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Transected axons are unable to regenerate after spinal cord injury (SCI). Glial scar is
thought to be responsible for this failure. Regulating the formation of glial scar post-SCI
may contribute to axonal regrow. Over the past few decades, studies have found that the
interaction between immune cells at the damaged site results in a robust and persistent
inflammatory response. Current therapy strategies focus primarily on the inhibition of
subacute and chronic neuroinflammation after the acute inflammatory response was
executed. Growing evidences have documented that mesenchymal stem cells (MSCs)
engraftment can be served as a promising cell therapy for SCI. Numerous studies have
shown that MSCs transplantation can inhibit the excessive glial scar formation as well as
inflammatory response, thereby facilitating the anatomical and functional recovery. Here,
we will review the effects of inflammatory response and glial scar formation in spinal cord
injury and repair. The role of MSCs in regulating neuroinflammation and glial scar formation
after SCI will be reviewed as well.

Keywords: spinal cord injury, mesenchymal stem cells, astrocyte, T cells, macrophage, neuroinflammation,
glial scar
INTRODUCTION

Spinal cord injury (SCI) is a permanent and disabling disorder that generates great personal loss and
social burden (1). It is estimated that the global incidence of SCI ranges from 10.4 and 83 per million
per year, and will continue to rise with the rapid development of transportation and aging
population (2, 3). In general, we customarily divide the pathophysiology process of SCI into
primary injury and secondary injury; the former commonly occurs owing to vertebral fracture or
dislocation caused by a mechanical insult, which would destroy the nervous tissue directly (4, 5).
Following the primary injury, ongoing pathological changes contribute to secondary injury, which is
mainly characterized by chronic inflammation, cell dysfunction, vascular changes, etc. (6). Primary
and secondary injury events not only activate resident astrocytes and microglia, fibroblasts, and
other glial cells, but also contribute to the infiltration of peripheral immune cells, and the interaction
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between these cells underlies the glial scar, inflammation, ionic
imbalance, and free radical formation, which together inhibit the
formation of axonal regeneration and myelination (Figure 1)
(7, 8).

Both initial traumatic injury and secondary events cause
damage of the neuronal conduction pathways, and then result
in the deficits of a range of senses and movements below the
damaged plane (9). The deficiency in functions can not only
severely reduce the quality of life of patients suffering from SCI,
but also has a devastating influence on their families and society
because it can keep them from engaging in economic activities
(10). Therefore, therapies targeting SCI are to rebuild the
integrity of damaged neurons, as well as avoid the secondary
damage to more healthy nerve tissue surrounding the lesion (11).
However, numerous studies have documented that inflammatory
cells will persist in the lesion area post-SCI, and these cells
further aggravate the injury of the surrounding normal spinal
cord tissue by secreting various inflammatory cytokines, reactive
oxygen species and proteolytic enzymes, leading to more serious
neurological dysfunction (12, 13). In addition, glial scar in the
later stage forms a physical and biochemical barrier to axon
regeneration (14). Therefore, many scholars believe that the ideal
treatment method for SCI is to reduce the glial scar levels in the
later stage, thus creating a permissive environment for axon
regrow (15).

Over the past decade, an increasing body of evidences has
documented that mesenchymal stem cells (MSCs) engraftment
can be served as an effective therapeutic strategy for SCI (16, 17).
Early on, it was expected that these multipotent cells were likely
to promote functional recovery via their multidirectional
differentiation potential, which may enable them to replace
injured neural tissue (18). However, to date, the differentiation
of MSCs into neurons in vivo still remains controversial (19).
Notably, MSCs transplantation could still promote functional
Frontiers in Immunology | www.frontiersin.org 2
and anatomical recovery in the SCI models, and subsequent
studies found that this phenomenon might mainly depend on
their powerful paracrine effect and direct cell-to-cell contact,
which involved in the regulation of immune cells and
inflammatory cytokines (20, 21). Furthermore, dozens of
evidences indicated that transplanted MSCs could modulate
the formation of glial scar via changing the level of cytokines,
thus promoting axonal regeneration, inhibiting cavity formation,
and finally promoting functional recovery (22). Here, we will
review the effects of inflammatory response and glial scar
formation on SCI prognosis. Meanwhile, we will pay special
attention to the therapeutic role of MSCs on neuroinflammation
and glial scar formation.
INFLAMMATORY RESPONSE AFTER SCI

Inflammatory response is an integral component of secondary
responses because it directly or indirectly determines the
outcome of SCI (23). A mass of studies has revealed that early
inflammatory response is beneficial, as it removes tissue debris
and elevates the level of neurotrophic factors (13, 24). However,
when the inflammatory response persists, inflammatory cells will
release a great amount of inflammatory cytokines, proteolytic
enzymes, matrix metalloproteinases, reactive oxygen species
(ROS), leading to more damage to the surrounding healthy
spinal cord tissue (25–28). The blood-spinal cord barrier
(BSCB) is mainly composed of nonporous capillary endothelial
cells, basal cells, pericytes and astrocytes, which together not only
prevent the central nervous system (CNS) from the metabolic
wastes and neurotoxic molecules in the circulating blood, but
also regulate the nutritional molecules into the brain (29, 30).
These functions play a significant role in maintaining the
homeostasis of CNS and normal operation of the neural
FIGURE 1 | Primary and secondary injuries together leading to axonal regeneration failure and neuronal necrosis and apoptosis, results in dysfunction below the
damaged plane in SCI patients.
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function (31). However, one of the earliest events following SCI
is the disruption of the integrity of the BSCB and damage of the
neural cells (29). Damaged-nerve cells produce large amounts of
cellular debris and intracellular proteins, called damage-
associated molecular patterns (DAMPs), which bind to pattern
recognition receptors (PRRs) on the surface of resident
astrocytes and microglia, causing these inflammatory cells to
release large amounts of cytokines, chemokines, and reactive
oxygen species (32, 33).

After the destruction of the BSCB, peripheral immune cells
are driven to the lesion site by the various chemokines and
cytokines (34, 35).These infiltrating peripheral immune cells will
release some similar soluble factors, making them be the primary
cellular source of these molecules at the lesion site (36). The first
peripheral immune cells to infiltrate the injury site are
neutrophils, which reach their peak at about 24h post-SCI
(30). And study has revealed that the number of infiltrating
neutrophils was correlated with the severity of SCI (37). These
cells can not only facilitate the phagocytosis and removal of cell
debris, but also promote repair by secreting leukocyte protease
inhibitors (38). However, these cells can also release large
amounts of pro-inflammatory cytokines, proteolytic enzymes,
and reactive oxygen species, which enhance the inflammatory
response and lead to myelin degradation, aggravating the
necrosis and apoptosis of damaged neurons (39). It has been
shown that activation and infiltration of IKK-b-dependent
neutrophils in the injured spinal cord exacerbates
neuroinflammation and neuronal damage, thereby impeding
functional recovery after SCI (40). More researches are needed
to elucidate the role of neutrophils in spinal cord injury
and repair.

After neutrophils infiltration, macrophages are the next
immune cells to present in the lesion site, and peak within the
spinal cord approximately 7 days post injury (41). This cell type
was derived initially from resident microglia and subsequently
mainly from circulating monocytes. However, these two types of
macrophages from different sources are very similar in
morphology, gene expression, as well as relative function, so it
is difficult to distinguish them at the lesion site (42, 43). As a
major component of innate immune response, macrophages
have been regarded as an important cell type in regeneration
context post-SCI due to their strong functional plasticity (44).
Studies have revealed that these immune cells can not only
maintain homeostasis by regulating tissue repair and metabolic
activities, but also play a central role in immune response and
host defense (45). Based on the differences of cell surface
markers, gene expression and secretory soluble factors,
macrophages are categorized into two main subtypes named
M1 and M2: pro-inflammatory cytokines, like interleukin-6 (IL-
6) and tumor necrosis factor alpha (TNF-a), ROS, proteolytic
enzyme by M1 and anti-inflammatory cytokines, like IL-10 and
TGF-b1 by M2 (46, 47). M1 macrophages act as the bad guys by
promoting inflammatory response, inhibiting axons
regeneration and demyelination. In contrast, anti-inflammatory
M2 macrophages play a protective role in promoting functional
recovery by removing apoptotic cells and promoting axonal
Frontiers in Immunology | www.frontiersin.org 3
regeneration and myelin sheaths (48, 49). During the process
of skin and muscle wounds healing, macrophages will shift from
M1 to M2 phenotype in response to the change of
microenvironmental stimulus signals at the lesion site (50, 51).
Whereas, an analogous M1 to M2 conversion was not observed
in the process of spinal cord tissue repair, and the persistent
presence of M1 macrophages would exacerbate secondary injury
(52–54). Therefore, inducing macrophages switch towards M2
phenotype following acute inflammatory response may
contribute to anatomical and functional recovery post-SCI.

Astrocytes, although not immune cells, have been shown to
play a crucial role in the innate and adaptive immune responses
post CNS injury (55). Study has documented that locally
increased IL-1b could mediate the synthesis of MCP-1, KC,
and MIP-2 via activating the MyD88/IL-1R1 signaling in
astrocytes, and these chemokines could result in the infiltration
of neutrophi l s and monocytes , thereby tr igger ing
neuroinflammation at the lesion site (56). Moreover, following
CNS injury, activated astrocytes would express and secret a wide
range of molecules, including chemokines, inflammatory
cytokines, adhesion molecules, and nitric oxide, which together
create a pro-inflammatory microenvironment. However,
astrocytes inhibited in NF-kB signaling significantly reduced
the expression of pro-inflammatory and oxidative stress genes,
thus exerting a neuroprotective effect (57). Zamanian et al. (58)
found that astrocytes could differentiate into two subtypes,
termed A1 and A2 astrocytes, under two different conditions
of neuroinflammation and ischemia. A1 phenotype greatly
upregulates the expression of many gene, like classic
complement cascade genes, which have been shown to have
destructive effects on synaptic formation, whereas A2 phenotype
contributes to axonal regeneration and neuroprotection by
upregulating the expression of neurotrophic factors and anti-
inflammatory cytokines (59–61). Glial fibrillary acidic protein
(GFAP), a cytoskeleton protein found in astrocytes, has been
used as a specific marker for astrocytes (62). Complement
component 3 (C3) is a bio-marker for A1 astrocytes but not
expressed by A2 astrocytes, so C3 + GFAP has been used to
identify A1 phenotypes. A2 astrocytes have been found to
specifically express S100A10, a member of the S100 protein
family, so S100A10 + GFAP was used as a double-marker for
detecting A2 phenotype (63, 64).

T lymphocytes are activated ensuing SCI and play an
important role in the neuroinflammation and downstream
cascades of nerve degeneration and repair (65). Serpe et al.
(66) found that the survival of facial motor neurons after
axonectomy depended on the presence of anti-inflammatory
CD4+ T cells, and their analysis of postoperative T cell subsets
revealed that both pro-inflammatory cells (Th1 and Th17) and
anti-inflammatory cells (Th2 and Tregs) were activated after
injury. The balance between T cell subtypes is essential for nerve
tissue repair. However, during SCI, the balance between Th1/
Th2 and Th17/Tregs is disrupted, and the adaptive immune
response is biased towards the pro-inflammatory Th1 and Th17
phenotypes, leading to increased release of numerous
inflammatory cytokines such as interferon gamma (IFN-g),
December 2021 | Volume 12 | Article 751021
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TNF-b, and IL-17 (4, 29, 67). In addition, these two cell types
promoted B lymphocytes to synthesize and release
autoantibodies, which further contributed to neuronal
demyelination and axonal damage (4, 65). The deficiency of
miR-155 significantly inhibited the differentiation of CD4+ T
cells to Th17 cells after SCI and reduced the expression of the
pro-inflammatory cytokine (IL-17), thus promoting the
functional recovery post SCI (68). Therefore, inducing a shift
of T lymphocyte towards Th2 and Tregs phenotype may be
beneficial to play a neuroprotective role in the early stage of SCI.

In summary, numerous researches have been performed on
the activation, proliferation, and polarization of resident and
peripheral immune cells for their great contribution to the
neuroinflammation post-SCI. Early inflammatory events are
essential for clearing cellular debris and pathogens and limit
the extent of acute injury. However, following this acute phase,
the excessive inflammatory response can hinder the axonal
regeneration, new neuronal growth and myelin sheath
germination, resulting in severe neurological dysfunction.
Therefore, inhibiting these immunological responses of the
damaged spinal cord has become the major therapeutic
strategies to protect against apoptosis and oxidative damage,
and promote angiogenesis as well as neuronal regeneration.
ROLE OF MSCs ON
INFLAMMATORY RESPONSE

Currently, therapies targeting post-SCI neuroinflammation are
extremely limited. The only drug approved by FDA and used in
clinical treatment is methylprednisolone sodium succinate, whose
main mechanism of action is binding to glucocorticoid receptors to
prevent nuclear translocation of pro-inflammatory transcription
factors (26, 69). Whereas, the clinical application of hormone has
Frontiers in Immunology | www.frontiersin.org 4
declined over the past few decades due to its unclear therapeutic
value and its associated serious complications, such as
gastrointestinal bleeding, aseptic necrosis of the femoral head, and
wound infection (70, 71). With the rapid development of
regenerative medicine, scientists have isolated various MSCs from
different tissues, such as peripheral blood, bone marrow, placenta,
umbilical cord and amniotic fluid (72–74). And numerous studies
have showed that these pluripotent stem cells can effectively correct
various functional parameters of the SCI models (Figure 2) (9). In
investigating the underlyingmechanisms involved, it was found that
MSCs exert their therapeutic effects mainly through the cell-cell
interactions and the secretion of various cytokines to suppress the
inflammatory response (75).

Studies have shown that transplantation of bone marrow
mesenchymal stem cells (BM-MSCs) into SCI rat contusion
models could significantly up-regulate the number of M2
macrophages and down-regulate the number of M1
macrophages at the injury site, accompanied by increased
levels of IL-4 and IL-13, and decreased levels of TNF-a and IL-
6, which might contribute to the recovery of motor function,
increased retention of axon and myelin sheath as well as less glial
scar formation after injury (76). Considering the adverse effects
of toxic microenvironment on the survival rate and efficacy of
MSCs following SCI, biomaterials that can provide neurotrophic
factors, protective growth factors, drugs or nanoparticles are co-
transplanted with MSCs to enhance their inhibition of glial scar
and promote neuroprotective and anti-inflammatory effects (77,
78). Peripheral blood mesenchymal stem cells (PB-MSCs) have
attracted our attention due to their unique advantages of the ease
of harvesting samples, along with lesser pain to patients (72).
Recently, we transplanted PB-MSCs into the rat SCI contusion
models and found that the function of posterior limb locomotion
was significantly improved in the PB-MSCs transplantation
group, which might correlate with a significant increase in the
FIGURE 2 | MSCs transplantation promotes functional and anatomical recovery in SCI patients by inhibiting excessive inflammatory response and glial scar
formation. Notes: ↑, promotion; ↓, inhibition.
December 2021 | Volume 12 | Article 751021

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pang et al. Neuroinflammation and Scarring Post-SCI
ratio of M2/M1 macrophages and higher levels of the anti-
inflammatory cytokines (IL-10 and TGF-b1), as well as
decreased levels of the pro-inflammatory cytokines (IL-6 and
TNF-a). Furthermore, we also found similar molecular
expression patterns and macrophages polarization while
macrophages co-cultured with PB-MSCs in vitro (18). Notably,
the levels of IL-10 in the co-culture system were significantly
increased (18, 79). MSCs are known to produce IL-10 (80, 81).
Moreover, studies have shown that IL-10 could mediate the
polarization of M2 macrophages by activating JAK/STAT3 (82,
83). Therefore, we speculate that IL-10 secreted by PB-MSCs
may mediate the formation of M2 phenotype by activating the
JAK/STAT3 signaling in macrophages. However, more studies
are needed to for further confirmation.

Exosomes (exo) play a critical role in the immune regulation of
MSCs (84). Kaminski et al. (85) found that in brain injury models,
MSCs-derived extracellular vesicles significantly upregulated the
ratio of A2/A1 reactive astrocytes, accompanied by increased
expression of nerve growth factors (i.e., BDNF, VEGF and EGF)
and anti-inflammatory cytokines, which together improved the
survival of neurons and increased the vascular density. BM-MSCs-
exo transplantation into SCI animals showed that they
significantly promoted angiogenesis, reduced neuronal apoptosis,
inhibited glial scar formation, reduced lesion area, inhibited
inflammation and promoted axon regeneration, and also
significantly inhibited the polarization of A1 astrocytes (86). In
addition, research has revealed that intravenous MSCs andMSCS-
exo might reduce the number of A1 astrocytes induced after SCI
by inhibiting the nuclear translocation of NF-kBp65, thus exerting
the anti-inflammatory and neuroprotective effects (87). We
usually regard the amount of IL-6 as an indicator of the degree
of inflammation post-SCI because IL-6 can aggravate the
secondary inflammation to some extent (88, 89). Whereas, some
studies have documented that IL-6 can also weaken the
inflammation and promote tissue repair after injury, which may
be explained by the fact that it plays a defense mechanism in the
acute inflammatory response but in chronic inflammation it
mainly presents pro-inflammatory characteristics (90). It was
found that MSCs might activate the JAK/STAT3 pathway in
astrocytes by secreting IL-6, and then mediate the polarization
of neuroprotective A2 astrocytes, thereby reducing the neuron
damage post brain injury (91). At present, there are still few
studies on the polarization of astrocytes mediated by MSCs.
Hence, more experiments are needed to confirm different
MSCs effects on the activation of astrocytes and its related
molecular mechanisms.

The interaction between MSCs and T cells has been well
studied. MSCs could strongly inhibit T cell activation and
proliferation both in vitro and in vivo, and induced distinct cell
types with specific phenotypes (92). Researchers have documented
that MSCs could inhibit the division of T cells by down-regulating
the expression of cyclin D2 and promoting the expression of
p27Kip1 as well, leading to cell cycle arrested at the G1 phase (93).
Moreover, MSCs could still inhibit the proliferation of T cells
when the cells were separated by a Transwell system, suggesting
that soluble factors were involved in this phenomenon (94).
Frontiers in Immunology | www.frontiersin.org 5
Studies showed that the inhibitory effect of MSCs on T cell
proliferation was mediated by their secretion of transforming
growth factor-b1 (TGF-b1), hepatocyte growth factor (92) and
prostaglandin E2 (PGE2) (95, 96). Furthermore, indoleamine 2,
3dioxygenase (IDO) and nitric oxide (NO) also played an
important role in this process (97, 98). For example, MSCs
stimulated by IFN-g could promote the conversion of
tryptophan to downstream metabolite kynurenine by secreting
IDO, thereby inhibiting the proliferation of T cell (99).
Furthermore, it also found that NO secreted by MSCs could
inhibit T cell proliferation by inhibiting STAT5 phosphorylation
in T cells (100). Expect for inhibiting T cell proliferation, MSCs
could also suppress the proliferative response of Th1 and Th17
cells but induce the formation of Th2 and Treg cells to exert their
immunosuppressive activity (101). Studies have shown that BM-
MSCs-derived exo could not only induce a shift of Th1 towards
Th2 cells, but also down-regulated the ratio of Th17/Treg,
accompanied by decreased levels of TNF-a and IL-1b and
increased levels of TGF-b (102). Previously, we found that the
ratio of CD4 + IL-17 + Th17/CD25 + Foxp3 + Treg decreased
when the lymphocytes were directly co-cultured with PB-MSCs
(18). Similarly, transplanting PB-MSCs into SCI rats also found
that they inhibited the expression of Th17 related genes and
facilitated the expression of Treg related genes, which might
contribute to the functional recovery (103). In investigating the
mechanisms involved, it was found that MSCs inhibited Th17
differentiation from naive and memory T-cell precursors by PGE2
via EP4 (104). In addition, studies have also found that ICOSL on
MSCs binding to ICOS on CD4+T cells could facilitate the
differentiation of Treg cells through the activation of PI3K-Akt
signaling (105).

In summary, MSCs exhibit encouraging anti-inflammatory
roles on the cellular micro-environment. A large number of
animal experiments have shown that they can induce the
formation of anti-inflammatory immune cells such as M2
macrophages, A2 astrocytes, Tregs and Th2 cells, and then
inhibit the inflammatory response at the site of injury before
maintaining nervous regeneration and reducing neuronal
apoptosis. Neuroinflammation after SCI is indeed a double-edged
sword and should be treated to promote early beneficial aspects
rather than completely suppress the inflammatory response.
Studies suggest that MSCs engraftment at 7 days rather than
immediately post-injury has strengthened their therapeutic
efficacy. At present, most studies on the MSCs therapy focus on
the acute and subacute phages post-SCI, while the therapeutic effect
in the chronic phage still needs to be confirmed by further studies.
Additionally, the immunoregulatory ability of MSCs may be
enhanced after exposure to certain stimuli, so preconditioning of
MSCs with certain cytokines before transplantation may lead to
more effective immunomodulation.
GLIAL SCAR FOLLOWING SCI

Once the spinal cord tissue gets injured, activated astrocytes,
microglia and NG2 glia together form a dense border to isolate
December 2021 | Volume 12 | Article 751021
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the severe damaged area (30). The lesion core contains a mixture
of activated fibroblasts, monocyte macrophages, and extracellular
matrix proteins (Figure 3) (106). Astrocytes are the most
abundant glial cells in the CNS and play an important role in
regulating blood flow, maintaining the integrity of the blood-brain
barrier, modulating the plasticity and function of synapses, and
keeping the balance of neuronal microenvironment (107, 108).
After SCI, astrocytes will proliferate, hypertrophy and gradually
migrate along the edge of the severely damaged tissue,
interweaving around the lesion center to form the main
component of glial scar (109–111). Hence, the main therapeutic
strategies targeting glial scar focus on regulating the activation of
astrocytes (112). Early on, glial scar was regarded as the major
obstacle to neuronal axon regeneration in the CNS. Whereas, in
recent years, growing evidence has shown that glial scar is also
likely to promote axonal regeneration (113, 114). This difference is
possibly explained by the fact that glial scar plays a protective role
in the early stage of injury, but hinders the repair of the CNS in the
later stage (115, 116).

Adverse Effects of the Glial Scar
During the process of damaged nerve tissue healing, the adverse
effect of reactive astrocytes on CNS functional recovery is mainly
due to the glial scar that constitutes a physical barrier to axonal
regeneration, making it difficult for axons to extend across the
lesion area (117). In addition, chondroitin sulfate proteoglycans
(CSPGs), the main chemical components of glial scar, including
proteoglycans, versican, neurocan and brevican, mainly expressed
by reactive astrocytes, can largely limit the axonal regrowth and
sprouting as well as myelin sheath regeneration post-SCI (118–
121). McKeon et al. (122) demonstrated that CSPGs might limit
the growth of CNS neurites in vitro. Moreover, Takeuchi et al.
(123) found that mice performed with a gene knockout for CS N-
Frontiers in Immunology | www.frontiersin.org 6
acetylgalactosaminyltransferase-1, a key enzyme of CSPGs
synthesis, or treated with chondroitinase ABC, a kind of CSPGs
degrading enzyme, had better motor function as well as axonal
regeneration. Protein tyrosine phosphatase s (PTPs), a receptor
of CSPGs, can inhibit the axonal regeneration while combined
with CSPGs (124, 125). Whereas, blocking of this receptor by
membrane-permeable peptide mimetic can not only attenuate this
effect, but also promote functional recovery of the motor and
urinary systems (124).

Considering the adverse effects of glial scar, the specific
mechanisms of glial scar formation have been studied in depth.
It was found that after SCI, locally increased TGF-b could induce
the proliferation of astrocytes and the expression of CSPGs via
activating the Smads signaling (116, 126, 127). However, these
effects could be prohibited by TGF-b receptor blockers as well as
taxol. The potential mechanism might be that taxol counteracted
the translocation of Smad2/3 to the nucleus, thereby eliminating
the effects of TGF-b signaling (128). Furthermore, studies have
documented that inhibition of both JAK/STAT3 and JNK/c-Jun
pathways can prevent the activation and proliferation of
astrocytes, thereby reducing the formation of glial scar and
facilitating the functional recovery (129).

Beneficial Effects of the Glial Scar
The local lesions after SCI are mainly characterized by ion
imbalance, free radical production, glutamate accumulation,
excessive production of ROS and Reactive Species (RNS) (4).
In addition, the activation of infiltrating peripheral immune cells
and colonized microglia induces excessive inflammatory
responses causing damage to more normal surrounding cells
and tissues (130, 131). However, early glial scar can confine the
inflammatory cells and various toxic molecules to the damaged
tissue area, thereby protecting the healthy spinal cord tissue from
FIGURE 3 | Cellular and extracellular components of glial scar after SCI. Resident astrocytes, microglia and NG2 glia become migratory, proliferate, activated and
lead to the glial scar after injury. Meanwhile, fibroblasts and circulating immune cells infiltrate into the damaged tissue and then increase the deposition of extracellular
matrix molecules including extracellular matrix and CSGP. Glial scar can isolate the damaged spinal cord tissue, but it also limits the axonal plasticity.
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inflammatory and toxic effects (4). Research showed that lack of
reactive astrocytes after SCI could result in failure of BSCB
repair, pronounced inflammatory response and demyelination,
neuronal and oligodendrocyte degeneration, along with obvious
motor defect, suggesting that the early loss of astrocytes is likely
to be a main contributing factor to the secondary injury post-SCI
(132). Furthermore, using a gene-targeted knockout approach in
adult mice SCI models, Anderson et al. (133) showed that
preventing astrocyte scar formation, reducing scar-forming
astrocytes or deleting chronic astrocyte scar all did not result
in spontaneous regrowth of sensory or serotonergic axons. In
contrast, continuous local delivery of required axon-specific
growth factors not present in SCI lesions through hydrogel
depots under the condition of glial scar formation significantly
induced axon regeneration, while preventing astrocyte scar
formation significantly weakened this effect (133–135).
However, as mentioned above, robust and persistent
inflammation can lead to extensive cell destruction and
severely inhibit axonal regeneration. The assumption that glial
Frontiers in Immunology | www.frontiersin.org 7
scars benefit axonal regeneration by only removing astrocytes
may be oversimplified because it ignores that glial scars limit the
horrific damage caused by the spread of inflammation. In
addition, an increasing body of evidences has uncovered that
the glial scar is also composed of other cellular and extracellular
components beyond astrocytes, and that simply removing a
specific cell type to affect the repair process may lead to
inaccurate conclusions. The dual nature of glial scars in SCI
has gradually attracted people’s attention, but a large number of
studies are still needed to comprehensively and correctly
understand their advantages and disadvantages.
ROLE OF MSCs ON GLIAL SCAR

Numerous experimental results have shown that MSCs
transplantation into SCI animals has achieved striking
therapeutic efficacy, along with bright future in clinical trials as
well (136, 137) (Tables 1, 2). These results may be closely related
TABLE 1 | Evaluation of MSCs therapy in SCI animals.

MSCs
sources

Way Model Effect Molecular mechanism Refs.

Rat bone
marrow-
derived

Local injection Rat Promote functional
recovery

Up-regulate the ratio of M2/M1 macrophages and the levels of associated cytokines (76)

Rat bone
marrow-
derived

Local
transplantation

Rat Promote functional
recovery

Reduce macrophage/microglia and T lymphocyte recruitment
(138)

Human cord
blood-
derived

Local
transplantation

Mouse Improve functional
recovery

CCL2 secreted by MSCs induce the formation of M2 macrophages
(139)

Rat bone
marrow-
derived

Local
transplantation

Rat Promote functional
recovery

Decrease macrophage/microglia infiltration and the expression levels of TNF-a and IL-1b at
the damaged site (140)

Human cord
blood-
derived

Local injection Mouse Alleviate neuropathic pain
and promote functional
recovery

Decrease macrophage/microglia activation, and the expression levels TNF-a and IL-6 at the
damaged site (141)

Human cord
blood-
derived

Local injection Rabbit Promote functional
recovery

Anti-inflammatory, anti-astrocyte proliferation, anti-apoptosis and axonal preservation
(142)

Human cord
blood
-derived

Local injection Mouse Improve motor function,
myelin, and nerve cell
survival

Reduce the expression of IL-7, IFN-g, and TNF-a but increase IL-4 and IL-13 expression,
promote the activation of M2 macrophages (143)

Rat bone
marrow-
derived

Local injection Rat Improve the spinal
function

Reduce astrocyte proliferation and glial scar formation
(144)

Rat bone
marrow-
derived

Intravenous
injection

Rat Improve functional
behavioral recovery

Promote angiogenesis, attenuate neuronal cells apoptosis, suppress the activation of A1
astrocytes and the formation of glial scar, attenuate lesion size, suppress inflammation,
promote axonal regeneration

(86)

Rat
peripheral
blood-
derived

Local injection Rat Promote functional
recovery

Activate Tregs, inhibit Th17 cells, increase the expression levels of TGF-b and decrease the
IL-6, IL-17a and IL-21 expression (103)

Mouse bone
marrow-
derived

Local
transplantation

Mouse Promote functional
recovery

Promote neuronal regeneration, limit the formation of glial scar, reduce cell death at the
injured site (145)

Rat bone
marrow-
derived

Local
transplantation

Rat Ameliorate the hindlimb
locomotor function

Promote axonal regeneration, reduce glial scars formation
(146)
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to the regulation of glial scar formation after SCI by MSCs (160).
Okuda et al. (146) demonstrated that bone marrow-stromal cell
sheets transplantation into SCI rats could not only inhibit the
formation of glial scar but also provide a fantastic micro-
environment for axonal regeneration and functional recovery by
affecting the morphology of reactive astrocytes. In addition,
chi tosan (CS) based hydrogels loaded with MSCs
transplantation into SCI mice effectively improved the survival
rate of stem cells, which enabled them to release large amounts of
growth factors and anti-inflammatory cytokines at the injured site
to support nerve tissue repair, and significantly reduced glial scar,
thereby creating a permissive environment for axonal growth
and nerve regeneration (145). Similar situations can be seen
not only in small animals, but also in large-animals SCI models.
For example, transplanting neuroregen scaffold containing
human umbilical cord-derived mesenchymal stem cells (UC-
MSCs) into the lesion area of the canine chronic SCI models
showed that they could significantly reduce the glial scar
formation and promote neuronal regeneration, and ultimately
improve locomotor recovery (161). As described above, TGF-b
can mediate the glial scar formation by activating the Smads
Frontiers in Immunology | www.frontiersin.org 8
signaling in astrocytes (128). Studies have revealed that hepatocyte
growth factor (HGF) overexpressing MSCs transplantation
into rat SCI models could significantly reduce the levels of TGF-
b, the activation of astrocytes, along with lower levels of
CSPGs around hemisection lesions, which together promoted
axonal growth and motor function recovery (162). In addition,
LV et al. (144) found that BM-MSCs could also reduce activation
of TGF-b/Smads signaling in astrocytes to promote recovery
of motor function, which might be explained by the fact that
BM-MSCs inhibited the formation of glial scar after injury and
induced axonal regeneration. Notably, we found that after PB-
MSCs transplantation into the SCI contusion rats, astrocytes bio-
marker GFAP increased significantly 2 weeks after transplantation
but decreased significantly 4 weeks later (103). Hence, we
suspect that PB-MSCs transplantation can promote the glial
scar formation in the early stage, which is beneficial for
restricting the spread of various toxic molecules and immune
cells. However, they could inhibit the formation of glial scar
in the later stage, thus creating a permissive environment for
axon regeneration. However, more studies are needed to confirm
this hypothesis.
TABLE 2 | MSCs with therapeutic potential for SCI patients.

Intervention Transplantation Dose
(number)

Effect Adverse reactions Refs.

Autologous
AD-MSCs

Intrathecal 9 ×107 Improve motor, sensory, and sphincter control, no changes in
areas of spinal damage

3 out of 14 patients have urinary tract infection,
headache, nausea, and vomiting, no serious
adverse events

(147)

Autologous
BM-MSCs

Intramedullary 1.6×107

to
3.2×107

Limited efficacy Safe, no adverse effects
(148)

Allogeneic
UC-MSCs

intrathecal 10 x 106 Improve pinprick sensation compared with placebo Safe, no significant side effects
(149)

Autologous
BM-MSCs

Intramedullary 300 x 106 Improve urodynamics, anorectal pressure, neurophysiology,
reduce spasms and neuropathic pain

Safe, no obvious adverse events
(150)

Autologous
BM-MSCs

Intramedullary 5×106 Improve tactile sensitivity, lower limbs motor function, AISA
scores, and urologic function

Safe, low-intensity pain at the incision site
(151)

Allogeneic
UC-MSCs

intrathecal 4 x 107 Improve movement, self-care ability and muscular tension,
increase maximum urine flow rate and maximum bladder
capacity, reduce residue urine volume and maximum detrusor
pressure

Safe, no obvious adverse reactions
(152)

Autologous
AD-MSCs

Intravenous 4x108 Improve the ASIA sensory scores, no significant differences in
the pulmonary function test, SCIM, and visual analog scale.

Safe, no serious complications
(153)

Autologous
BM-MSCs

Intrathecal 1x106/kg Various patterns of recovery, no significant changes in ASIA
rating scale

Safe, no serious adverse events
(154)

Autologous
BM-MSCs

Intrathecal 7x105 to
1.2x106

Improve neurological function Safe, no any adverse reaction and complication
(155)

Autologous
BM-MSCs

Intramedullary 200x105 Improve movement, light touch, pin prick sensory, residual
urine volume, and AISA scores

No sign of tumor, a few mild adverse reactions
like headache and dizziness (156)

Autologous
BM-MSCs

Intrathecal 2×106 to
7.71×106/

kg

N/A Headache and nonspecific tingling sensation, no
serious adverse event such as inflammation of
spinal cord, cerebrospinal fluid infection,
meningitis or tumor

(157)

Autologous
BM-MSCs

Intrathecal 120×106 Improve sensitivity, motor function, spasms, neuropathic pain,
sexual function or bladder and bowel control

Headaches and pain in the area of the lumbar
puncture, no other severe adverse events (158)

Autologous
BM-MSCs

Intrathecal 1.54×108 Improve ASIA scores from A to C/D (from 112 to 231 points),
expand the sensation level from Th1 to L3-4, restore the ability
to control the trunk, bladder filling sensation, bladder control,
and anal sensation

No neither early adverse events like infection,
fever and pain, nor other late adverse events
such as cancer

(159)
December 2021 | Volume 12 | Article 7
UC-MSCs, umbilical cord‐derived mesenchymal stem cells; BM-MSCs, bone marrow-derived mesenchymal stem cells; AD-MSCs, adipose-derived mesenchymal stem cells, ASIA,
American Spinal Injury Association; SCIM, spinal cord independence measure.
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CLINICAL APPLICATION AND
CHALLENGES FOR MSCs
THERAPIES OF SCI

Early encouraging basic researches on the therapeutic effects of
MSCs have aroused considerable interest in examining their
potential to facilitate functional recovery post-SCI. At present,
there are 35 clinical trials of MSCs for SCI registered on
clinicaltrials.gov. Although MSCs for SCI are still in the early
stages of clinical transformation and few important literatures
have been published so far, current results of the trials are
promising. For example, Hur et al. (158) successfully isolated
adipose-derived mesenchymal stem cells (AD-MSCs) from
patient’s adipose tissue and intrathecally administered them to
each of 14 patients by lumbar tapping. Over the 8 months of
follow-up, five patients showed improvement in neurological
recovery and two patients showed voluntary anal contraction
improvement. According to the ASIA sensory scores, sensory
improvement was observed in ten patients and sensory
deterioration in one patient, and no septal changes in the size
of the lesions and no signs of tumor or calcification were found in
MRI after AD-MSCs transplantation. Moreover, none of the
patients had any serious adverse events associated with
intrathecal injection of AD-MSCs while urinary tract infection,
headache, nausea, and vomiting were observed in three patients.
The safety and efficacy of autologous BM-MSCs transplantation
in patients with subacute SCI were evaluated in a
nonrandomized phase I/II controlled clinical trial performed
by Karamouzian et al. (154). In their study, 11 patients with T1-
L1 complete SCI were enrolled. After 6 months, five patients out
of 11 (45.5%) in the cell therapy group and three patients in the
control group (15%) exhibited remarkable recovery (ASIA from
A to C), and no significant adverse reaction and complications
were observed in any patients. In another clinical trial, Albu et al.
(148) conducted a phase 1/2a clinical trial of allogeneic MSCs
transplantation in ten patients with chronic complete SCI (ASIA
A) at dorsal level (T3-11). These patients were randomly
designed to receive intrathecal injection of placebo or UC-
MSCs and were then switched to the other arm at 6 months.
During the follow-up of 12 months, non-serious side effects such
as headache associated with spinal infusion were found in only
two patients. The sensory perception in the dermatomes below
the level of SCI was significantly promoted following MSCs
transplantation compared with placebo, but without significant
changes in spasticity, motor, bowel and bladder function. These
existing clinical results preliminatively suggest that MSCs
transplantation is safe and effective in the treatment of SCI,
but the limitations of these studies should be acknowledged. Due
to the small number and heterogeneity of patients, reliable
analysis of the efficacy is not possible to make. Additionally, it
is practically difficult to establish a control group because most
patients who volunteer for such studies convey a strong desire to
be included in the treatment group. Many aspects of MSCs
therapy need to be clearly defined if they are to be fully translated
into the clinic. For example, MSCs from different sources may
differ in their reparative potential for neural tissue, meaning that
Frontiers in Immunology | www.frontiersin.org 9
a certain type of MSCs may be more suitable for treating SCI
than others. The ways of administration of engrafted MSCs also
have a critical impact on their distribution in specific tissues, and
their therapeutic efficacy in damaged areas. At present, the most
generally used administration methods for SCI mainly include
local and intravenous transplantation, but which transplantation
approach can achieve the maximum benefit still needs to be
further clarified.

Although MSCs have shown great therapeutic potential in
both animal and human trials of SCI, there are still some
challenges that require to be figured out before MSCs can be
extensively applied in clinic. MSCs may play a therapeutic role
through immunosuppressive mechanisms, but this is also a
double-edged sword, as they can enhance tumor growth by
suppressing the immune response (163). Multiple studies have
revealed that MSCs can also actively participate in tumor
progression and migration in various cancer types by
activating diverse pathways (164). In addition, MSCs can also
be guided towards the tumor site, which not only allows MSCs to
promote tumor growth and angiogenesis by secreting various
pro-angiogenic cytokines such as vascular endothelial growth
factor (VEGF), but also causes the malignant transformation of
MSCs (163). It is worth noting that gene modification may be an
effective method to enhance the immunoregulatory capacity and
survival ability of MSCs, but the insertion of specific genes will
destroy the genome of MSCs and then may induce tumorigenesis
in recipients. Hence, its long-term tumorigenicity remains to be
further observed. Studies have shown that telomere length of
MSCs can be shortened in the long-term culture process,
resulting in a gradual decline in cell proliferation and a
significant increase in the chance of malignant transformation
(165). Hence, it may be very important to use the non-aging
MSCs for clinical treatment. Crucially, the quality and safety of
MSCs from different laboratories vary greatly, so there is an
urgent need to develop general guidelines for the preparation and
storage of MSCs.
CONCLUSION

SCI can lead to multifaceted cellular and molecular reactions,
and these various changes are the pathogenesis basis of
secondary injury. Among all of the changes, the inflammation
and glial scar formation are the major barriers to neuronal
anatomical and functional repair, directly determining the
disease progression and prognosis, thus forcing researchers to
explore effective treatment measures for these responses. In
recent years, numerous preclinical and clinical studies have
demonstrated the efficacy and safety of MSCs in the treatment
of SCI, but its long-term tumorigenicity remains to be further
observed. Here, we mainly conclude that MSCs may offer
therapeutic potentials for damaged spinal cords by regulating
neuroinflammation and glial scar formation. However, more
studies are needed to explore the specific mechanisms by
which MSCs inhibit inflammation and glial scar formation
post-SCI.
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