fundamental unit of selection in biology
and ecology (61). Our study demonstrated an essential mechanism in ecology—the
ecosystem selects microbial functional traits rather than species; functional redun-
dancy among species comprising microbial communities, often resulting from con-
vergent evolution and horizontal gene transfer (25, 62), not only guarantees ecosys-
tem stability (59) but is the foundation for stochastic microbial community assembly.
Therefore, we urge that functional traits be integrated into future microbial ecology
studies to better clarify the mechanisms underlying community assembly, diversity-
process relationships, and ecosystem responses to environmental change (63).

MATERIALS ANDMETHODS
Tara Oceans shotgun metagenomes and environmental factors. The Tara Oceans shotgun meta-

genomic data sets targeting 128 samples were retrieved from the European Nucleotide Archive (ENA)
under project ID ERP001736. A total of 72,492,220,288 reads were included in the data sets. To get a
more representative sequence set for microbial communities driving the marine N cycle, read-based
analyses rather than metagenomic assembly were carried out. To increase the accuracy of database
searching, forward and reverse reads were merged into longer sequences by the program PEAR (version
0.9.11) (64). Parameters including -p 0.0001 -q 30 were applied for PEAR. An average of 264,012,963
merged reads per sample were obtained.

Metagenomic profiling of marine N-cycling pathways. Merged shotgun metagenome sequences
were searched against the current state of the art database for N-cycling gene families, NCycDB (https://
github.com/qichao1984/NCyc), a manually curated functional gene database specifically designed for

FIG 5 Conceptual models illustrating the community assembly and distribution of N-cycling pathways in the oceanic ecosystem. (A)
A conceptual model for N-cycling community assembly. First, a regional species pool is formed, adapting to ecological niches in the
ocean. Second, the ecosystem selects functional traits rather than species, unless they are highly specialized. Third, functional
redundancy of microbial species leads to stochastic community assembly. In the model, different shapes represent different
ecosystem functions, whereas different colors represent different microbial taxa. (B) A schematic model illustrating the distribution of
N-cycling pathways in ocean. N-cycling pathways differed vertically by depth, instead of by ocean. Relative abundances of functional
traits involved in N2 fixation, organic decomposition, and ANRA were significantly enriched in epipelagic zones, whereas those
involved in nitrification, DSRN, and annamox were significantly enriched in the mesopelagic zone. Denitrification is highly detected in
both epipelagic and mesopelagic zones but dominated by different functional traits. Specifically, nirS was significantly more
abundant in epipelagic zones, while nirK was more abundant in the mesopelagic layer. Ammonia oxidation (NH4

1 ! NH2OH) was mainly
carried out by archaea.
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profiling N-cycling pathways in shotgun metagenomes (5). The whole NCycDB (68 gene families) and a
newly added gene family nifB were used for metagenomic profiling of N-cycling communities. To bal-
ance between speed and accuracy, the program DIAMOND (version 0.9.25) (65) was selected to search
nucleotide sequences against NCycDB using the blastx mode. Parameters including -k 1 -e 0.0001 were
used for DIAMOND. Functional profiles were then obtained using the perl script provided in NCycDB.
Since all samples in the Tara Oceans project were sequenced with ultradeep sequencing depth, we per-
formed standard normalization instead of random subsampling to the minimum sequencing depth. The
total number of sequences for each sample was normalized to 100,000,000.

To obtain the taxonomic profiles for microbial communities driving the marine N cycle, sequences
targeted by N-cycling gene families in NCycDB were extracted using the seqtk program (https://github
.com/lh3/seqtk). Extracted sequences were then subject to taxonomic assignment by Kraken 2 (66). A
local standard Kraken 2 database was built for taxonomic assignment. Taxonomic profiles were then
generated for N-cycling pathways at different taxonomic levels.

Diversity indices. The “vegan” package in R (67) was used to calculate various diversity indices for
marine N-cycling microbial communities. Specifically, the Shannon-Wiener index and Chao1 richness
were calculated for within-sample diversity, i.e., alpha diversity. The Bray-Curtis dissimilarity was used to
represent between-sample diversity, i.e., community dissimilarity or beta diversity. Community similarity
was calculated by subtracting community dissimilarity from 1. Both within-sample and between-sample
diversity indices were calculated for functional and taxonomic profiles. Principal-component analysis
(PCA) was performed to explore the compositional variance among samples in different layers and
oceans in a low-dimension space. The first two axes were extracted for data visualization. Multiple non-
parametric statistical methods, including permutational multivariate analysis of variance (PERMANOVA),
analysis of similarity (ANOSIM), and multiresponse permutation procedure (MRPP), were performed
based on Bray-Curtis dissimilarities in the vegan R package (67).

Latitudinal diversity gradient and distance decay relationship. Two types of well-studied biogeo-
graphic patterns in ecology were analyzed, including the latitudinal diversity gradient and distance decay
relationships. For the latitudinal diversity gradient, the relationship between within-sample richness and
absolute latitude for the sample was analyzed. For the distance decay relationship, the relationship between
log transformed community similarity and log transformed geographic distance was analyzed. Geographic
distances between different samples were calculated based on the latitude and longitude coordinates using
the “gdist” function in the R “Imap” package. For both latitudinal diversity gradient and distance decay rela-
tionships, linear regression analysis was carried out to calculate the slope and significance values. Analyses
were done for all samples and for samples in three different layers.

Correlating environmental factors with community diversity and composition. To identify the
potential geo-environmental factors shaping the variations of marine N-cycling microbial community diver-
sity and composition, a total of 19 geo-environmental factors were recruited—absolute latitude, depth,
temperature, oxygen, nitrates, phosphorus, NO2NO3, silicate, salinity, NO2, AMODIS:PAR8d, Okubo-Weiss,
Lyapunov, retention, MLD, Max N2, Max O2, Min O2, and nitracline. Multiple statistical analyses were carried
out. First, partial Mantel tests were used to evaluate the correlation between geo-environmental factors
and N-cycling taxonomic and functional gene trait composition by controlling the effects of geographic dis-
tance. The Bray-Curtis dissimilarity values were used to represent the compositional variations of taxonomic
and functional profiles. For distance of geo-environmental factors, the Euclidean distance was calculated.
Second, linear regression analyses were conducted to investigate the relationships between each individual
geo-environmental factor and within-sample and between-sample diversity indices. For within-sample di-
versity, the Shannon-Wiener index was used. For between-sample diversity, the first axis values of PCA were
extracted. Spearman’s rank coefficient of correlation was calculated. Third, in addition to partial Mantel tests
and linear regression analyses, we also employed the machine learning method random forest analysis to
determine the geo-environmental factor best predicted by each taxonomic group and functional gene trait.
The relative importance of geo-environmental factors in explaining the variations of taxonomic groups and
functional gene traits was estimated. R packages, including vegan (67), randomForest (68), and relaimpo
(69), were used for above statistical tests.

Community assembly mechanisms. Two different approaches were employed to investigate the
potential ecological mechanisms governing the compositional variations of marine N-cycling microbial
communities. First, variation partitioning analysis (VPA) was used to disentangle the relative importance
of environmental and spatial factors shaping the compositional variations. For geographic variables, the
principal coordinates of neighbor matrices (PCNM) procedure was used to capture all the detectable
spatial scale variables based on the longitude and latitude coordinates of each sampling station (70). A
forward selection procedure was then used to select spatial and environmental variables by employing
a constrained analysis of the canonical correlation analysis (CCA) model. Environmental factors chosen
for VPA were then determined based significance levels (P , 0.05) until no improvement was observed
when adding new variables. The explained and unexplained variation by geographic and environmental
factors were determined. Second, null model analysis was performed to characterize the relative impor-
tance of deterministic factors and stochastic processes in structuring marine N cycle microbial commun-
ities. To eliminate potential influences of local and regional species richness on b diversity, null models
were generated by constraining the within-sample (local) and across-sample (regional) richness (71). A
total of 1,000 null models were generated, based on which, Bray-Curtis dissimilarity was calculated. An
average Bray-Curtis dissimilarity matrix was then generated. Community assembly stochasticity was esti-
mated by comparing the observed and randomized community dissimilarity, according to a modified
method as described previously (54, 58). In the null model analyses, two kinds of situations were consid-
ered in stochastic strength calculation. If communities are governed by deterministic factors leading to
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more similar communities, the observed community similarity (Cij) between the i-th and j-th commun-
ities shall be greater than the null expectations (Eij ). If communities are governed by deterministic fac-
tors that make communities more dissimilar, the observed community similarity (Cij) between the i-th
and j-th communities shall be smaller than the null expectations (Eij ). That being said, the observed dis-
similarity (Dij = 1 2 Cij) shall be greater than the null model dissimilarity (Gij ¼ 12 Eij ). The stochastic ra-
tio can therefore be calculated according to the following functions:

STA
ij ¼

Eij
Cij

if Cij $Eij

STB
ij ¼

Gij

Dij
¼ 12Eij

12Cij
if Cij ,Eij

ST ¼

XnA

ij
STA

ij 1

XnB

ij
STB

ij

nA 1 nB

Both VPA and null model analyses were carried out for both taxonomic and functional profiles. R
packages, including vegan (67), bioenv (72), and NST (57), were used in the analysis.
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