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ABSTRACT: A two-stage data-driven methodology for long-term
equipment condition assessment in drug product manufacturing is
presented with a case study for a commercially operating aseptic
filling line. The methodology leverages process monitoring data.
Sensor measurements are partitioned using process information
and maintenance schedules that are available on different databases.
Data is processed to tackle heterogeneity in sources and formats.
The data is cleaned to remove the effects of short-term variabilities
and to enhance underlying long-term trends. Two approaches are
presented for data analysis: first, anomaly detection using
independent component analysis (ICA), where clusters of outliers
are identified. The frequency and timing of such outliers yield
important insights regarding maintenance schedules and actions.
The second approach enables condition monitoring using principal component analysis (PCA). Long-term operational baselines are
identified and shifts therein are linked with different process and equipment faults. This approach highlights the impact of equipment
deterioration on shifting operational data baselines and shows the potential for the combined application of ICA and PCA for
equipment condition monitoring. It can be applied within predictive maintenance applications where the installation of new
specialized sensors is difficult, like in the pharmaceutical industry.

1. INTRODUCTION
Digitalization is one of the main pillars of Industry 4.0.1 The
emergence of digitized manufacturing facilities recording large
amounts of various parameters (i.e., Big Data) in an automated
manner allows for the introduction of data-based solutions.2,3

Concepts of digitalization are already established in the
pharmaceutical industry such as the Pharma 4.0 initiative.4,5

Awareness of the importance of such concepts is rising among
industry leaders.6 A digital transformation would highly benefit
the pharmaceutical industry. It is an industry with a high
product value, where unexpected production failures lead to
expensive product losses. This offers a strong incentive for
applications that could reduce production faults and down-
time. Furthermore, it is a highly regulated industry with strict
procedures regarding keeping records of all processes, and
equipment parts directly linked to the product to ensure
patient safety as part of good manufacturing practice (GMP).7

This ensures a rich environment of historical production data
available for analysis.

Quality by design (QbD) and process analytical technology
(PAT) are well-established concepts in the pharmaceutical
industry.8 PAT involves monitoring critical quality attributes.
In combination with data analysis techniques, it can ensure
product quality, higher production efficiency, and enhanced
process understanding.9 Applications of PAT in pharma often

include alternative measurements for monitoring process
parameters that cannot be measured in real time, for example,
concentration measurements via spectroscopy.10 The same
concepts could also apply for equipment condition monitoring,
where equipment deterioration is often difficult to measure
directly. Innovative data analysis techniques could therefore
provide additional insights and enable applications such as
predictive maintenance.11

Within the pharmaceutical industry, periodic equipment
maintenance is usually performed at predetermined time
intervals.12 The implemented time-based maintenance could
cause problems as it could miss equipment deterioration,
leading to increased process faults if the intervals are too long.
On the other hand, if the intervals are too short, it could lead
to unnecessary costs, material consumption, long facility
downtime, and organizational effort. Predictive maintenance
applications could help optimize this process to avoid
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production interruptions through either equipment faults or
superfluous maintenance activities. Data-driven applications for
equipment condition monitoring have been suggested outside
pharmaceutical manufacturing.13 Tailored sensors for predic-
tive maintenance (e.g., vibrational analysis) are often installed
in production facilities.14 Installing such new sensors in a
running pharmaceutical facility, however, could be cumber-
some due to the GMP requirements for registration and
validation of any changes within the manufacturing facility.
The extra costs for the revalidation process are also an
additional burden that could deter the application of changes
to an operating process.15 As such, there is a need to explore
the existing large pool of historical process and equipment data
for potential uses in long-term equipment condition monitor-
ing.

Currently, in addition to backtracking purposes, the
recorded process data can be used for process monitoring
and fault detection in batch and change-over processes.16,17 A
monitoring workflow for the formulation, fill, and finish
processes was published.18 Data-driven batch monitoring in
drug product manufacturing for change-over processes has
been suggested with a focus on cleaning and sterilization in
place (C/SIP)17 and decontamination.19 The latter work
showed that deteriorations could be observed across multiple
batches before a failure occurs. This finding is a strong
indicator that process monitoring data can be used for
equipment condition monitoring over a longer period if
adequately addressed. Current research in predictive monitor-
ing and predictive maintenance applications, however, is
mainly focused on methodology development using simulated
datasets.20,21 Case studies using real industrial data are scarce
and mostly focused on fields outside pharmaceutical
manufacturing.22 In pharmaceutical manufacturing, commer-
cial applications of predictive maintenance are extremely
scarce.23 One of the few published applications of condition-
based maintenance for utility systems has been shown through
the installation of tailored monitoring sensors such as thermal,
vibrational, and ultrasonic analysis which led to an overall
reduction in equipment faults.24

The nature of operations in pharmaceutical manufacturing
greatly influences the structure of the collected data and the
challenges faced in processing it. Drug product manufacturing
is typically performed in batch operations.25 Generally, batch
process data exhibits nonlinear process behavior as well as
intra- and interbatch variability.26,27 Information retrieval could
be hindered by such variabilities, e.g., variations in batch sizes
and processed amounts, or in the lengths of process steps as a
result of manual interventions with continuous data recording
without separating production and process downtime. Despite
the abundance of process and maintenance data, the variations
in the formats and locations of data storage could pose
additional challenges during data processing and aggregation.

Using collected process data for a secondary application also
poses additional challenges by not providing a comprehensive
image of the problems at hand, where direct measurements of
targeted phenomena are missing. Therefore, a methodology is
still needed for properly harnessing information regarding
long-term equipment health from the available historical short-
term process monitoring data and overcoming the challenges
posed by the data.

This work proposes a data-driven approach to leverage
collected short-term process monitoring information in
operating facilities for long-term equipment condition
monitoring in drug product manufacturing. A methodology
is presented for data cleaning and analysis using real industrial
data. The suggested methodology combines information from
online monitoring sensors with data from databases containing
equipment information (e.g., downtime, fault types, or
maintenance actions). Two approaches for the analysis of
long-term equipment conditions are presented in this work.
First, anomaly detection is introduced to identify periods with
long-term variations across maintenance cycles and the sources
of equipment-related disturbances. Second, an approach for
condition monitoring is developed, where a higher-resolution
analysis is conducted to correlate detected long- and short-
term baseline shifts with eventual equipment faults. An
industrial case study is presented to demonstrate the
application of the methodology, where equipment faults are
linked with shifts in operational baselines that were already
observed weeks or months earlier in process monitoring data.
This methodology gives a long-term comprehensive overview
of changes in the equipment and enables the early detection of
changes in equipment condition and their sources. It allows for
planned early interventions and thus avoiding unexpected
product losses and process downtime. In this case study,
process data is used from an aseptic filling line collected at a
drug product manufacturing facility of F. Hoffmann-La Roche
Ltd. in Kaiseraugst, Switzerland.

2. METHODOLOGY
2.1. Overview. A two-stage approach is presented for long-

term equipment condition assessment using process monitor-
ing information collected for short-term purposes, e.g., for
monitoring individual runs including different process steps, or
change-over operations. Sensors are installed in the production
facility for univariate process monitoring and include
parameters such as pressure and temperature. This work
focuses on detecting small variations in equipment condition
that last over long periods of operation. Such variations would
not cause immediate process failures, but their accumulation
could lead to deterred operation over time. Such changes
would henceforth be referred to as long-term effects. In
contrast, short-term effects are a result of variations within each
process or production batch and can be observed in end-to-

Figure 1. Representation of different timescales for process and equipment monitoring.
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end process monitoring. Short-term effects may have a larger
impact on operation and could lead to process interruptions. In
this work, long-term effects were determined as those lasting
for more than one operating day (i.e., longer than the span of
one batch). Early detection of such long-term effects provides a
window for maintenance actions that can be scheduled during
regular operations without causing additional downtime.
Figure 1 shows a schematic highlighting the main differences
in the scope between long- and short-term monitoring
applications.

A schematic representation of the developed methodology
for equipment condition assessment is shown in Figure 2. The
first stage involves data collection from multiple sources in
diverse formats followed by data preprocessing. Process
information is usually available offline in text form. It includes
documentation, e.g., process recipes, information about alarms
and failures, as well as production logbooks and diaries.
Different databases are accessed to retrieve process data as
sensor measurements, which are primarily collected online for
process monitoring purposes. Offline maintenance records are
also available and include details of actions taken for the
various equipment. They are usually available in text form.
Tackling the heterogeneity in the data is the goal of this first
“data processing” stage, where data from the different sources
are linked and cleaned. Data can be connected through process
tags or time stamps. Equipment-related failures are analyzed
and linked to the maintenance actions in historical records. An
example of data cleaning includes filtering out downtime and
separating the production data by batch and the corresponding
change-over processes. The cleaned data is then used in the
second stage “production cycle analysis”. In this stage, anomaly
detection is conducted to identify clusters of events
representing nonregular operation. Condition monitoring
involves identifying baselines for normal operation in addition
to baseline shifts indicating ongoing deterioration within the
unit and the impact of maintenance actions taken. Findings
from both steps are combined for an in-depth equipment
condition assessment.
2.2. Case Study. In this work, process data of an aseptic

filling line in drug product manufacturing of F. Hoffmann-La
Roche Ltd, in Kaiseraugst, Switzerland is used. The aseptic
filling line consists of four main units, namely, a vial washing
machine, sterilization tunnel, filling machine, and isolator. The
developed methodology was applied individually to the four
units and can be considered to be independent of each other.
Process data is collected for various short-term purposes such
as monitoring change-over processes and validating that
production steps were within specifications. Two years of
production data were considered in this work. In the
investigated facility, regular equipment maintenance is
performed in a time-based manner at fixed intervals. In this
case, maintenance is undertaken following production phases,
which typically have a duration of about 4 months. A
schematic overview of the annual production and maintenance
schedules is given in Figure 3. In the following sections, a

detailed description is given for the application of the
developed methodology within the investigated facility.

2.2.1. Stage 1�Data Processing. The aim of this stage is
to combine the available information from different sources
and in different formats to obtain suitable datasets for long-
term equipment condition monitoring. Figure 4 shows a
schematic representation of the data processing steps.
Individual units were investigated independently of each
other. For each unit, process data was retrieved for analysis
from online sensor measurements that are primarily recorded
for univariate process monitoring purposes. Process data is
continuously collected and stored as data historians on a PI
OSIsoft database.28 No missing process data was encountered.
The data was retrieved in 10 s intervals regardless of
equipment status, e.g., in production, change-over, or idle.
Table 1 shows examples of recorded process data in each unit.
Similar types of sensors are often installed at multiple locations
within each unit. To track equipment-related changes, data
from batch production processes over a span of 2 years were
considered. The comparison of similar production processes in
the same equipment over a long time span can yield insights
into non-process-related changes, such as equipment deterio-
ration. To achieve this comparison, data from other sources
were used for partitioning and labeling the available process
data. In the first step, the process data was separated into
production and maintenance phases according to the
maintenance information, which was available as excel files
containing historic maintenance schedules. Recordings during
maintenance phases were excluded from the dataset. The
remaining dataset still contained all recordings during the
production phase, including idle time, change-over operations,
and test runs in addition to the targeted production data. In
the subsequent process identification step, batch production
runs were exclusively extracted from the continuously collected
production phase data. The PI OSIsoft database was used in
this step. It consists of continuously collected process tags
describing the type of ongoing processes. Time points
coinciding with production tags were extracted and the process
data accordingly refined to retain only production-relevant
data. Data recorded during individual batch runs were
identified by batch ID and extracted from the production

Figure 2. Schematic overview of the developed two-stage methodology.

Figure 3. Schematic representation of production and maintenance
phases within one year of production.
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dataset. The individual batch datasets within each production
cycle were aggregated to the final datasets used for analysis.
Data from two production cycles per year were obtained
separated by half-yearly maintenance phases. For each dataset
over one million data points were included in the two-year
period. The length of the final datasets for each unit varied due
to differences in individual unit operation time across the
production cycles. The described methodology was applied
individually for each unit of the aseptic filling process.

Offline databases for process interruptions and technical
interventions were used to connect data-driven findings with
recorded occurrences in the facility. Process interruptions
contain text-based information about events leading to an
interruption of the running process. Process interruptions do
not only include equipment-related events but can also include
process-related problems such as contamination of vials, fallen
or displaced vials, or alarms during change-over operations.
These logs are recorded by operators on the shop floor on a
machine execution system (MES). Technical interventions,
where technicians were required on the shop floor, are
recorded separately. They are recorded on the SAP plant

maintenance (PM) system by the technicians. Technical
interventions include descriptions of maintenance actions
taken following equipment-related faults. The text-based data
was parsed, and only equipment-relevant data was retained.
Excluded entries described general actions not related to
manufacturing equipment, e.g., lamp replacements in the room.

The frequency and type of recorded incidents varied
depending on the nature of the operation and equipment.
The filling machine is the most complex among the
investigated units. It featured the highest number of recorded
technical interventions and process interruptions. The
sterilization tunnel had the smallest number of process
interruptions. This unit features a relatively simpler process,
where vials are transported during depyrogenation. The
number of process interventions and interruptions in this
unit were almost the same, indicating that when a problem
occurred, it was most likely equipment-related, requiring
intervention of a technician. The vial washing machine and
the isolator had comparable numbers of recorded process
interruptions, which were mostly linked to problems during
change-over operations.

After the analysis of the text-based records, extracted faults
were then classified into two categories: equipment-related and
non-equipment-related (i.e., externally caused) faults as
summarized in Table 2. Type A faults are externally driven

incidents that require manual interventions by the operators.
Causes for Type A faults necessitating a process reset could be
manifold, a prominent example of which is vial glass breakages
inside the filling line. Type B faults, on the other hand, result
from equipment failure necessitating replacement, mainte-
nance actions, or parameter adjustment.

Information from these databases was used to interpret the
data patterns observed after the analysis of the production
cycle data. The offline entries were aligned with the refined
production cycle data according to the recorded time stamps.
The offline entries suffer from delays between the actual event
occurrence and the entry into the database, which does not
refer to the exact failure time. Therefore, an allowance of +1
day was made regarding the accuracy of matching equipment

Figure 4. Schematic representation of the data processing methodology to obtain production cycle datasets.

Table 1. Overview of Process Units and Type of Recorded
Sensor Data within the Aseptic Filling Line

unit
examples of physical

recordings
number of

sensors
time
interval

vial washing
machine

• spraying time
14

10 s

• pressure
• temperature

sterilization tunnel • position equipment

21

• pressure
• transport speed
• heating power
• ventilation power
• temperature

filling machine • pressure

22
• flowrate
• machine power
• temperature
• conductivity

Isolator • aeration time

47

• pressure
• H2O2 injection rate
• relative humidity
• H2O2 amount
• temperature

Table 2. Summary of the Two Fault Classes

fault class description

Type A non-equipment-related incident
Type B equipment-related fault
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faults between the offline database and the observed patterns
in the data.
2.2.2. Stage 2�Production Cycle Analysis. The produc-

tion cycle analysis stage aims at identifying two types of
patterns in the process data. A schematic representation of the
production cycle analysis is shown in Figure 5. First, sources of
abnormal process behavior are identified, with a special focus
given where repeated instances of outlier events and anomalies
are concentrated. An outlier in this work is defined as a source
of unusual variance in the production cycle data. Such outliers
may not be connected to particular faults and could indicate
changes in the system. They are used to track the sources of
long-term changes in the system and evaluate actions by the
operators (for example the adequacy of maintenance actions in
each maintenance period). The frequency and position of
anomaly clusters within the production cycle can help
decision-makers identify potential equipment-related problems
and the needed adjustments to maintenance schedules.
Furthermore, detected anomalies indicate the time points of
disturbances in the data that could cause equipment
deterioration. The second type of data patterns involves
establishing baselines for long-term process data for condition
monitoring purposes. Observed shifts in the established
baselines can indicate changes in equipment condition. Shifts
lasting longer than batch durations could indicate long-term
changes in the equipment. Such changes highlight ongoing
equipment deterioration that could eventually lead to failure or
malfunction. The use of different data processing algorithms
yields more comprehensive results regarding the sources and
impacts of equipment changes in the system. Findings from
both, anomaly detection and condition monitoring are used
together and linked to offline information about technical
interventions to confirm the validity of the methodology for
detecting equipment deterioration. This analysis thus links
process data with failures, visualizes equipment deterioration,
and maps out the impact of maintenance actions on correcting
or reestablishing the production baseline.

Dimensionality reduction was crucial in this stage to analyze
patterns in the data given the large number of sensors available.
Different methods of dimensionality reduction were applied
depending on the goal of the analysis. The data was variable-
wise unfolded and auto-scaled prior to the multivariate analysis
by subtracting the mean of each column and dividing by the
standard deviation. Variable-wise unfolding of the data yields
an aggregated time series of recorded sensor measurements.
Such aggregation of batch data allows for the comparison of
long-term changes across the investigated time period.

Anomaly detection was achieved by the application of
independent component analysis (ICA)29 to the production
cycle dataset. ICA is designed for application to non-Gaussian

datasets. This suits the nature of the data from batch
production processes, which are often strongly nonlinear.30

Dimensionality reduction with ICA is based on the idea that
measured variables are a mixture of some independent
component variables. It is assumed that l measured variables,
x(k) = [x1(k), x2(k), ···, xl(k)], at sample k can be expressed as
a linear combination of r unknown independent components
[s1, s2, ···, sr]T (where r ≤ l); the relationship between them is
given by

= · +X A S E (1)

where n is the number of measurements, X = [x1, x2, ···, xn] ∈
Rl×r is the data matrix, A = [a1, a2, ···, ar] ∈ Rl×r is the mixing
matrix, S = [s1, s2, ···, sr] ∈ Rr×n is the independent component
matrix, and E ∈ Rl×n is the residual matrix. The ICA problem
includes the estimation of the original component S and the
mixing matrix A from X. The Fast ICA algorithm was applied
in this work.

The data was first whitened using the eigenvalue
decomposition method, where considering x(k) with its
covariance RX = E{x(k) ·x(k)T}, the eigenvalue decomposition
of RX was given by

=R U UX
T (2)

where the whitening transformation was expressed as

= · = · · = ·z k Q x Q A s k B s kk( ) ( ) ( ) ( ) (3)

= ·Q UT1 2/ (4)

{ · } = · { · }· = · =E z k z k B E s k s k B B B I( ) ( ) ( ) ( )T T T T (5)

where B is an orthogonal matrix. Then, the following estimate
in eq 6 was made to calculate a separating matrix W to obtain
the independent components of the reconstructed data matrix
S as in eq 7

= · = · ·s k B z k B Q x k( ) ( ) ( )T T (6)

= ·S W X (7)

resulting in

= ·W B QT (8)

The problem of finding an arbitrary full-rank matrix is reduced
to the finding of an orthogonal matrix (B). ICA was performed
using the Fast-ICA implementation29 that is part of the scikit-
learn package in Python (v3.7). The resulting independent
components were studied to identify regions with aggregation
of process anomalies.

Condition monitoring was conducted by the application of
multiway principal component analysis (MW-PCA)31 applied

Figure 5. Schematic flowsheet of developed methodology for equipment condition monitoring from short-term process monitoring data.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c04182
ACS Omega 2022, 7, 36415−36426

36419

https://pubs.acs.org/doi/10.1021/acsomega.2c04182?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04182?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04182?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04182?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c04182?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


on a variable-wise unfolded dataset. In process monitoring
applications, batches are compared to each other to detect
batch variations and operational faults. In such cases, variable-
wise data unfolding can result in difficulties regarding the
alignment of batch data when production durations vary.
However, in equipment condition monitoring applications, the
aggregation of similar operations allows the monitoring of
long-term trends over multiple batch runs. Noise created from
such batch variations can be filtered by focusing on changes
lasting longer than the duration of one batch. Persistent long-
term changes in the data can thus be isolated, analyzed, and
linked to equipment condition changes.

The decomposition of the matrix X is represented as a sum
of the outer product of vectors ti and pi. The resulting eqs 9
and 10 are given as follows

= +
= =

X t p t p
i

l

i i
T

i

m l

i i
T

1 1 (9)

= + = + = + =X X X ETP TP TP TPT T T T (10)

The dataset undergoing dimensionality reduction did not
include time as a factor. Only sensor measurements were
considered with a time index. The number of used principal

components was chosen to account for 95% of the explained
variance in the data. For all of the investigated units, this
resulted in using a number of principal components equal to
half the number of available sensors. The same number of
parameters was also considered during ICA.

The dependence on operator input in some semiautomated
process steps causes additional noise in the datasets. The
Savitzky−Golay noise filter was applied during condition
monitoring to the data to improve the signal-to-noise ratio and
visualize underlying trends in the plotted principal compo-
nents.32 The noise-filtered components were studied to
establish and compare operational baselines across multiple
production cycles.

As a follow-up analysis step, the impact of equipment faults
and maintenance actions were studied in relation to shifts in
the established baselines and the peaks identified in the
principal and independent components, respectively. This step
aimed to confirm and validate the impact of different actions
on the observed trends in the data. Links were established in
this step between observed patterns and different types of
faults eventually occurring weeks or months later. This
approach enabled the identification of characteristic recurring

Figure 6. Anomaly detection results using independent components from aggregated batch data over time. Examples of independent components
are plotted for two production years for (A) the vial washing machine, (B) the sterilization tunnel, (C) the isolator, and (D) the filling machine.
Production cycles are separated by half-yearly maintenance phases. Blue shaded areas indicate starting phases within each production cycle
following scheduled maintenance, and red shaded areas indicate the end phase of the production cycle before scheduled maintenance.
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patterns in the data and provided insights regarding the
relevant equipment condition.

3. RESULTS AND DISCUSSION
3.1. Anomaly Detection. The proposed methodology for

anomaly detection was applied to two full years of production
data consisting of four production cycles in all four units of the
aseptic filling line. Independent components were plotted with
time for each investigated unit. Figure 6 shows examples of the
plotted independent components for the vial washing unit (A),
the sterilization tunnel (B), the isolator (C), and the filling
machine (D). Clear outliers were observed for all four process
units represented in the case study. The outlier peaks were
present in the same locations in all independent components,
but with different intensities. The independent components
with the best signal-to-noise ratio were shown for each unit in
Figure 6.

Clusters of outlier peaks representing process anomalies
were observed at different frequencies in each of the units

indicating differences in the sources of variations within the
data from each process unit. In Figure 6, start-up phases of
production following scheduled maintenance are shaded in
blue and late production phases preceding scheduled
maintenance are shaded in red for better visualization. Outlier
peaks were observed along the course of the investigated
production cycles, but clusters of outliers were also observed at
the beginning of the production cycles (e.g., the first three
production cycles for the vial washing unit (A) and production
cycle I of year 2 for the sterilization tunnel (B)). Several
production cycles also had a second cluster of anomalies
toward the end of the production cycle. This second cluster
can be again seen in the first three production cycles of the vial
washing machine (A), and production cycle II of year 1 in the
filling machine (D). During maintenance phases, large parts of
the equipment are dismantled and reconnected before
resuming production. A cluster of anomalies at the start of
the production phase could be an indication of problems
related to improper restoration or connection of the equip-

Figure 7. Condition monitoring results using principal components from batch data aggregated over time. Examples of principal components
showing long-term variations are plotted for two production years for (A) the vial washing machine (PC6), (B) the sterilization tunnel (PC2), (C)
the isolator (PC1), and (D) the filling machine (PC5). Production cycles are separated by half-yearly maintenance phases. The original principal
components are given in gray, while the noise-filtered components are shown in black.
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ment. Clusters of anomaly sources in such phases should be
closely monitored as an indicator of the quality of maintenance
actions taken. If clusters are repeatedly obtained in the same
phases, then the maintenance procedure should be revised,
leading to the development of more standardized maintenance
procedures and quality checks.

During production, manual interventions may be required to
overcome some equipment malfunctions. Anomalies detected
during production could thus result from the original
malfunction or from problems arising from the subsequent
manual intervention. An increasing frequency of observed
anomalies during ongoing production, especially toward the
end of the cycle, is an indication of equipment deterioration
over time necessitating maintenance actions. More outliers are
detected in the vial washing machine compared to other units,
e.g., the filling unit, which had more process interruptions and
technical interventions. This was mainly attributed to the
available sensors in each unit. For example, vial breakages
frequently occur in both units. However, in the washing
machine, the breakages mainly occur by the spray needles and
can be more easily detected by the pressure sensors there. In
the filling unit, the breakages mainly occur on the conveyor
belt system but away from the installed sensors, making them
harder to detect by the given sensor infrastructure.

The application of this methodology over extended
production periods and the analysis of the clusters of anomalies
could provide a useful tool for decision-makers. Analysis of
recurring patterns of clusters at the beginning of production
cycles could help identify problematic maintenance actions,
e.g., difficulties in the proper reconnection of certain
equipment parts. This would prompt actions such as
adjustment of the checks performed after maintenance or
better equipment design in the long run. Limiting manual
interventions through better design would thus help lower the
occurrences of problems during operations. Recurring patterns
of anomalies observed toward the end of the production cycle
help decision-makers to identify areas where equipment
deterioration is not sufficiently avoided through maintenance
schedules at fixed time intervals. The insights gained can be
used to adjust maintenance schedules or to implement
preemptive targeted interventions when necessary. Outliers
only indicate sources of variances, but do not evaluate the
quality or impact of that change. Therefore, the second
condition monitoring procedure is needed to link equipment
faults with the data-driven findings from observed variances in
the system.
3.2. Condition Monitoring. Figure 7 shows an example of

the principal component scores over time for two production
years for each (A) of the vial washing machine, (B) the
sterilization tunnel, (C) the isolator, as well as (D) the filling
machine. The figure also shows the noise-filtered principal
components in black. The application of the noise filtering
algorithm has successfully increased the signal-to-noise ratio
enabling the identification of underlying long-term shifts and
trends. During condition monitoring, all resulting principal
components were visually analyzed. Shifts in the underlying
baselines in the data could be observed in multiple plotted
principal components, but not all of them. Figure 7 only shows
selected results of observed shifts for each of the investigated
process units.

In Figure 7, long- and medium-term shifts in the baseline
were observed for all units at different production cycles. For
example, long-term shifts were observed spanning several

months within production cycles for PC1 in the isolator in
Figure 7C. Medium-term shifts (on the scale of days to weeks)
were observed in the case of the vial washing machine and
sterilization tunnel. Figure 7A,B shows a relatively stable
baseline across production cycles in the vial washing machine,
and the sterilization tunnel, respectively, compared to the other
units. Recurring shifts in the respective baselines were observed
before being restored to the original position. Figure 7A shows
principal component 6 (PC6), while (B) shows the changes in
PC2. In the case of the isolator (shown in (C)), sustained
shifts in the baseline were observed across different production
cycles. During production cycle II of year 1, an upward shift in
the baseline was observed, which was not restored until the
end of the production cycle. A larger step change was observed
in the baseline starting from the following production cycle
(cycle I in year 2). This indicates changes applied to the
isolator in this maintenance phase between years 1 and 2.
During year 2, further fluctuations in the baseline were still
observed potentially indicating persisting issues. Finally, for the
filling machine (D) showing PC5, no sustained shifts in the
baseline were observed. However, a clear downward trend is
visible in production cycle II of year 2 as a possible indication
of a change in the overall equipment condition.

Equipment condition changes are generally expected to be
smaller in magnitude and in their contribution to the overall
variance in the data, but persistent over longer spans relative to
process-related changes. In this work, the later principal
components exhibited more long-term trends (changes lasting
more than 1 day), such as in the washing and filling machines,
with PCs 6, and 5, respectively. Long-term changes were
observed in PC1 in the case of the isolator (C), this indicated a
persistent and serious problem, contributing to significant
variability in operations. A comparison of the observed long-
term shifts with entries in the process logs for the isolator
showed that there was indeed an air leak during year 2, which
was fixed in the following maintenance cycle. The impacts of
this leak were manifested by an increased number of process
interruptions and required manual interventions. Only 2 years
of operation data were used in this study. The impact of the
problem in the isolator on the overall variance in the data
could be reduced when a longer time span is considered.
Overall, detecting persistent problems is the main goal for the
analysis of equipment condition changes, independent of the
contribution to the variance. The ability of this analysis to
detect the leak in the isolator using historical data proves the
usefulness of the data-driven approach to track long-term
equipment conditions using process monitoring data. Further
analysis of the data was still required to categorize the
problems occurring in other units and their sources. One
limitation persists, where the underlying sensor architecture
would be unable to fully describe all physical equipment
failures occurring at the line. For example, in the case of the
filling machine, only temperature and pressure measurements
are collected, which could be insufficient to describe all
recorded equipment failures.

A follow-up analysis of the short-term shifts in the data can
be achieved by overlaying detected equipment faults obtained
from the maintenance database with the principal components.
Technical interventions were not part of the data analysis and
are used to connect detected patterns in the data with
historical recorded events. This step aims to detect repetitive
patterns in the data and provide a better understanding of their
impacts and sources by linking them to recorded faults. The
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washing machine was used as an example for this analysis. For
the washing machine, the first principal components were
dominated by short-term variances, and no long-term trends or
baseline changes could be observed. Figure 8A shows PC6,
zoomed in for year 2 from the data of the washing machine
unit. A higher-resolution image is presented in the figure for
selected short-term shifts in both production cycles. Equip-
ment faults are overlaid in different colors according to their
type in the higher-resolution snapshots. Throughout the
analysis of the data, a recurring pattern was observed related
to the short-term baseline shifts. (Table 2) The start of the
shift generally coincided with a Type A fault (externally driven
faults), indicated in green (Figure 8B,C). The shift was
maintained as production was resumed for several days up to
multiple weeks, sometimes across multiple batches and
production campaigns. Eventually, an equipment-related fault
(Type B, indicated in red) occurred interrupting production
and requiring maintenance actions. Typically, the initial
baseline was restored after production was resumed following
the Type B maintenance. It should be noted that not all Type
A faults resulted in step changes in the baseline as shown in
Figure 8B. In that case, an initial shift was observed following a
maintenance action linked to a vial counting sensor, this was
followed by two glass breakage (Type A) events occurring
inside the washing machine, which required debris removal
and cleaning. As shown in the figure, in the period following
the initial Type A fault, the two others occurred without
causing further step changes in the baseline. Instead, more
gradual changes in the baseline were observed, especially after
the third Type A fault. This behavior indicates changes in the
underlying equipment conditions as a result of the initial fault
leading to changes in the data patterns. The maintenance
action taken after the following Type B fault then restored the
original baseline. Other examples are given in the second
production cycle in Figure 8C, where two shifts were
investigated. Both shifts followed a similar pattern, where a
shift caused by a manual intervention following an externally
driven fault (Type A) eventually led to an equipment fault

(Type B). In this case, Type A events included vial breakage
and maintenance of the conveyor belt system. Type B faults
triggered maintenance actions which were then successful at
restoring the baseline. Overall, the duration and magnitude of
the Type A and Type B faults varied, showing that increased
equipment deterioration does not always occur at a
comparable level with different categories of external and
equipment-related faults.

Figure 9 shows a more in-depth analysis of the same washing
machine unit in the same year. In Figure 9A, an example of
overlaid principal and independent components for the vial
washing machine is shown. Figure 9B shows the same
independent component with the recorded technical inter-
ventions. It can be seen in Figure 9A that the outlier peaks in
the independent component match the baseline shifts in the
principal component, which are shown in Figure 8 to coincide
with Type A events. The recorded technical interventions in
Figure 9B are also shown to be closely linked with the peaks in
the independent components and thus the recorded baseline
shifts in the plotted principal components. These findings
confirmed that the detected anomalies were equipment-related.
The persistence of the shift in operational baseline following
the technical intervention indicates either that the intervention
was not sufficient to fully restore the equipment to its previous
state or that the intervention itself had inadvertently caused
more changes in the equipment. This analysis can be useful for
the detection of the start of the shifts marking equipment
deterioration. The early detection of these shifts is important
to avoid eventual equipment faults and unexpected downtime.

Overall, 11 distinct baseline shifts in the principal
component were identified in year 2 in the washing machine
(as shown in Figure 8A). All except one could be related to a
recorded technical intervention in the offline database. The
additional shift without a record in the offline database
indicates that the underlying equipment-related problem was
most likely fixed during routine operations with manual
adjustments of the line for different product sizes. The
remaining 10 baseline shifts were not fixed during normal

Figure 8. Higher-resolution analysis of principal component 6 from the washing machine during production year 2. (A) PC6 plotted with time over
year 2. (B) Zoomed-in view of an example of a long-term baseline shift observed in production cycle I, while (C) gives focuses on another example
from production cycle II. Equipment faults from historical records are overlaid in (B, C). Externally driven faults (Type A) are shown in green, and
equipment-related faults (Type B) are shown in red.
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operation and eventually led to type B events requiring
additional downtime and technical expertise to fix. This
resulted in a total of 24 days of non-value-adding downtime
before production was resumed. For example, the type B event
shown in red in Figure 8B required 1-day downtime for
equipment replacement. The first type B event in Figure 8C
was followed by 8 days of downtime until the problem was
identified and the necessary equipment was replaced. The
second type B event in Figure 8C led to a production stop for
1.5 days. The application of this methodology could therefore
be of high use to identify the underlying problem and utilize
the planned downtime more effectively to perform the
restorative maintenance actions.

This analysis shows that even small equipment-related
changes, as evidenced by their small contribution to the
variance (PC6), could lead to equipment deterioration and
long downtime for the eventual required maintenance. The
early detection of such shifts in operational baselines can help
avoid long downtime periods by planning maintenance actions
in between production runs once a baseline shift is detected.
Learning from previous recurring patterns can help shorten the
downtime further by linking related events in each PC showing
the long-term baseline shifts. Due to the scarcity of some
events, while some insights can still be gained regarding the
nature and impact of those events, a full characterization of the
potential source or effect may not be possible. To address such

cases, all persistent baseline shifts should be investigated in
scheduled periods between batch runs. The success of the
maintenance actions taken would be indicated by the
restoration of the baseline. Repetitive patterns can be more
fully investigated. Such recurring patterns are also of highest
importance as they are occurring more frequently and thus
have the highest potential for downtime reduction due to
unexpected failures. Learning from the related historical events
can shorten the duration required for investigating the sources
and thus help achieve more consistent performance during
maintenance.

Overall, this analysis serves as a preliminary effort to infer
equipment condition from the available process measurements.
Distinct patterns were detected in the data. Historical events
were used for the verification of the significance of such
patterns. The combination of ICA and PCA allowed for a
deeper interpretation of the connections between recorded
events. The combined use of the methods allowed for
maximizing the insights gained from both. The isolation of
equipment-related events from the noisy PCs alone would be
more difficult given the small contribution of equipment-
related changes to the overall variance. The combination of
methods helped identify the sources of the shifts, link them to
exact recorded interventions and then map their persisting
impact on the operation. Additional insights regarding the
causes of the faults, the nature of the deterioration occurring,
and its impact could be gained by a deeper analysis of the PCs
showing the shifts, whether short- or long-termed ones.
Analysis of the loading factors and the sensors contributing
to those PCs, as well as the combinations of affected PCs can
indicate the type and location of the developing equipment
fault. This would reduce the overall time required for
maintenance. Early detection and intervention can potentially
save valuable production time and avoid unnecessary process
downtime. Type A events can be further classified according to
the required interventions. Problematic interventions, which
result in big shifts in operational baselines can be identified.
This supports operators and process designers to propose
more convenient courses of action following such events and
offer suggestions for better process and machine design. These
findings enable the transition from a purely time-based
maintenance scheme that is currently in place to a condition-
based one.

4. CONCLUSIONS
A two-stage methodology for equipment condition assessment
in drug product manufacturing mainly leveraging short-term
focused process monitoring data was proposed. The method-
ology was applied to an aseptic filling line using data from two
production years. Underlying long-term equipment-related
trends could be extracted from the data.

The anomaly detection showed that while outlier events
occurred throughout the production cycles, increased clusters
of anomalies could be detected at the beginning and end of the
production cycles between maintenance periods in some cases.
Increased process understanding was achieved by visualizing
outlier events and not just process failures. This finding helps
decision-makers adjust the maintenance intervals instead of
relying on strict time-based schedules to avoid the observed
deterioration at the end of the cycle. The findings could also be
used to adjust the maintenance actions taken to achieve
smoother operations in the following production cycles.

Figure 9. Combined analysis of principal and independent
components for the washing machine in relation to recorded
equipment-related technical interventions in the unit. (A) Independ-
ent component 1 overlaid with principal component 6. (B)
Independent component overlaid with recorded technical interven-
tions from the offline database. The figure shows the correspondence
of the interventions with the IC peaks, which also coincide with the
start of long-term baseline shifts in the PC.
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The condition monitoring identified recurring patterns in
the data to show long- and medium-term shifts in the
operation baseline data. These shifts were linked to sources
obtained from the anomaly detection and to different types of
process faults. The role of these faults in shifting operational
baselines was investigated. This allows decision-makers to
identify deteriorating conditions earlier and apply appropriate
preemptive measures, which can result in a significant
reduction of non-value-adding downtime. Problematic main-
tenance actions can also be highlighted, which could eventually
lead to improved machine, process, and operation design.
Localization of the sources of variance and their impacts would
help to further separate the detected condition changes, for
example, separating sensor malfunction from equipment
deterioration.

This work shows the applicability of predictive maintenance
applications given the sensor architecture in the facility. It has
been established that equipment-related changes can be
inferred from the available data. Future work should further
try to identify and precisely localize equipment with
deteriorating conditions, address the classification of fault
events, and predict failure occurrences in a more automated
manner. The findings and insights gained in this work could
thus lay the groundwork for predictive maintenance actions in
the pharmaceutical industry. This could potentially save
valuable production time, reduce unplanned downtime, avoid
redundant maintenance actions, and improve process design
and operation.
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(15) Zürcher, P.; Shirahata, H.; Badr, S.; Sugiyama, H. Multi-Stage

and Multi-Objective Decision-Support Tool for Biopharmaceutical
Drug Product Manufacturing: Equipment Technology Evaluation.
Chem. Eng. Res. Des. 2020, 161, 240−252.
(16) Meneghetti, N.; Facco, P.; Bezzo, F.; Himawan, C.; Zomer, S.;

Barolo, M. Knowledge Management in Secondary Pharmaceutical
Manufacturing by Mining of Data Historians - A Proof-of-Concept
Study. Int. J. Pharm. 2016, 505, 394−408.
(17) Casola, G.; Siegmund, C.; Mattern, M.; Sugiyama, H. Data

Mining Algorithm for Pre-Processing Biopharmaceutical Drug
Product Manufacturing Records. Comput. Chem. Eng. 2019, 124,
253−269.
(18) Pretzner, B.; Taylor, C.; Dorozinski, F.; Dekner, M.;

Liebminger, A.; Herwig, C. Multivariate Monitoring Workflow for
Formulation, Fill and Finish Processes. Bioengineering 2020, 7, No. 50.
(19) Zeberli, A.; Badr, S.; Siegmund, C.; Mattern, M.; Sugiyama, H.

Data-Driven Anomaly Detection and Diagnostics for Changeover

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c04182
ACS Omega 2022, 7, 36415−36426

36425

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sara+Badr"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-4233-1353
https://orcid.org/0000-0003-4233-1353
mailto:badr@pse.t.u-tokyo.ac.jp
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Philipp+Zu%CC%88rcher"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Stephanie+Knu%CC%88ppel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hirokazu+Sugiyama"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3067-030X
https://pubs.acs.org/doi/10.1021/acsomega.2c04182?ref=pdf
https://doi.org/10.1016/j.inffus.2018.10.005
https://doi.org/10.1016/j.inffus.2018.10.005
https://doi.org/10.1016/j.inffus.2018.10.005
https://doi.org/10.1007/s00170-019-04595-0
https://doi.org/10.1007/s00170-019-04595-0
https://doi.org/10.1007/s00170-019-04595-0
https://doi.org/10.1109/LRA.2019.2918684
https://doi.org/10.1109/LRA.2019.2918684
https://doi.org/10.1016/j.drudis.2019.06.005
https://doi.org/10.1016/j.drudis.2019.06.005
https://doi.org/10.1016/j.jii.2020.100131
https://doi.org/10.1016/j.jii.2020.100131
https://doi.org/10.1016/j.jii.2020.100131
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=211
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=211
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=211
https://doi.org/10.1016/j.ijpharm.2019.06.036
https://doi.org/10.1016/j.ijpharm.2019.06.036
https://doi.org/10.3390/pr7020094
https://doi.org/10.3390/pr7020094
https://doi.org/10.3390/pr7020094
https://doi.org/10.1002/biot.201600546
https://doi.org/10.1002/biot.201600546
https://doi.org/10.1016/j.ifacol.2019.11.226
https://doi.org/10.1016/j.ifacol.2019.11.226
https://doi.org/10.1007/s00170-014-6341-2
https://doi.org/10.1007/s00170-014-6341-2
https://doi.org/10.1016/j.cie.2019.106024
https://doi.org/10.1016/j.cie.2019.106024
https://doi.org/10.1016/j.ijpharm.2020.119621
https://doi.org/10.1016/j.ijpharm.2020.119621
https://doi.org/10.1016/j.ijpharm.2020.119621
https://doi.org/10.1016/j.cherd.2020.07.004
https://doi.org/10.1016/j.cherd.2020.07.004
https://doi.org/10.1016/j.cherd.2020.07.004
https://doi.org/10.1016/j.ijpharm.2016.03.035
https://doi.org/10.1016/j.ijpharm.2016.03.035
https://doi.org/10.1016/j.ijpharm.2016.03.035
https://doi.org/10.1016/j.compchemeng.2018.12.001
https://doi.org/10.1016/j.compchemeng.2018.12.001
https://doi.org/10.1016/j.compchemeng.2018.12.001
https://doi.org/10.3390/bioengineering7020050
https://doi.org/10.3390/bioengineering7020050
https://doi.org/10.1016/j.cherd.2020.12.018
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c04182?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Processes in Biopharmaceutical Drug Product Manufacturing. Chem.
Eng. Res. Des. 2021, 167, 53−62.
(20) Ahmad, R.; Kamaruddin, S. An Overview of Time-Based and

Condition-Based Maintenance in Industrial Application. Comput. Ind.
Eng. 2012, 63, 135−149.
(21) Kumar, A.; Shankar, R.; Thakur, L. S. A Big Data Driven

Sustainable Manufacturing Framework for Condition-Based Main-
tenance Prediction. J. Comput. Sci. 2018, 27, 428−439.
(22) de Jonge, B.; Scarf, P. A. A Review on Maintenance

Optimization. Eur. J. Oper. Res. 2020, 285, 805−824.
(23) Rantanen, J.; Khinast, J. The Future of Pharmaceutical

Manufacturing Sciences. J. Pharm. Sci. 2015, 104, 3612−3638.
(24) Liggan, P.; Lyons, D. Applying Predictive Maintenance

Techniques to Utility Systems. Pharm. Eng. 2011, 31, 8−16.
(25) Klutz, S.; Magnus, J.; Lobedann, M.; Schwan, P.; Maiser, B.;

Niklas, J.; Temming, M.; Schembecker, G. Developing the Biofacility
of the Future Based on Continuous Processing and Single-Use
Technology. J. Biotechnol. 2015, 213, 120−130.
(26) Rendall, R.; Chiang, L. H.; Reis, M. S. Data-Driven Methods for

Batch Data Analysis − A Critical Overview and Mapping on the
Complexity Scale. Comput. Chem. Eng. 2019, 124, 1−13.
(27) Rendall, R.; Reis, M. S. Which Regression Method to Use?

Making Informed Decisions in “Data-Rich/Knowledge Poor”
Scenarios − The Predictive Analytics Comparison Framework
(PAC). Chemom. Intell. Lab. Syst. 2018, 181, 52−63.
(28) OSIsoft. PI System. https://www.osisoft.com/pi-system

(accessed March 16, 2022).
(29) Hyvärinen, A.; Oja, E. Independent Component Analysis:

Algorithms and Applications. Neural Networks 2000, 13, 411−430.
(30) Albazzaz, H.; Wang, X. Z. Statistical Process Control Charts for

Batch Operations Based on Independent Component Analysis. Ind.
Eng. Chem. Res. 2004, 43, 6731−6741.
(31) Nomikos, P.; MacGregor, J. F. Monitoring Batch Processes

Using Multiway Principal Component Analysis. AIChE J. 1994, 40,
1361−1375.
(32) Savitzky, A.; Golay, M. J. E. Smoothing and Differentiation of

Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36,
1627−1639.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c04182
ACS Omega 2022, 7, 36415−36426

36426

https://doi.org/10.1016/j.cherd.2020.12.018
https://doi.org/10.1016/j.cie.2012.02.002
https://doi.org/10.1016/j.cie.2012.02.002
https://doi.org/10.1016/j.jocs.2017.06.006
https://doi.org/10.1016/j.jocs.2017.06.006
https://doi.org/10.1016/j.jocs.2017.06.006
https://doi.org/10.1016/j.ejor.2019.09.047
https://doi.org/10.1016/j.ejor.2019.09.047
https://doi.org/10.1002/jps.24594
https://doi.org/10.1002/jps.24594
https://doi.org/10.1016/j.jbiotec.2015.06.388
https://doi.org/10.1016/j.jbiotec.2015.06.388
https://doi.org/10.1016/j.jbiotec.2015.06.388
https://doi.org/10.1016/j.compchemeng.2019.01.014
https://doi.org/10.1016/j.compchemeng.2019.01.014
https://doi.org/10.1016/j.compchemeng.2019.01.014
https://doi.org/10.1016/j.chemolab.2018.08.004
https://doi.org/10.1016/j.chemolab.2018.08.004
https://doi.org/10.1016/j.chemolab.2018.08.004
https://doi.org/10.1016/j.chemolab.2018.08.004
https://www.osisoft.com/pi-system
https://doi.org/10.1016/S0893-6080(00)00026-5
https://doi.org/10.1016/S0893-6080(00)00026-5
https://doi.org/10.1021/ie049582?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie049582?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/aic.690400809
https://doi.org/10.1002/aic.690400809
https://doi.org/10.1021/ac60214a047?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac60214a047?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c04182?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

