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estimating degree–degree 
correlation and network cores from 
the connectivity of high–degree 
nodes in complex networks
R. J. Mondragón

Many of the structural characteristics of a network depend on the connectivity with and within the 
hubs. these dependencies can be related to the degree of a node and the number of links that a node 
shares with nodes of higher degree. in here we revise and present new results showing how to construct 
network ensembles which give a good approximation to the degree–degree correlations, and hence to 
the projections of this correlation like the assortativity coefficient or the average neighbours degree. We 
present a new bound for the structural cut–off degree based on the connectivity within the hubs. Also 
we show that the connections with and within the hubs can be used to define different networks cores. 
two of these cores are related to the spectral properties and walks of length one and two which contain 
at least on hub node, and they are related to the eigenvector centrality. We introduce a new centrality 
measured based on the connectivity with the hubs. in addition, as the ensembles and cores are related 
by the connectivity of the hubs, we show several examples how changes in the hubs linkage effects the 
degree–degree correlations and core properties.

What does the Internet, the human brain connectome and the super–heroes have in common? If the connectivity 
of the Internet, the brain and the friendship between the super–heroes is represented with a network, there exist a 
small set of nodes which have a large numbers of links, the so–called rich nodes, hubs or stars1–3. Rich nodes can 
or cannot have connections between themselves. If they do, we can interpret this as the presence of a core, a set of 
well connected nodes that are well connected between themselves.

The connectivity within rich nodes has been associated with many structural characteristics of a network 
like assortativity4, clustering coefficient4, existence of motifs5, the stability of dynamical processes6 and the con-
struction of network’s null–models7. The aim here is to bring together previous and new results by showing the 
dependance of these network properties with the node’s degree and the number of links that a node shares with 
nodes of higher degree.

The first step to describe a network is via its degree sequence {ki}, i = 1, …, N, which it is used to measure the 
network’s degree distribution P(k), that is, the fraction of nodes with degree k.

A better description can be obtained from the degree–degree correlation ′P k k( , ), the probability that an arbi-
trary link connects a node of degree k with a node of degree ′k . In scale–free networks it is not possible from 
network’s measurements to evaluate accurately the degree–degree correlation due to the small number of nodes 
with high degree and the finite size of the network, hence, the structure of the network is characterised using 
different projections of the degree–degree correlation, like the assortativity coefficient ρ8 or the average degree of 
the nearest neighbours ⟨knn(k)⟩9. Here we show that it is possible to obtain a good approximation to the degree–
degree correlation, even for power law networks, via the connectivity within the hubs.

The relationship between the degree–degree correlation and the network hubs is based on the observation that 
the links between the well connected nodes have a strong effect on the network’s assortativity, and also, it has been 
observed that the assortativity influences properties like the diffusion of information or the clustering coefficient. 
These observations motivates the question: if the hubs have such a large effect in some of the network properties, 
which of these hubs form the core of a network? Here we consider cores that are defined via the shared number 
of links within the hubs.
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The definition of the cores considered here differs from the core–periphery introduced by Borgatti and 
Everett10, where the core is a set of nodes that are densely interconnected and share some connections with the 
periphery nodes. Here we do not impose any restriction on the poorly connected nodes, the periphery.

In an undirected network the connectivity of its nodes is described by their degree k. Two of the simplest 
properties of a network are its maximum degree =k kmax( )imax , i = 1, …, N and its average degree = ∑ =k ki

N
i1

/N = 2L/N, where N is the total number of nodes and L is the total number of links. The degree sequence {ki} gives 
only partial information about the network structure, a better description can be obtained from the number of 
links that a node shares with nodes of higher degree. Here, we assume that the sequence {ki} contains the node’s 
degree ranked in decreasing order, that is, node 1 has the largest degree k1, node 2 the second largest degree k2 and 
so on. The sequence +k{ }i  describes the number of links that node i has with the i −1 nodes of higher rank (see 
Fig. 1(a,b)). The term +ki  is bounded by the degree ≤+k ki i and satisfies that ∑ ==

+k Li
N

i1 . For networks where 
multilinks are not allowed, +ki  satisfies the bound ≤ −+k i 1i , that is, the node of rank i cannot have more than 
i −1 links with the i −1 nodes of larger rank.

The other sequence considered here is defined by first taking a subset of the top r ranked nodes, then +K r( )i  
describes the number of links that node i has with this set (see Fig. 1(c,d)). The sequence +K r{ ( )}i  gives informa-
tion about the “influence” that the top r nodes have on the network. The sequences {ki}, k{ }i

+  and +K{ }i  can be 
extended to weighted networks. If the nodes are ranked in decreasing order of their weight wi, then +wi  would be 
the total weight that node i shares with nodes of greater rank and +W r( )i  would be the total weight that node i 
shares with the top r nodes.

In here we revise and extend some previous results showing that from the sequences {ki} and k{ }i
+  it is possible 

to build network ensembles where the degree–degree correlation is well defined from the data. We introduce a 
new structural cut–off degree in the case that the ensemble describes the average connectivity of the networks. We 
present several examples to show the association between the connectivity of the hubs and assortativitiy and 
clustering coefficients.

Also we revise some previous results showing how the sequences {ki}, +k{ }i  and +K{ }i  can be used to define 
different cores of the network, including the rich–club. We show that some cores based on the connectivity of the 
well connected are closely related to the eigenvector centrality and how can be used to define a network’s core and 
a new centrality measure based on a core–biased random walker. The section ends with comments about the 
communicability11 and the time evolution of the cores. The Methods sections contains the derivations of the 
results and Supplementary information.

Figure 1. (a) A network where its nodes are ranked in decreasing order of their degree and (b) the degree kr of 
node r and the number of links +kr  that node r has with nodes of higher rank. (c) The same network where the 
three top ranked nodes form a core and (d) number of links +K (3)r  that node r has with the any of these three 
top ranked nodes.
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Results
ensembles and correlations. The approach is to create different sets of ensembles which are defined via 
the sequences {ki} and k{ }i

+  then show that, from these ensembles, it is possible to obtain a good approximation to 
the degree–degree correlation. The motivation behind this approach is that a network with positive assortativity 
coefficient has the property that nodes of high degree tend to connect to nodes of high degree, this property 
would be reflected in the sequence +k{ }i  as it is expected that the well connected nodes share connections with 
other well connected nodes. Hence a network ensemble constructed from the sequences {ki} and k{ }i

+  of a given 
network would have a similar degree–degree correlation as the given network.

Maximal entropy approach. The information contained in {ki} and +k{ }i  can be used to construct a net-
work ensemble via Shannon’s entropy12–18. The Shannon entropy for a network is S p plog ( )i

N
j j i
N

ij ij1 1;= −∑ ∑= = ≠  
where pij is the probability that i shares links with node j. The maximisation of this entropy is attractive because it 
produces null-models with probabilistic characteristics only warranted by the data. The ensemble obtained from 
the maximisation of the entropy satisfy the soft constraints = ∑ =+

=
+⟨ ⟩k L p kr i

r
ir r1  and = ∑ ==k L p kr i

N
ir r1 , 

where the total number of links L is conserved and no self–loops are allowed, i.e. prr = 0. The maximal entropy 
solution under these constraints is given by the probabilities7
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The values of s(m) are defined recursively with the initial condition s(1) = 1. As we are considering undirected net-
works pij = pji. The average number of links between nodes i and j is eij = Lpij with variance var(eij) = Lpij(1 −pij). 
This maximal entropy solution can be used to construct the following ensembles: 

 ME1 If the sequences {ki} and k{ }i
+  are conserved, the networks from the ensemble have similar correlations as 

the original network. This ensemble has been studied before7 but here we extend it as follows.
 ME2 If the sequence {ki} is given but the sequence +k{ }i  is defined up to the constraint ≤ −+k r 1i , then the 

ensemble would have the same degree sequence and on average two nodes would have only one link.
 ME3 If in the ME2 ensemble we remove the restriction ≤ −+k r 1i , then the ensemble would have the same 

degree sequence but it is possible to have, on average, more than one link per pair of nodes.

These ensembles produce networks with different statistical properties which can be measured via the average 
neighbour degree or the assortativity coefficient. The first ensemble consist of networks with similar correlation 
than the data. The second ensemble consist of networks where the correlation is zero if the maximal degree kmax 
is smaller than the structural cut–off degree = ⟨ ⟩k N kcut . If the the maximal degree is greater than cut–off 
degree then the network is correlated due to structural constraints9 and it is not possible to construct an uncorre-
lated network without introducing multiple links between nodes. The third ensemble produces uncorrelated 
networks if multiple links between nodes are allowed. From the Kullback–Leibler divergence we observed that the 
amount of information to describe the ensembles decreases as the restrictions on the sequence {k+} is relaxed, that 
is ME3 contains more information than ME2 which contains more information than ME1 (see Methods). It is not 
difficult to generate a network that is a member of one of the previous ensembles, the network is generated using 
a Bernoulli process where the existence of a link between nodes i and j is given by pij.

The average nearest neighbours degree given by = ∑ ′ ′′⟨ ⟩k k k P k k( ) ( )knn , where ′P k k( ) is the conditional 
probability that given a node with degree k its neighbour has degree ′k . For an uncorrelated network 

=⟨ ⟩ ⟨ ⟩k k k( )nn
2 /⟨k⟩. In our case7
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 if ki = k and zero otherwise. The assortativity coefficient is given by 
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where ⟨…⟩ℓ is the average over all links.
As an example, Fig. 2 show the average neighbours degree for the Hep-Th network and the AS-Internet net-

work. For both networks the ME1 method produces ensembles with similar correlations as the original network 
(see Fig. 2(a,c)). For the Hep–Th network its maximal degree is less than the cut–off degree so it is expected 
that the maximal entropy networks produced by the ME2 and ME3 methods generate uncorrelated networks 
(Fig. 2(b)). For the AS–Internet the maximal degree is greater than the structural cut–off degree kcut, in this 
case the ME2 produce ensembles where only the links with end nodes of degree lower than kcut are uncorrelated 
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(Fig. 2(d)). For the ME3 ensemble, multilinks are allowed, and the correlation shown in the figure is due to the 
structural constraint that self–loops are no allowed.

In the case of weighted networks, Eqs. (1)-(2) are still valid. In this case the links have weights wi and the net-
work is described by the sequences {wi} and +w{ }i  instead of {ki} and +k{ }i . For the ME3 ensemble the probabilities 
pij are well approximated via the configuration model pij = (wiwj)/L2, and +wi  is well approximated via 

∑ ∑= = .+
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From this equation we derived a new structural cut–off degree for unweighted networks. If we consider that +ki  is 
approximated via +wi  and in networks where multilinks are not allowed ≤ −+k i 1i  then the condition for a mul-
tilink is 

∑≈ > − .+
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The structural cut–off degree corresponds to the node with the largest rank i where the above condition is true 
(see Fig. 2(d)). We can consider this structural cut–off also as a core of the network, these are the nodes that due 
to the structural constraints introduce correlations between the nodes.

Restricted randomisation. The maximal entropy approach generates (canonical) ensembles with the soft 
constraints ⟨ki⟩ = ki and =+ +k ki i . In the case that what it is required is an ensemble where the networks 
ensembles satisfies hard constraints (micro–canonical), that is that the sequences {ki} and +k{ }i  are conserved, the 
approach is to generate the ensemble numerically using a restricted randomisation approach19. As in the case of 
the ME1 ensemble, the networks obtained from the restricted randomisation have similar degree–degree corre-
lations as the original network20. For the case that maximal degree is smaller than the structural cut–off degree 
and only the degree sequence is conserved, the restricted randomisation would generate uncorrelated networks 
as the ensembles ME2 and ME3, in this case the link probabilities are well approximated by the configuration 
model. If the maximal degree is larger than the cut–off degree then the networks forming the restricted randomi-
sation ensemble would have different degree–degree correlations than the networks from the ME2 and the ME3 
ensembles18,21. Finally it is worth noting these ensembles do not impose the condition that the randomised 

Figure 2. (a) Average neighbours degree ⟨ ⟩k k( )nn  (green line) for the Hep-Th network and the ensemble ME1 
(pink line). (b) For the Hep-Th the ensembles obtained by the ME2 (green line) and ME3 (dark blue line) 
methods produce uncorrelated networks. (c) Average neighbours degree (green line) for the AS-Internet 
network and the ensemble obtained using the ME1 (pink line) method showing that ME1 approximates well 
⟨ ⟩k k( )nn . (d) For the AS-Internet the ME2 (green line) and ME3 (dark blue line) produce ensembles that show 
correlations for the links that include nodes of high degree. The orange dotted line marks the value of the cut-off 
degree =k N kcut . The grey dotted vertical line shows the structural cut–off degree obtained from Eq. (6). 
The dashed horizontal line shows the value ⟨knn(k)⟩ = ⟨k2⟩/⟨k⟩ for the uncorrelated network.
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network should be one connected piece, in the case that this condition is imposed, the correlations describing the 
ensemble could change as shown recently by Ring et al.22

clustering and correlations. In networks where the structure can be fully described from the degree distri-
bution and the degree–degree correlation, the expected number of triangles and hence the clustering coefficient 
can be evaluated from the ensemble23.

Figure 3(a,b)show the number of triangles Ti that node i has with nodes j and k which are of higher rank, 
i > j > k and the average number of triangles ⟨Ti⟩ obtained from the ME1 ensemble. Notice that for this ensem-
ble, due to the soft constraints, it is possible to have more than one link between two nodes and this could have a 
large effect on the number of triangles. Figure 3(a) shows the results for the AS–Internet where the approximation 
Ti via ⟨Ti⟩ is good because the structure of the 1997 AS–Internet can be described with the degree distribution 
and the degree–degree correlation1,24,25. Figure 3(b) shows the case for the Hep–Th network. In this case the 
number of triangles of the network differs considerably from the ME1 ensemble because to fully describe the 
structure of this network we need higher order correlations. However, even that ⟨Ti⟩ can be orders of magnitude 
less than Ti, the trend between these two quantities is similar, verifying that the degree correlations strongly affect 
the frequency of triangles25.

The connectivity within the hubs has a significant impact in the number of triangles in a network. Figure 4(a) 
shows +ki  for two networks. Both networks have the same degree distribution as the AS–Internet but one network 
has the maximal possible connectivity within the hubs (pink) and the other network has the minimal possible 
connectivity within the hubs (green). The networks were created using restricted randomisation so there are no 
multilinks. Figure 4(b) shows the cumulative number of triangles ∑ = Tr

N
r1  for these networks as the rank increases. 

Notice that the difference is almost two orders of magnitude between the network with maximal hub connectivity 
against the one with minimal hub connectivity. However both networks have similar assortativity coefficient due 
to the structural correlations as for both of these networks >k N kmax . 

Figure 4(c,d)show the case of two networks which have the same degree distribution as the Hep–Th. Again the 
difference between the networks is the connectivity within the hubs, and again as in the previous case, decreasing 
the connectivity of the hubs decreases the number of triangles in the network. In this case there are no structural 
constraints and the two networks have very different assortativity coefficient. The network with maximal connec-
tivity of the hubs is assortative (ρ = 0.69) compare with the other network which is dis-assortative (ρ = −0.42). 
This is an example where the change on the connectivity of the hubs has a drastic effect on the assortativity coef-
ficient and the number of triangles in the network.

cores
The degree sequence gives a centrality measure to distinguish the nodes. It is common to assume that nodes of 
higher degree are more important and form the core of the network. There are several possibilities to define a core 
via the sequences +k{ }i  and +k{ }i .

the rich–core. One of the simplest ways to define a core is via the rich–core26. The core is a set of well con-
nected nodes, that is the top rc ranked nodes. The boundary of the rich–core is the rank rc where +krc

 is maximal. 
The core are all the nodes with rank less than rc.

  Figure 5(a) show an example of this core for the Karate club. The maximum value happens at rc = 10 so the 
top 10 nodes form the core, the core is shown in Fig. 5(b). The partition of a network via the properties of +ki  is 
attractive due to its simplicity and this partition has been used to define the core of the C. elegans and its time 
evolution26, in the characterisation of food webs27 and recently in the concept of rich–core has been extended to 
multiplexes when studying the brain connectivity28.

The rich–core can also be evaluated in weighted networks. Figure 5(c,d) show the rich–core of two networks 
describing the trade between nations in 1980 as reported by the World Trade Organisation (WTO). In Fig. 5(c) 
shows +kr  which in this case corresponds to the number of trade relationships that country r has with countries 
that have at least the same amount of trade relationships as country r. The figure also shows the line r −1, this line 
is the maximum amount of trade relationships that country r can have with countries of higher rank. It is clear 
that the top 50 countries form an almost fully connected clique. The core is formed by 97 countries which is 

Figure 3. Number of triangles Tr (green line) and its approximation using the ME1 ensemble (pink line) (a) for 
the AS–Internet and (b) for the Hep–Th.
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almost 60% of total number of countries reported in the WTO dataset for 1980. Figure 5(d) shows +wr , the trade 
relationship weighted by the amount of dollars (exporting goods) that country r has with countries that are larger 
exporters in value than itself. In this case the core is formed by only 10 countries, that is around 6% of the coun-
tries. The cores defined by +kr  and +wr  show two different views of the trade between nations. There is a large 
number of trade agreements between nations and a large number of nations are part of the core of these agree-
ments, however by value less than 10 nations form the core.

The evolution of the hubs can be described via the rich–core. Figure 6(a,b) shows the evolution of the cores 
from 1950–2000 for the trade relationships and weighted relationships between countries. The amount of trading 
nations has increased from 1950–2000 (Fig. 6(a)), perhaps due to globalisation and the core of trading nations 
has become larger with time. However by wealth (Fig. 6(b)), the size of the core has not changed much, less than 
ten countries dominate the market by value.

the spectral–core. Another common measure of centrality is the eigenvector–centrality. In this case a node 
is important if it is connected to other important nodes. It is know that in many networks the degree centrality of 
a node is correlated to its eigenvector centrality so it is natural to ask what is the contribution of the nodes with 
high degree centrality to their eigenvector centrality.

For an undirected and unweighted network whose connectivity is described by the adjacency matrix A, the 
spectrum of the network is the set of eigenvalues Λ1 ≥ Λ2… ≥ ΛN of A. The highest eigenvalue Λ1 plays an impor-
tant role when describing information diffusion or epidemic transmission on a network29–32.

It is known that the spectral radius Λ1 increases with the assortativity coefficient and it is related to the number 
of triangles in the networks33–35, so it is expected that changes in the hubs connectivity would also change the 
spectral radius. For the eigenvalue Λ1, its corresponding eigenvector v  is the eigenvector centrality where the 
entry v( )i is the “importance” of node i.

The sequence +k{ }i  can be used to define a lower bound for Λ1
36

∑Λ ≥ =+

=

+⟨ ⟩k
r

k2 2
(7)r

i

r

i1
1

where the +k r
 is the average number of links shared by the top r nodes. This bound can be used to define a core. 

The spectral–core boundary is the rank rc where +k rc
 is maximal. This correspond to the best bound of Λ1 based 

on +ki . Similarly as the rich–core, any node with rank less than rc belong to the core.
This bound can also be used to create an approximation of the eigenvector centrality v1. If the core is defined 

by the rank rc then an approximation to v1 is the vector y  with entries = +y K r( )i i c  where +K r( )i c  is the number of 
links that node i shares with the top rc nodes.

Figure 4. (a) Difference in the hub connectivity for two networks that have the same degree distribution as the 
AS-Internet. One network has maximal connectivity within the nodes (pink line) (ρ = −0.181) and the other 
minimal connectivity within the hub nodes (green line) (ρ = −0.20). (b) This change of connectivity is reflected 
in the number of triangles in each network, where the network with maximal hub connectivity (pink line) has 
almost two orders of magnitude more triangles that the other network (green line). (c,d) Similar as (a,b) but for 
the Hep–Th network where assortativity coefficients ρ = 0.69 and ρ = −0.42.
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Figure 5. (a) Rich–core for the Karate network defined by the maximum of +kr  at r = 10. The members of the 
core are the top 10 ranked nodes as shown in (b). (c) Example of +kr  of the trade relationship between WTO 
countries in 1980. The core of this network is the top 97 ranked nodes (dash vertical line). The diagonal line 
(light blue) shows the value where the top ranked nodes form a clique. (d) The weighted w+ for the WTO 
countries where w+ is related to the trade in dollars. The core is the top ten ranked nodes (dash vertical line). 
Notice that the vertical axis is in logarithmic scale.

Figure 6. Evolution of the rich–core by (a) trade relationships between countries and (b) by value of exports 
between countries.
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The bound of Λ1 can be improved if we consider the average of links which have at least one of its end nodes 
in the core 

∑=
=

+h r
r

K r( ) 1 ( )
(8)i

N

i
1

which is the average number of links that connect to the top r nodes. The core boundary is defined by the value of 
r when h(r) is maximal. The bound in this case is ≤ Λh r( )c 1. It is also possible to construct an approximation to 
the eigenvector centrality from this bound. If W2(rc, i) are the number of walks of length two that start in one of 
the rc top nodes and end up in any other node i then the approximation y  to the eigencentrality has entries 
yi = W2(rc, i). Interestingly in this approximation we not only consider the nodes that form the core but also nodes 
that connect directly to the core.

As an example we show the spectral core for the EU–Air transportation networks. The dataset consist of the 
37 airlines that connect 450 different European airports. First we consider a simple version of this network. The 
nodes represent different EU airports and a links represent if there is a connection between two airports via a 
flight. We do not consider the number of flights between two airports or differentiate the airlines.

  Figure 7 shows the approximation of the eigencentrality via the degree of the nodes (Fig. 7(a)), the number of 
links connecting to the core = +y K r( )i i c  (Fig. 7(b)) and the number of walks of length one that finish in the core 
yi = W2(rc, i) (Fig. 7(c)). The size of the spectral–core is 82 nodes. The spectral core based on the walks of length 
two gives a good approximation to the eigencentrality. Figure 7(d) shows the airports ranked in decreasing order 
of the different centralities.

Figure 7. Correlation between the eigencentrality and its approximations for the EU Air transportation 
network. (a) Approximation using the degree, (b) = +y K r( )i i c  and (c) yi = W2(rc, i). (d) Change on the ranking 
of the top nodes when ranked by decreasing order of their degree ki, = +y K r( )i i c , yi = W2(rc, i) and the 
eigencentrality vi.
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We finish this section with two observations. The size of the core is not related to the assortativity of the 
network, it is possible to have networks with small core which are disassortative, e.g. the AS–Internet. The other 
observation is that in networks that are highly disassortative the approximation to the largest eigenvalue (Eq. 
(8)) can be good, however this not translates to a good approximation to the eigencentrality (see Methods for an 
example).

Biased-random walk core and centrality. Random walks on networks are used to understand structural 
properties of networks like community detection37, centrality of nodes38, discovery of the network structure39 and 
the partition of a network into core–periphery40. The maximal entropy random walk41 (MERW) has the property 
that the random walker would visit walks of same length with equal probability. This kind or random walks have 
been used to study different properties of complex networks42,43 and in some applications44,45.

In the Maximal Entropy Random Walk (MERW) the transition probability from node i to node j is41

∑
= =

Λ→P
v

v
v

v
A

A
A( )

( )
( )

,
(9)

i j
ij j

j ij j

ij j

i1

where (A)ij is the i, j entry of the adjacency matrix and vi is the i–th entry of the eigenvector centrality v . The sta-
tionary probability ∗pi , which is the probability of finding the walker in node i as time tends to infinity, for the 
MERW is =∗p vi i

2.
If the largest eigenvalue-eigenvector pair is not known an approximation to the the MERW can be obtained 

from an approximation to the eigenvector v . As mentioned in the spectral–core section, = +y r K r( ) ( )i i , gives an 
approximation to the eigenvector v .

A biased random walk based on this approximation is46

=
+
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+
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i j
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 The term 1 in the numerator and denominator is added as it it is possible that =+K r( ) 0j  if node j has no links 
with node of rank greater than r and then the random-walk will be ill-defined. This core–biased random walk 
describes the dynamics of a random–walker which prefers to jump to the hubs that have many connection with 
other hubs.

The MERW has the property that in networks where hubs are present, the stationary probability =∗p vi i
2 of 

the hubs is relatively large, there is an argument47,48 saying that the property of concentrating the eigencentrality 
in the hubs is an undesirable property as diminishes the effectiveness of the centrality as a tool for quantifying the 
importance of nodes.

The core–biased random walk is based on the hubs, the relevant hubs are the ones that are well connected with 
other hubs, this is reflected in the stationary probability ∗pi  which we can consider as a new centrality measure 
based only in the interconnectivity of the hubs (see Methods for the evaluation of ∗pi ). Figure 8(a–c) shows the 
plots of the network-scientist network where Fig. 8(a) shows the layout of the network, Fig. 8(b) shows the same 
layout but with the radius of the nodes proportional to the eigenvector centrality i.e. =∗p vi i

2. As noticed before 
the eigencentrality is concentrate in the hub nodes and diminishes the importance of nodes of low degree. 
Figure 8(c) shows the network with the radius proportional to the stationary probability obtained by the 
core-biased random walk. In the figure the orange nodes are the core of the network and now nodes of low degree 
are part of the core as they are locally important.

Figure 8. (a) Graph of the Network Scientist network. (b) The same graph but the radius of the nodes is 
proportional to =∗p vi i

2 where vi are the entries of the eigencentrality. (c) In this case the radius of the nodes is 
proportional to the stationary probability ∗pi  of the core–biased random walk. The orange nodes are the core of 
the network. The core is the top ranked 54 nodes.
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the rich–club. The measure which describes how tightly the rich–nodes are interconnected is the rich-club 
coefficient1. This coefficient is the ratio between the number of connections that the rich–nodes have against the 
maximum number of connections that they could have, that is the density of connections within the hubs which 
can be expressed in terms of +ki  as 

Φ = ∑
−
=

+

r
k

r r
( )

2
( 1)

,
(11)

i
r

i1

where the sum is the total number of links shared by the top r nodes and the factor (r(r −1))/2 is the total number 
of links that can exist between these nodes. It is also common to define the rich–club coefficient in terms of the 
degree49, in this case, 

φ =
−

>

> >
k

E
N N

( )
2

( 1) (12)
k

k k

where E>k is the number of links shared between the nodes of degree greater than k and N>k is the number of 
nodes that have degree greater than k. Notice that the rank based and degree based rich-clubs are related by 
Φ(r>k) = φ(k), where r>k is the node with lowest rank and degree greater than k then = ∑> =

+>E kk i
r

i1
k  and 

r>k = N>k. The rich–club coefficient and its generalisations have been proved to be a useful measure for studying 
complex networks49–56. In recent years it has been used to describe the connectivity of the brain, the 
connectome2,57–62.

Originally the rich–club was defined as the set of nodes that are tightly connected1, that is the set of nodes 
where the rich–club coefficient is or tends to 1. A clique would have a rich–club coefficient of 1. Colizzaet al.49 
introduce an alternative definition. They defined the rich–club as the set of high degree nodes that have a density 
of connections higher than expected. The expected number of links between the top ranked nodes is evaluated 
from a random network which is considered as a null model. If φrand(k) is the rich-club coefficient of a random 
network which has the same degree sequence as the original network then the comparison between the network 
and the null model is done via the normalised rich-club coefficient φnorm(k) = φ(k)/φrand(k). Colizza et al.49 stated 
that an indicator of a rich-club with respect to the null-model is when the normalised rich-club coefficient is 
greater than 1. From this definition the normalised rank–based rich–club is 

κ
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where κ +
i  denotes the connectivity of node i with nodes or larger rank obtained from one of the ensembles or by 

restricted randomisation. If the maximal degree present in the network is less than the structural cut–off degree 
then the uncorrelated rich–club can be approximated via (see Methods) 
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 and the normalised rich-club is 
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changes related to the core connectivity. The change of connectivity between the hubs could happen 
due to the disappearance and/or the reshuffling of some of its links, here we consider that some links between 
hubs are removed. As the cores are defined via the connectivity of the hubs, any change in this connectivity would 
result in a change of which nodes belong to the core.

The changes in the assortativity coefficient would be constraint if the maximal degree is larger than the cut–off 
degree, if this is the case, changes in the hubs connectivity would have little effect on the degree–degree correla-
tions. The changes of the hub connectivity have a large impact in the number of triangles and longer loops in the 
network. Recently, it was suggested57 that a good measure to quantify the changes of the network connectivity is 
to use the communicability11 of a network.

The communicability between nodes p and q is defined via the weighted sum of all walks between p and q as 

∑ ∑= =
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∞
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where Λp is the p-th eigenvalue and vj
p( ) is the j entry of the eigenvector p-th eigenvector. The communicability has 

the property that it is affected by structural changes of the walks.
 Figure 9(a,b) shows the communicability of the Dolphins network for the original dataset (Fig. 9(a)) and for 

the network where the links between the top 10 ranked nodes are removed (Fig. 9(b)). Clearly in this case, the 
communicability strongly depends on the connectivity within these 10 hubs. This dependence is also capture in 
the approximation of the communicability using only the properties of the hubs. Figure 9(c,d) show the approx-
imation of communicability using the approximation of the eigenvalue–eigenvector pair from the spectral-core 
based on walks of length two (W2(rc, i) and Eq. (8)).
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evolution of a core. If the connectivity within the well connected nodes has such a large influence in the 
degree–degree correlation, how are these cores created? Recently Fire and Guestrin63 studied how the rich nodes 
appear and disappear in networks. They studied the evolution of 38,000 networks and noted that the creation 
of nodes of high degree is correlated to the speed of growth of the network. In slow growing networks the hubs 
appear shortly after the network becomes active and if a node becomes a hub it tends to stay a hub. In fast growing 
methods the hubs can appear at any time in the network evolution and their position as a top hub can change as 
new hubs with higher degree can appear as the network evolves.

The Barabasi–Albert (BA) model based on preferential attachment is an example of what Fire and Guestrin 
classify as a slow growing network. The BA model creates links between a new node and old nodes and can 
produce nodes with high degree. The degree of a hub is correlated with its age, nodes that becomes hubs at early 
stages of the network evolution, tend to remain a hub. The BA model will not produce hubs that are well inter-
connected, as the network evolves the rich-gets-richer mechanism increases the connectivity of the hubs but do 
not increase the connectivity within the hubs. It is known that network models based on the addition of new 
links between old nodes can have drastic changes in the overall structure of the network23,64,65. In the case that the 
addition of new links is biased towards connecting the hubs, i.e. the rich-club phenomenon1, then the network 
would have a well connected core.

An example of a non-trivial evolution of a network and its cores is in Fig. 10 which shows the number of neu-
rones of the C. elegans from birth to maturity. The cores based on spectral properties of the network tend to grow 
with the network. The rich–core diminishes in size in the second spurt of growth around the 1500 time mark. 
The top ranked neurones are born between the 250 to 450 time mark, but there are exceptions, for example the 
neurone PVR is born in the 2100 time mark and ends ranked on the top 33 neurones. Around the second spurt 

Figure 9. Communicability for (a) the original Dolphins network and (b) when the links between the top 10 
nodes are removed. (c,d) Approximation to the communicability shown in (a,b) using the approximation to the 
top eigenvalue-eigenvector pair from the spectral–core.
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of growth the well connected neurones increase their interconnectivity, reducing the size of the rich-core and 
increasing the spectral related cores. The growth of these cores correspond to an increase on the spectral radio Λ1 
and an increase on the number of triangles in the network.

There are some network growth models specifically designed to reproduce the connectivity within the well 
connected nodes66,67. Recently Allard and Hérbert-Dufresne68 proposed a method to construct networks ensem-
bles based on the connectivity of a node with its k–core, their method reproduces well the long–range correla-
tions and percolation of the network. However more research needs to be done to understand other mechanisms 
related to the formation of cores, in particular for fast growing networks.

Discussion
The description of a network using the degree and the connectivity with the better connected, i.e. the sequences 
{ki} and +k{ }i , produces networks with similar correlations as the original network with the advantage that the 
statistical description of properties related to high degree nodes are well defined even for power law networks.

The connectivity within the well connected can have a large effect on the assortativity and clustering coeffi-
cient. In the case that the network maximal degree is larger than the structural cut–off degree, changing the con-
nectivity within the hubs has a little effect on the correlations. However it has a large effect on the number of 
triangles in the network. For networks that are well modelled by the degree distribution and degree–degree cor-
relations, ensembles based on the sequences {ki} and k{ }i

+  give a good approximation to these networks. From the 
ensembles properties we obtained a new and tighter bound for the cut–off degree.

Another advantage describing a network via the connectivity of the hubs is that the core of a network can be 
defined using the connectivity within the well connected +k{ }i  or with the well connected +k{ }i . The spectral and 
random–bias cores are based on an approximation of the spectral radius from the connectivity related to the hubs. 
These cores are related to the eigenvector centrality and we used them to define a new centrality measures based 
on the hubs relative importance. The ensembles and the cores are related as the degree–degree correlation, the 
clustering and the spectral radius are all related to the connectivity of the hubs, confirming the importance that 
the hubs play in the overall structure of the network.

Finally notice that there is an ambiguity when labelling the nodes via a degree-dependent rank. For lower 
degree nodes, there are many nodes with the same degree. In this case the labelling of the nodes is not unique. For 
high degree nodes this tend to not be a problem, as in many networks the higher degrees tend to be unique so the 
rank labels these nodes unambiguously. Nevertheless, it has been observed that the variation on the properties of 
the ensembles due to this ambiguity is very small7, which is also the case for the properties of the cores26.

Methods
ensembles based on the rich–nodes connectivity. Maximal entropy approach. Consider a network 
described by the sequences {k1, …, kN} and …+ +k k{ , , }N1  where N is the number of nodes, L is the number of links 
and self–loops are not allowed. These sequences satisfy = ∑ = ∑= =

+L k k(1/2) r
N

r r
N

r1 1 . Here we are assuming that 
the nodes have been ranked in decreasing order of their degree. From these sequences it is possible to construct 
an ensemble (or a null–model) using the Maximal Entropy approach7.

The Shannon entropy of the network is = − ∑ ∑= = ≠S p plog ( )i
N

j j i
N

ij ij1 1; . The maximal entropy is the set of 
probabilities where the entropy S is maximal under certain constraints. Here the constraints are the normalisa-
tion, ∑i∑j pij = 1, the conservation of +kr

Figure 10. Growth of the number of neurones for the C. elegans. The top curve is the total number of neurones. 
From bottom to top, the rich–core, the biased–random walk, the spectral core based on walks of length two, the 
spectral core based on the hubs connection density and the number of neurones (pink).
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The common procedure to obtain the maximal entropy solution is first to label the links via the nodes labels i, 
j via the map ℓ = g(ij) and then transform = =



p p eij
q . The constraints are expressed as ∑ =− −
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where cm are M constraints that are related to qℓ via the map fm(ℓ). The solution of the maximal entropy under the 
constraints is obtained using the Lagrangian multipliers λ0,  … ,  λM and the maximisation of 
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This last equation combined with the constraint equations are solved to obtain the MaxEnt solution. Usually the 
solution of the MaxEnt is evaluated using the Partition function formalism which gives a smaller set of non-linear 
equations to solve. However, for the case that the constraints are the sequences {ki} and +k{ }i  the solution can be 
obtained directly from Eq. (19) and the constraint conditions. The Maximal Entropy solution is given by the 
probabilities7
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The values of s(n) are defined recursively with the initial condition s(1) = 1. The average number of links between 
nodes i and j is eij = Lpij with variance var(eij) = Lpij(1 −pij). By construction the ensemble satisfies the ‘soft’ con-
straints ⟨ ⟩ = ∑ ==k Lp kr j

N
rj r1  and = ∑ =+

=
− +⟨ ⟩k Lp kr j

r
rj r1

1 , where the angled brackets denote expected value. The 
variance of the degree is σ = ∑ −≠k L p p( ) (1 )r j r

N
rj rj

2 .
In the following sections the ensembles ME1, ME2 and ME3 are the ones defined in the main manuscript.

correlations. To characterise the networks produced by the ensembles we used two measures, the average 
neighbours degree and the assortativity coefficient.

Average neighbours degree. The average nearest neighbours degree given by = ∑ ′ ′′k k k P k k( ) ( )knn
9, where 

′P k k( ) is the conditional probability that given a node with degree k its neighbour has degree ′k .
In our case pij is the probabilities obtained from on of the ensembles then 
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 if ki = k and zero otherwise.

Assortativity coefficient. The assortativity is evaluated using8
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where ⟨…⟩ℓ is the average over all links and ⟨…⟩n is the average over all nodes. The average degree of the end 
nodes of a link is ′ = ∑ ∑ ≠



⟨ ⟩kk k k pi j i i j ij. Then 
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Some observations. Different networks can have the same assortativity coefficient ρ or average neighbours 
degree ⟨knn(k)⟩ but different +ki , so there is no simple relationship between the density of connections between the 
rich nodes and these two measures of correlation.

Notice the value of ρ or average neighbours degree ⟨knn(k)⟩ do not define an ensemble uniquely. Figure 11(a) 
shows the sequence +ki  for the C. elegans and Fig. 11(b) shows the average neighbours degree for two ensembles, 
one obtained from the original dataset the other obtained by a modified ME2 method. The two curves are almost 
undistinguishable. Figure 11(c,d) shows that these ensembles have different +k{ }i  sequences. The entropy per node 
of C. elegans dataset is S = 5.36 and for the other ensemble S = 5.28.

Weighted networks. For the case where the links are weighted μi and the network is described by the 
sequences {μi} and μ +

{ }i  the maximal entropy solution is still given by Eqs (1) and (2). For the case that μi = ki and 
μ +

i  is not restricted to be an integer the degree–degree correlation tend to be ‘smoother’ than when μ +
i  is 

restricted to the integers. This shows that not also the structural cut–off degree introduces degree–degree corre-
lations but also there are other correlations related to the discretisation of the links weights (see Fig. 12(a)).

Approximation to +mi  and the structural cut–off degree. If the maximal degree is less than the structural cut–off 
degree, the solution of probabilities in Eq. (1) can be approximated with the configuration model where pij = (kikj) 
/L2 and pii = 0. Notice that the configuration model satisfy the conditions that ∑j pij = ki/L and ∑i ∑jpij = 1 which 
are two of the constraints used for evaluating the maximal entropy solution. Using this approximation to pij in Eq. 
(3) we recover the well known result for uncorrelated networks knn(k) = ⟨k2⟩/⟨k⟩9.

As we are interested in the connectivity within the well connected nodes, from the configuration model the 
number of links that node i shares with nodes of higher rank is 
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Figure 12(b)shows the relative error η μ= − +1 i / +mi  where μi was obtained numerically using ensemble ME3 
for the C. elegans.

It is also possible to obtain a better approximation to the structural cut-off degree from the configuration 
model, using the bound that multilinks are not allowed, i.e. ≤ −+m r 1r , then the bound is the largest value rmax 
where this condition 

∑ > −
=

−k
L

k r 1
(27)

r

n

r

n
1

1

 still holds, the cut–off degree is =k krcut max
.

The above structural cut–off degree assumes that the probability that a node has a self loop is small, which it 
would be the case multiple links between nodes are allowed. The total number of links assigned by the 

Figure 11. (a) Average neighbours degree for the C. elegans and an ensemble with almost identical ⟨knn(k)⟩ as 
the original network. The percent error ∑ −k k k k( ) ( )i nn i i

(2)
nn
(1) /Nk = 3 × 10−4, where the superscript (1) 

refers to the original dataset and (2) to a obtained ensemble and Nk is the number of different degrees present in 
the network. The +k{ }i  sequences for (b) the original networks and (c) for the modified ME2 ensemble.
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configuration model is given = ∑ +D mi i  which if all the links were assigned between different nodes D = L/2. If 
this is not the case, to remove the degree–degree correlations due to the structural cut–off, the excess of links 
should be distributed as self loops. The probability that node i has a self loop is ki

2/L then the cut–off degree is 
given by finding the largest value =j jmax such that 
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2

 still holds, the cut–off degree is =k k jcut max
.

 Table 1 shows the cut-off degree, maximal degree and assortativity of the data and the assortativity from the 
null model. The ME1 produces ensembles with similar correlations as the data. The ME2 and ME3 produce 
decorrelated ensembles if the maximal degree is lower than the cut-off degree. Notice that the structural cut–off 

Figure 12. C. elegans where the degree sequence {ki} is given and all its values are integers. (a) Value of the 
weights μ+

r  obtained from the ensemble ME3 (pink) and using Eq. (26). The horizontal line is the value of 
⟨knn(k)⟩ for the decorrelated network. (b) Relative error η μ= −+ + +m( )r r r / +mr , where +mr  is obtained from Eq. 
(26) and μ+

r  is obtained numerically from the ME3 ensemble. The rightmost vertical line corresponds to the 
structural cut–off N k , the middle vertical line is the cut–off kcut corresponding to the restrictions of the ME2 
ensemble and the leftmost vertical line is kℓ corresponding to the restriction of the ensemble ME3.

Network ρd ρME1 ρME2 ρME3 k max k rmax ⟨ ⟩N k k jmax

Adj nouns  −0.129  −0.125  −0.085  −0.047 49 28 29.15 15

Airports  −0.267  −0.223  −0.264  −0.017 145 64 77.20 91

Astro 0.235 0.254  −0.002 0.000 360 — — —

C. elegans  −0.091  −0.035  −0.030  −0.017 93 56 67.68 32

Dolphins  −0.043  −0.027  −0.050  −0.045 12 — — —

Football 0.162 0.136  −0.024  −0.005 12 — — —

Hep-Th 0.293 0.321  −0.012 0.032 50 — — —

AS-Internet  −0.194  −0.188  −0.176  −0.042 2389 116 216.37 1334

Karate  −0.475  −0.434  −0.205  −0.114 17 12 12.49 12

Net Sci  −0.081  −0.025  −0.018  −0.010 34 — — —

Political blogs  −0.221  −0.153  −0.046  −0.007 351 149 182.86 116

Political books  −0.127  −0.135  −0.021  −0.018 25 — — —

Power 0.003 0.035  −0.022 0.030 19 — — —

Protein  −0.136  −0.080  −0.007  −0.005 282 147 172.31 46

Random ER  −0.004  −0.002  −0.012 0.035 13 — — —

Les Mis  −0.165 0.005  −0.079  −0.065 36 19 22.54 15

Table 1. Assortativity coefficient for the ensembles of different real networks, the maximal degree and the 
structural cut–off degrees. The table shows the structural cut–off kcut obtained from Eq. (27), N k  and from 
Eq. (28). Their values are only shown if they are smaller than the maximal degree kmax.
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based on the connectivity of the well connected is smaller than the cut–off based only in the configuration model, 
i.e. <k kcut max.

Notice that for the Les-Mis network the ensemble ME1 has an assortativity coefficient of a decorrelated net-
work. This network is an example where the assortativity coefficient can not give a definite answer about the 
degree-degree correlations, see Fig. 13. In Les-Mis network the maximal degree is larger than the structural cut–
off degree so there is a correlation due to finite size effects.

comment about the rich-club. Notice that the ranked based rich–club coefficient1 is Φ = −r r(2/( ( 1)))r  
∑ =

+ki
r

i1 , thus conserving +ki  is equivalent to the conservation of the rich–club coefficient.
The weighted ME3 model can be used to evaluate the normalised rich–club49. The uncorrelated rich–club 

coefficient is (using Eq. (26)) 

∑ ∑φ =
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and the normalised weighted rich-club is 
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Clustering coefficient from the ensemble and realisation of the networks. The local clustering coefficient of node 
i is the number of triangles ti that contain node i normalised by the number of possible triangles that node i can 
have 

=
−

.C k t
k k

( )
( 1)/2 (31)i i

i i

1

In our case the probability that there is a triangle between nodes i, j and k is P(ijk) = pijpjkpki and the average num-
ber of triangles between these three nodes is ⟨tijk⟩ = L3pijpjkpki. If the network is uncorrelated then we can use the 
configuration model and =⟨ ⟩t k k kijk i j k

2 2 2/L3. For networks that only have degree–degree correlations the distribu-
tion pij determines the distribution of triangles and hence the clustering coefficient.

Notice that the ensembles are constructed using soft constraints, that is the constraint is on the average, that 
means that it is possible to have low ranking nodes (average small degree) that have many triangles. The extreme 
case is nodes with average degree one that nevertheless on average can be members of a triangle. This is because 
the chance that this kind of node has more than one link is not negligible.

Information gain using different ensembles. The information gain is measured via the Kullback–
Leibler divergence, in this case it is used to measure how much information is gained if the network is described 
using ME1 instead of ME2 or ME3. To compare the change form ensemble ME2 to ME1 then 

Figure 13. Original ⟨knn⟩ for the Les-Mis network (green) and for the ME1 ensemble (pink). Notice that in 
this case ρME1 = 0.005 will not capture the correlations of the ensemble. The horizontal line shows the value of 
the decorrelated network ⟨k2⟩/⟨k⟩ = 12.0 and the vertical line the structural cut–off degree (kcut = 19) obtained 
from Eq. (27).
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where ≠p 0ij
ME[ 2]  for all i and j. This last condition is satisfied by the de–correlated ensemble. Notice that in the 

correlated ensemble ME1 it is possible to have =p 0ij
ME[ 1] , for example when i < j and =+k 0j  (see Eq. (1)), in this 

case we assume that =x xlog ( ) 0 if x = 0. Table 2 shows the information gain for some real networks. The infor-
mation decreases as the restrictions on the sequence k{ }i

+  are relaxed.

networks generation from the ensemble. To generate a network that is a member of the ensemble we 
use a Bernoulli process where the existence of a link between nodes i and j is given by pij. The process is carried 
out until there are L links in the generated network. Figure 14(a) shows the average degree ki m obtained from m 
realisations of the ensemble when multiple links are allowed.

Restricted randomisation. The other procedure to generate a network ensemble is restricted randomisa-
tion19, where the degree sequence is always fixed and the k{ }i

+  can be fixed or not. As in the ensembles generated 
via the maximal entropy method, the conservation of the sequences {ki} and k{ }i

+  generates networks with similar 
degree–degree correlations as the original network. Table 3 compares the assortativity coefficient ρ for some real 
networks and the average ρres  obtained from the restricted randomisations.

 Figure 15 shows the average neighbours degree ⟨knn⟩ for several real networks, confirming that conserving the 
sequences {ki} and +k{ }i  generates networks with similar degree–degree correlations. Notice that for a random 
network the randomisation does not generates a de-correlated network as the correlation that was present in the 
original network cannot be removed.

cores. Spectral cores. We assume that the nodes are ranked in decreasing order of their degree and that the 
networks connectivity is described by the degree sequence {ki} and the sequence k{ }i

+ . If A is the adjacency matrix 
where Aij = Aji = 1 if nodes i and j share a link and zero otherwise. The spectrum of the graph is the set of eigen-
values Λ1 ≥ Λ2 ≥ … ≥ ΛN of the matrix A where Λ1 is the spectral radius.

A lower bound for Λ1 is33,69Λ ≥ ≥W W W W( / ) ( / )n
n

n
n

1 2 0
1/(2 )

0
1/ , n = 1, …,  where =W u uAn

T n  is the total 
number of walks of length n, A is the adjacency matrix and u  is a vector with all its entries equal to one. An upper 
bound for the number of walks is ≤ ∑ =W kn j

N
j
n

1
70 where the equality is true only if n ≤ 2. The idea behind the 

bounds based on the hubs is to evaluate the density of walks of length one (or two) that include at least one of the 
hub nodes.

Bound based on walks of length one. Using the bound for Wn for n = 1 we define 
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Network D p p( )ME ME[ 1] [ 2] D p p( )ME ME[ 1] [ 3] D p p( )ME ME[ 2] [ 3]

Adj-nouns 0.082 0.094 0.010

Astro 0.330 0.332 0.002

C. elegans 0.084 0.085 0.003

Airports 0.100 0.157 0.057

Dolphins 0.191 0.202 0.014

Net. Scientists 0.235 0.243 0.029

Football 0.106 0.100 0.009

Hep-Th 0.351 0.335 0.006

AS-Internet 0.243 0.366 0.109

Karate 0.213 0.232 0.032

Les Mis 0.184 0.183 0.011

Pol. books 0.128 0.133 0.011

Power 0.311 0.357 0.069

Protein 0.148 0.156 0.013

Random Network 0.206 0.224 0.032

Pol. blogs 0.077 0.083 0.003

Table 2. Information gain comparing the probabilities obtained from the ensembles.
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 The sum containing only terms of the form +k2 i  gives the average number of links within the top i ranked nodes. 
The other sum containing the terms − +k k2i i  is the average number of links between the top i ranked nodes and 
nodes of lower rank. Notice that if r = N then =+k L2 2N

/N, − =+k k2 0N
 and g(N) = 2L/N, which is the 

well known lower bound B1 = W1/W0 = 2L/N ≤ Λ1. Also notice that +k2 r
 could be larger than g(N) = 2L/N. We 

split the network into two parts by considering the value r such that +k2 r
 is maximal, that is when the density of 

connections between the top ranked nodes is maximal. In this case the core of the network is the nodes of rank 
greater than rc where 

= +r kmax({arg max(2 )})
(33)c

r r
r

(1)

 where the superscript in rc
(1) is used to label this bound. The bound is36

= ≤ Λ .+b k2 (34)r1 1c
(1)

 Notice that if =r Nc
(1)  then b1 = W1/W0 which is a well know bound of Λ1.

Bound based on walks of length two. The above bound can be improved if we consider the connectivity of the 
well connected nodes and the connectivity of their neighbouring nodes. In this case we consider walks of length 
two W2. The number of walks of length two starting from node j, W2(j), is the same as the walks of length one 
starting from the neighbouring nodes of j, we denote the neighbours of j as jq. Then 

Figure 14. Average degree evaluated from several network realisations vs. the degree of the C. elegans network. 
(a) 10 realisations, (b) 100 realisations and (c) 1000 realisations.

Network ρ ρ⟨ ⟩res

Adj nouns −0.129 −0.199 ± 0.014

Airports −0.267 −0.283 ± 0.001

Protein −0.136 −0.118 ± 0.001

Random −0.045 −0.116 ± 0.004

C. elegans −0.092 −0.094 ± 0.005

NetSci −0.081 −0.101 ± 0.011

AS-Internet −0.194 −0.195 ± 0.000

Karate −0.475 −0.457 ± 0.018

LesMis −0.165 −0.098 ± 0.022

PolBooks −0.127 −0.177 ± 0.012

PolBlogs −0.221 −0.219 ± 0.002

Astro 0.235 0.154 ± 0.001

Football 0.162 0.080 ± 0.012

HepTh 0.185 0.069 ± 0.004

Power 0.003 −0.060 ± 0.005

Table 3. Assortativity coefficient for different networks obtained by the restricted randomisation which 
conserves the sequences {ki} and +k{ }i . The assortativity coefficient ρres were obtained by switching links 
1000 × L times.
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 If we distinguish which walks of length 1 end on one of the top r ranked nodes then 
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where Θ(jq, r) is the step function Θ(a, b) = 1 if a < b and zero otherwise. We are interested in the first term, 
W j j r( ) ( , )j

k
q q1 1

q
i∑ Θ=

, which is the number of links that the nearest neighbours of j have a link with a node with 
rank equal of less than r, we denote this degree with K r( )j

(1) . Similarly as the bound b1, we evaluate the density of 
these walks using 
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 the bound is 

= ≤ Λb h r( ) (39)c2
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1

Notice that if =r Nc
(2)  then b2 = W2/W0, which is the well know bound W2/ ≤ ΛW0 1

2.
For comparison purposes we compared these two lower bounds with the lower bounds B1 = W1/W0, 
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where this last bound can be expressed as a function of the assortativity coefficient ρ8,33. Also we consider the 
optimised bound33 based on walks of length one, two and three, 

=
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Notice that by construction b1 ≥ B1 and b2 ≥ B2. Table 4 compares the bounds of Λ1 for different real networks. 
The bound BM gives the best approximation of the Λ1 except for the Hep-Th, Power and the AS-Internet networks. 

Figure 15. Comparison of the average neighbours degree for the original network and the average obtained 
from the restricted randomisation. (a) The Astrophysics-collaborators, which is disassortative. (b) The C. 
elegans which is disassortative. (c) An a random network, which has a spurious correlation that cannot be 
removed by the restricted randomisation as the +k{ }i  sequence is conserved.
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However the bounds b1 and b2 are simple to evaluate and have a simple interpretation in terms of the connectivity 
of the network.

 Figure 16(a) shows the behaviour of the bounds as a function of the assortativity coefficient. It seems that the 
bound b2 can produce better bounds that BM for networks with high assortativity or disassortativity coefficient, 
perhaps this is the reason that this bound is better for the Hep-Th, Power and AS-Internet networks than the BM 
bound. Figure 16(b) shows the size of the core obtained from the bound b1 (green) and b2 (pink). Notice the dras-
tic change on the core size obtained from the bound b2 when the network becomes more disassortative.

To confirm that = +b k2 r1 c
 is a bound of the spectral radius consider Rayleigh’s inequality Λ ≥ u uAT

1

/ u u( )T . If A is the adjacency matrix of a network ranked in decreasing order of its node’s degree and u  is a vector 
with 1 in the top rc entries and 0 otherwise then 

 (43)

where +K r( )i c  is the number of links that node i shares with the rc top ranked nodes. Then = ∑ =
+u u K rA ( )T

i
r

i c1
c  

is the total number of links are shared by the top rc ranked nodes, recalling that +ki  is the number of links between 
node i shares nodes of largest rank then ∑ = ∑=

+
=

+K r k( ) 2i
r

i c i
r

i1 1
c c . As =u u rT

c , Rayleigh’s inequality gives 
Λ ≥ +k2 r1 c

.
For the bound b2, or ≤ Λh r( )c

(2)
1
2, the procedure is similar as for the b1 case. In this case Λ ≥ u uAT

1
2 2 / u u( )T . 

The entries A( )ij
2  correspond to the number of walks of length two that start in i and end in j. If u  is a vector with 

1 in the top rc entries and 0 otherwise then, u uAT 2  is the number of walks of length two, W2(rc, rc), that start in one 
of the top rc nodes and end in on of these top rc nodes. Notice that W2(rc, rc) is equal to the number of links in the 
whole network that connect with at least one node in rc, that is = ∑ =

+W r r K r( , ) ( )c c i
N

i c2 1 .
To measure how well the vector y  approximates the eigenvector v1 we evaluate 

δ = −
v y
y y

1
(44)

T

T
1

 where the closer this quantity is to zero, the better y  approximates v1 (see Fig. 16(c)). Notice that for highly disas-
sortative networks the size of the spectral core obtained from the bound b2 can be very small. However this is not 
translated into a better approximation to the eigenvector v1 but the opposite, the approximation becomes poor.

Relationship with the eigenvector centrality. If the eigenvectors of the matrix A are = …v v v{ , , }N1  and corre-
sponding eigenvalues {Λ1, …, ΛN} where Λi ≥ Λi+1, then = = Λ + Λ Λ + …z u c v c c vA ( ( )/( ) )1 1 1 2 2 1 1 2  where ci are 

Network B1 B2 B3 BM b1 b2 Λ1 rc
(1) rc

(2) N

Nouns 7.58 10.22 10.94 12.66 9.30 11.34 13.15 49 66 112

Airports 11.92 25.32 30.49 44.77 38.02 42.70 48.07 71 71 500

C. elegans 16.40 20.62 21.82 24.58 17.99 21.22 25.94 172 197 279

Dolphins 5.12 5.90 6.17 6.75 6.04 6.46 7.19 41 39 62

Football 10.66 10.69 10.71 10.74 10.66 10.69 10.78 115 115 115

Hep-Th 4.13 5.99 7.25 11.00 9.82 15.05 23.00 70 70 7610

Karate 4.50 5.97 5.98 6.50 5.00 5.98 6.72 22 33 34

Les Miss 6.59 8.91 9.59 11.20 10.00 10.97 12.00 28 24 77

Net Sci 4.82 6.21 6.64 7.62 5.69 7.19 10.37 192 4 379

Political blog 27.31 47.11 53.21 69.08 54.45 63.16 74.08 323 321 1224

Political book 8.40 10.01 10.46 11.48 8.85 10.33 11.93 68 68 105

Power 2.66 3.21 3.42 3.87 2.88 4.44 7.48 3715 32 4941

Protein 6.30 12.34 13.54 17.38 12.86 16.79 21.16 733 1 4713

AS-Internet 4.18 33.35 28.51 41.81 20.20 48.97 60.32 77 2 11174

Table 4. The spectral radius Λ1 and its bounds B1, B2 and B3 based on the sum of all walks of length one, two 
and three respectively. Bounds b1 and b2 obtained from local walks from the core, or from the local connectivity 
of the core nodes. The entries rc

(1) and rc
(2) are the number of nodes that constitute the core obtained from b1 and 

b2. The entry N is the total number of nodes in the network.
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constants, then to first order approximation ≈ Λy c v1 1 1, hence y  is an approximation to the eigenvector centrality 
v . The entries of =y uA  are = +y K r( )i i c , where +K r( )i c  is the number of links that node i shares with the rc top 
ranked nodes. For the case of the bound considering walks of length two described by the matrix A2 the approxi-
mation to the eigencentrality is given by the vector =y uA2  with entries yi = W2(rc, i) where W2(rc, i) are the 
number of walks of length 2 that start in rc and end in any node i.

Biased random walks. Maximal rate entropy random walk (MERW). In a finite, undirected, not bipartite 
and connected network a random walker would jump from node i to a neighbouring node j with a probability 
Pi→j. The probability that the walker is in node j at time t + 1 is pj(t + 1) = ∑i(A)ijPi→jpi(t). The probability of 
finding the walker in node i as time tends to infinity is given by the stationary distribution =∗ ∗p p{ }i . In a net-
work, the jump probability Pi→j can be expressed as 

∑
=→P

f

f

A

A

( )

( ) (45)
i j

ij j

j ij j

where (A)ij is the ij entry of the adjacency matrix and fj is a function of one or several topological properties of the 
network, in this case the stationary distribution is71

∑
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The measure which tell us the minimum amount of information needed to describe the stochastic walk in the 
network is the entropy rate = →∞s Slimt t/t, where St is the Shannon entropy of all walks of length t, which is 
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The maximal rate entropy smax corresponds to random walks where all the walks of the same length have equal 
probability. The value of smax can be expressed in terms of the spectral properties of the network as 
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For the MERW the probability Pi→j is such that all the walks of the same length have equal probability. The 
stationary probability for the MERW is =∗p vi i

2 where vi is the i entry of the eigencentrality.

Core-biased random walk. If the largest eigenvalue-eigenvector pair is not known, the MERW results suggests 
that a good approximation to the largest eigenvector v  could be used to construct a biased random walk. A bound 
for the largest eigenvalue in terms of the connectivity of the nodes of high degree is b1 = 1/ ∑ ≤ Λ=

+r ki
r

i1 1 and an 
approximation to the corresponding eigenvector is =z r u rA( ) ( ), where u  is a vector with its top r entries equal 
to one and the rest to zero (see Methods: The spectral-core). The vector =z r u rA( ) ( ) has entries = +z r K r( ) ( )i i , 
where +K r( )i  is the number of links that node i shares with the top r ranked nodes.

Figure 16. (a) Dependance of the different bounds as a function of the assortativity coefficient. (b) Size of the 
core as a function of the assortativity coefficient. (c) Relative error between the eigenvector v  and its 
approximation y .
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This bound based on +k{ }i  suggests a core biased random walk. If the top r ranked nodes are the core of the 
network, then a core-biased random jump is46

=
+

∑ +
.→

+

+

( )
( )

P r
K r

K r

A

A
( )

( ) ( ) 1

( ) ( ) 1 (49)
i j

ij j

j
N

ij j

where the term 1 in the numerator and denominator has been added as it is possible that =+K r( ) 0j  if node j has 
no links with the network’s core and then the random-walk will be ill-defined.

As we want to have the best possible approximation to the maximal rate entropy smax we define the core as the 
value of r which maximises the value of s(r), that is 

=r s rargmax( ( )) ,
(50)c

r

where s(r) is the r dependent entropy 
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→ →( )s r p r P r P r( ) ( ) ( )ln ( )

(51)i

N

i
j

N

i j i j
1 1

and ∗p r( )i  is the stationary distribution corresponding to the core–biased random jumps of Eq. (10). The core are 
the nodes ranked from 1 to rc. The value of s(r) is evaluated numerically from the core biased random jump Pi→j(r) 
using Eq. (45) with = ++f K r( ) 1j j , then evaluating the stationary distribution ∗p r{ ( )}i  (via Eq. (46)) and from 
this distribution the rate entropy s(r) (Eq. (47)) and the rank r that maximises s(r) (Eq. (50)).

Notice that the spectral–core and the core–biased random walk, even that both are formulated as a function 
of the density of connections between the top ranked r nodes, there are different cores.

 Table 5 shows the approximation to the maximal entropy using the core-biased random walk, the relative size 
of the core with respect to the network’s size and the assortativity coefficient. The relative size of the core is not 
related to the assortativity of the network.

Stationary probability for the core-biased random walk. The stationary distribution for the 
core-biased random walk is evaluated using Eq. (46) with = ++f K r( ) 1j j  which gives 
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which is the probability to find the random walker in node i after spending a long time visiting the network by 
preferring to visit nodes connected to the core.

Datasets. A description of the datasets and the dataset for the networks Karate, Dolphins, LesMis, Football, C. 
elgans, Net-Sci (collaboration between Network Scientists), Political blog, Political book, Power, Protein, Hep-th, 
AS–Internet and Astro-Ph are available from M. Newman’s web page (http://www-personal.umich.edu/~mejn/
netdata/). The random network is an Erdos¨-Rényi network generated with igraph. The power law networks were 
also generated with igraph. The European airline network is available from Air Transportation Multiplex (http://
complex.unizar.es/ãtnmultiplex/).
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Network sc/smax rc/N ρ

Airports 0.999 0.136 -0.267

CondMat 0.945 0.039 0.157

NetSci 0.914 0.137 -0.081

Football 0.998 0.913 0.162

LesMis 0.997 0.350 -0.165

Random 0.983 0.449 -0.045

Power law 0.972 0.227 -0.004

Power law 0.970 0.489 -0.245

Power law 0.980 0.126 0.222

Regular 1.000 1.000 –

Table 5. Ratio of the core-biased entropy against the maximal entropy (sc/smax), relative size of the core and 
assortativity coefficient for some real networks.
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