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ABSTRACT

It has recently been demonstrated that nucleobase-
density profiles of typical mRNA coding se-
quences exhibit a complementary relationship with
nucleobase-interaction propensity profiles of their
cognate protein sequences. This finding supports
the idea that the genetic code developed in response
to direct binding interactions between amino acids
and appropriate nucleobases, but also suggests that
present-day mRNAs and their cognate proteins may
be physicochemically complementary to each other
and bind. Here, we computationally recode com-
plete Methanocaldococcus jannaschii, Escherichia
coli and Homo sapiens mRNA transcriptomes and
analyze how much complementary matching of syn-
onymous mRNAs can vary, while keeping protein se-
quences fixed. We show that for most proteins there
exist cognate mRNAs that improve, but also signif-
icantly worsen the level of native matching (e.g. by
1.8 viz. 7.6 standard deviations on average for H. sapi-
ens, respectively), with the least malleable proteins
in this sense being strongly enriched in nuclear lo-
calization and DNA-binding functions. Even so, we
show that the majority of recodings for most proteins
result in pronounced complementarity. Our results
suggest that the genetic code was designed for fa-
vorable, yet tunable compositional complementarity
between mRNAs and their cognate proteins, support-
ing the hypothesis that the interactions between the
two were an important defining element behind the
code’s origin.

INTRODUCTION

The relationship between mRNAs and their cognate pro-
teins, as defined by the universal genetic code, is a corner-
stone of all known biological systems. The origin of the
code, however, remains largely unexplained, representing
one of the most important foundational problems in molec-

ular biology that are still open. Recently, we have demon-
strated a remarkable degree of protecome-wide composi-
tional complementarity between mRNAs and their cognate
proteins. This has provided not only an important clue as
to the code’s origin, but also suggested that the relation-
ship between the two biopolymers could extend beyond just
unidirectional information transfer (1-3). More specifically,
we have uncovered a strong correlation between the pyrim-
idine content of individual mRNA coding sequences and
the average propensity of their cognate protein sequences
to interact with pyrimidine mimetics. The latter property of
protein sequences was derived from the so-called polar re-
quirement (PR) scale, which captures the propensity of in-
dividual amino acids to interact with substituted pyridines,
such as dimethylpyridine (4,5). Importantly, we have shown
for a number of different proteomes that pyrimidine density
profiles of mRNA coding sequences closely match the PR
profiles of their cognate protein sequences (1). Briefly put,
mRNA regions that are rich in pyrimidines code for protein
regions that exhibit high propensity to interact with pyrim-
idine mimetics, and vice versa.

We have also derived knowledge-based interaction
propensities between individual RNA nucleobases and
amino-acid residues from contact statistics in a large set of
high-resolution 3D structures of RNA-protein complexes
(2,3). Moreover, we have used classical molecular dynam-
ics simulations and free energy techniques to provide a de-
tailed, physically realistic picture of nucleobase/amino-acid
interactions at the atomistic level (6,7). This has allowed us
to not only confirm the above findings using orthogonal ap-
proaches, but also extend them to the case of purines and
especially guanine. Adenine-rich mRNA stretches, interest-
ingly, exhibit the opposite behavior in that they tend to code
for protein stretches with an aversion for interacting with
adenines. Taken together, the above observations provide
strong support for the idea that the code originated as a con-
sequence of direct binding preferences between amino acids
and their cognate codons (4,8-9), especially those which are
adenine-poor. Adenine-rich codons, in turn, may have en-
tered the code in order to modulate and weaken this binding
(2). Importantly, however, our results suggest that apprecia-
ble signatures of binding can only be seen if one examines
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relatively long, unstructured mRNA and protein stretches
(1-3,6-7). Even more significantly, our results give rise to a
novel, potentially far-reaching hypothesis that even present-
day mRNAs and their cognate proteins might in general be
physicochemically complementary to each other and bind,
especially in adenine-poor mRNA regions (1-3,6-7,10).

An important question to be addressed in this context
concerns the extent to which the observed compositional
complementarity can be modulated (i.e. its malleability),
while still observing the prescriptions of the universal ge-
netic code. In other words, does the code allow for markedly
different levels of complementarity between a given pro-
tein sequence and various synonymous mRNA sequences
that could potentially code for it? Moreover, how optimal
is the level of complementarity exhibited by native mRNA
sequences? The fact that an amino acid can be encoded
by more than one codon essentially allows one to rewrite
the mRNA coding sequence, corresponding to one and the
same protein sequence, in many different ways. Preferential
use of particular codons as opposed to their expected occur-
rences based on the universal genetic code, the codon-usage
bias, generally differs between different organisms and dif-
ferent genes (11,12). How does the fact that some amino
acids are encoded by multiple codons affect the relation-
ship between mRNA nucleobase content and nucleobase-
interaction propensities of their cognate protein sequences?

Here, we address these questions by focusing on the re-
lationship between the pyrimidine content of mRNA se-
quences and the PR of their cognate protein sequences.
There are nine amino acids encoded by codons with vary-
ing pyrimidine content (Leu, Ile, Val, Pro, Thr, Ala, Gly, Ser
and Arg), which together occupy a major fraction of the ge-
netic code table (41 out of a total of 61 non-stop codons). In
the present analysis, we recode mRNA sequences by vary-
ing the pyrimidine content of the codons corresponding to
these nine amino acids and evaluate the extent to which
this modulates the observed correlations with protein PR,
which in turn does not change. Effectively, for three differ-
ent organisms representing each of the three domains of life
(Methanocaldococcus jannaschii for Archea, Escherichia coli
for Bacteria and Homo sapiens for Eukarya), we explore
the influence of codon usage on the relationship between
pyrimidine content of mRNAs and PR profiles of their cog-
nate protein sequences. In this way, we probe the limits
of mRNA-protein compositional complementarity levels as
set by a combination of the genetic code and various codon-
usage patterns in recoded mRNAs. Finally, we should em-
phasize that the present study is primarily aimed at analyz-
ing the properties of mMRNA-protein compositional comple-
mentarity and not finding evidence concerning the hypoth-
esis that such complementarity reflects an intrinsic poten-
tial of the two biopolymers to bind (1-3). While our results,
as discussed below, do provide support for this still largely
untested proposal, our principal focus here is the mRNA-
protein compositional complementarity, which in contrast
is a robust, easily reproducible fact.
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MATERIALS AND METHODS
Data sets

Complete proteomes of M. jannaschii, E. coli and H. sapi-
ens were extracted from the UniProtK B database (13) (June
2013 release), excluding proteins designated as ‘uncertain’
and retaining only the reviewed Swiss-Prot entries for down-
stream analysis. The starting sets contained 1782, 4157 and
19618 proteins for M. jannaschii, E. coli and H. sapiens, re-
spectively. Where available, the coding sequences (CDS) of
their corresponding mRNAs were downloaded from The
European Nucleotide Archive (ENA) (14) using the ‘Cross-
references’ section of each UniProtKB entry, while ensur-
ing that ENA-translated mRNAs match the corresponding
UniProtKB canonical protein sequences perfectly. Protein
and mRNA sequences with non-canonical amino acids or
nucleotides were excluded from the analysis. This resulted
in 1667, 4149 and 14419 protein-mRNA pairs for M. jan-
naschii, E. coli and H. sapiens proteomes, respectively.

Profile-matching calculations

For sequence-profile correlations, a sliding window-
averaging procedure was used (window of 21 for proteins
and 63 for mRNAs), with all protein sequences shorter
than or equal to twice the window size (42 residues)
excluded. We have already shown that correlations exhibit
only a weak dependence on the size of the averaging
window—here, we have chosen the window size that was
used in previous studies (1-3,6-7,10). Our final sets con-
tained 1666, 4091 and 14413 protein-mRNA pairs for M.
Jjannaschii, E. coli and H. sapiens, respectively. Protein PR
profiles were calculated using the computationally derived
PR scale (5), as previously described (1), while the level
of complementarity between window-averaged mRNA
pyrimidine content profiles and protein PR profiles was
quantified using Pearson correlation coefficients R.

mRNA recoding

Two types of recoding procedures were used for sampling
the mRNA sequence space: steered and non-steered. In
steered recoding, each mRNA sequence went through 10
000 steps of a Monte Carlo-type procedure in which at each
step a single, randomly chosen codon was reassigned to an-
other synonymous codon. Reassignments were carried out
only at those positions at which choosing a synonymous
codon could lead to a change in pyrimidine content, and
were attempted following the frequency of a given codon
type in the standard genetic code. In this way, each step
of the Monte Carlo procedure resulted in a newly recoded
mRNA, which then served as the input for the next cycle
of recoding. Since in steered recoding the aim was to ei-
ther increase or decrease the level of matching between a
protein’s PR profile and its cognate mRNA PYR profile as
compared to the native mRNA, after each codon reassign-
ment step the two profiles were compared by calculating
the Pearson R between them. If the goal was to optimize
matching and a given codon change resulted in improved
matching, the change was accepted, and if not, the codon
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selection was repeated. Conversely, if the goal was to op-
timize mismatching, changes which increased the level of
mismatching were selected and others rejected. In this way,
steered recoding progressively either increased or decreased
the level of profile-matching between an mRNA and its cog-
nate protein, and resulted in a single best- or worst-matched
mRNA for each protein in a given proteome (Figure 1, left).
In non-steered recoding, on the other hand, each mRNA
was recoded independently 10 000 times by each time ran-
domly changing all degenerate codons that could lead to a
change in pyrimidine content. In this type of recoding, the
same native mRNA served as input for a new recoding cy-
cle, finally resulting in a set of 10 000 independent, recoded
mRNA variants per each native mRNA in the transcrip-
tome (Figure 1, right).

Both randomization procedures were performed using a
reduced alphabet (PUR or PYR) with codon selection pro-
portional to the occurrence of a given codon in the stan-
dard genetic code. Leucine, for example, is specified by six
codons in the genetic code table with four of them having
the pyrimidine content of 66.7% and two of them having the
pyrimidine content of 100%. This means that the probabil-
ity of choosing these two codon types during recoding was
4/6 = 66.7% in the first case or 2/6 = 33.3% in the second.
In general, depending on the relative frequencies of differ-
ent codon types for a given amino acid, the probabilities of
occurrence of individual codon types varied.

In the standard genetic code GUG, UUG and AUU en-
code Val, Leu and Ile, respectively, which are all among
amino acids targeted by our recoding approaches. On the
other hand, many non-eukaryotes, including E. coli, are
known to use GUG, UUG or AUU codons for initiator Met
(15,16), which in principle could be a source of noise in our
analysis. In order to account for these alternative encodings
systematically, all start codons were excluded from the re-
coding procedure, and were simply kept fixed.

Functional enrichment and depletion analysis

The complete list of species-specific Gene Ontology (GO)
annotation terms was obtained from the UniProt-GOA
(17,18) and GO databases (19,20) (Dec 2013 release). For
each organism, we first evaluated the distribution of differ-
ences (AR) between Pearson correlation coefficients corre-
sponding to the worst- and the best-matched mRNAs of
every protein in the proteome (i.e. its malleability as de-
fined by AR = Ryorst — Rpest). Subsequently, we compared
the top and the bottom 5% of such a distribution against
the full background proteome of the same organism. Here,
we used the EASE modification (21,22) where for each ob-
tained protein count corresponding to a given GO term in
the subset, we subtracted 1 in the case of enrichment or
added 1 in the case of depletion. This procedure makes the
downstream statistical analysis more stringent by penaliz-
ing the significance of those GO terms with low protein
counts (21). In this way, for each GO term present in a given
organism, we obtained protein counts for the analyzed sub-
set and the background proteome, allowing us to assess the
significance of the observed enrichment or depletion of each
GO term via Fisher’s exact test (22-24). Finally, we derived
the false discovery rate (FDR)-corrected one-sided P-values

(24) for the enrichment or depletion using a significance cut-
oftf of 0.01.

Codon-usage distances

As a measure of the distance between codon-usage patterns
in different contexts, we used root-mean-square deviation
between codon occurrences defined as:

20
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where j and k represent different contexts in which frac-
tions of a given codon 7 are being compared. For example,
these could include codon occurrences in the standard ge-
netic code or in the native or the best-matched mRNA tran-
scriptome for a given species. Here, codon occurrences in
the standard genetic code (or genetic-code-based patterns
of codon usage) refer to the expected occurrences of indi-
vidual codons as dictated by the universal genetic code ta-
ble. Note that in the reduced PUR/PYR alphabet the ge-
netic code shrinks to only 20 codons when considering only
those amino acids which have degenerate codons in terms of
PYR content (Leu, Ile, Val, Thr, Ala, Pro, Gly, Ser or Arg).
For example, instead of six codons for serine (AGU, AGC,
UCA, UCG, UCU, UCCQ), the reduced representation re-
sults in only three codons with either 1 (RRY), 2 (RYY) or
3 (YYY) pyrimidines, denoted here as Serl, Ser2 and Ser3.

Multidimensional scaling (MDS)

MDS in 3D was performed using a built-in R (version
2.14.1) function cmdscale on a pairwise distance matrix
(with RMSD as defined above) of a set of 10 different
codon-usage patterns (standard genetic code, 3 native, 3
best- and 3 worst-matched mRNA transcriptomes corre-
sponding to each of the analyzed organisms).

RESULTS

To what extent can one alter the level of matching between
native mRNA pyrimidine-content profiles and their cognate
proteins’ PR profiles if mRNAs are recoded using synony-
mous codons that vary in their pyrimidine content? In or-
der to address this question, we have recoded each mRNA
using a steered Monte Carlo procedure (see Methods for
details) in which at each step we reassign a codon at a ran-
domly chosen position to one of its synonymous codons at
random, with the newly recoded mRNA serving as input
for the next recoding step, as illustrated in Figure 1 (left). In
one variant of this process, we only accept those reassign-
ments for which the matching strictly improves, resulting
ultimately in an optimally matched mRNA /protein pair. In
another variant, we only accept those changes for which the
matching strictly deteriorates, resulting ultimately in an op-
timally anti-matched mRNA /protein pair. Importantly, in
all of mRNA recoding attempts, protein sequences remain
unchanged.

In Figure 2, we show the results of this type of optimiza-
tion for a representative human protein (HLA class I histo-
compatibility antigen B-59 a-chain), whose level of match-
ing between its PR sequence profile and its native mRNA’s
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Figure 1. A schematic of the recoding procedure. We recode native mRNA sequences by varying the pyrimidine content of the codons corresponding
to Leu, Ile, Val, Thr, Ala, Pro, Gly, Ser or Arg, while protein sequences do not change. Amino acids with codons whose pyrimidine content can vary are
shown in blue, and their corresponding codons in green when native, or red when recoded. In steered recoding (left), we randomly change one codon in
each out of 10 000 cycles, evaluate the complementarity by using the Pearson correlation coefficient (Rpeyw) and accept the change if it goes in the desired
direction or reject it if not, finally optimizing mRNA-protein matching (Rpest) or mismatching (Ryorst)- In non-steered recoding (right), we recode native

mRNAs independently 10 000 times without optimizing the native level of matching (Ryative ), resulting in a range of Rs (R;, Ry, ..

mRNA.

PYR profile corresponds to the median over the complete
human proteome (Ryaive = —0.75). Note that the PR scale
is defined such that the lower the number, the higher the
propensity to interact with pyrimidine mimetics. Therefore,
negative values of the Pearson correlation coefficient corre-
spond to direct matching between the mRNA PYR content
and its cognate protein’s propensity to interact with pyrimi-
dine mimetics and vice versa. In Figure 2, we show the com-
parison between the protein and its native mRNA as well
as the same for the recoded best- and worst-matched syn-
onymous mMRNASs (Rpest = —0.97, top panel, and Ryt =
0.62, bottom panel, respectively). As can be seen, rewriting
of the mRNA for this particular protein can result in an
improvement in the level of matching of about 0.2 Pearson
units (Figure 2, top) or its deterioration of well over 1 Pear-
son unit, effectively changing the sign of the correlation in
the direction of anti-matching (Figure 2, bottom).

What do these changes look like at the level of com-
plete transcriptomes? By collecting all of the best-matched
and all of the worst-matched mRNAs obtained as a re-
sult of steered recoding, we can recreate full mRNA tran-
scriptomes and examine their profile-matching distribu-
tions (Figure 3). Not unexpectedly, the distributions of
Pearson Rs, capturing the degree of matching, shift left-
ward for the best-matched recoded mRNAs and rightward
for their worst-matched recoded counterparts. Importantly,
however, the magnitude of this shift is substantial in both di-
rections and for all organisms analyzed (Figure 3). For ex-
ample, for the human proteome the median of the distribu-
tion decreases from its native value of —0.75 by 0.22 Pear-
son units in the case of the best-matching distribution or
increases by a remarkable 1.03 Pearson units in the case of
the worst-matching distribution, with similar changes seen
for M. jannaschii and E. coli proteomes (Figure 3). In fact,
the median of the E. coli worst-matching distribution shifts
to 0.46, indicating not only a loss of matching, but actu-
ally a high level of anti-matching even for an average pro-

. R[()()()()) for each native

tein. In other words, regardless of the organism examined,
it is possible to recode the set of native mRNAs to obtain
a transcriptome that as a whole gives a significantly worse,
but also significantly better level of profile matching as com-
pared to the one observed for native mRNA sequences (Fig-
ure 3). In general, however, given the high level of matching
with native sequences to begin with, the shifts in the direc-
tion of worse matching are significantly greater than those
in the direction of better matching (e.g. 7.6 viz. 1.8 standard
deviations on average for H. sapiens, respectively). Here it
should also be mentioned that the level of sampling used
in steered recoding appears to be sufficient to capture the
main features of the resulting profile-matching distributions
and in particular those with worst-matched transcripts: in
Supplementary Figure S1, we show the average Pearson R
as a function of the number of recoding steps for the M.
Jjannaschii transcriptome where the distribution mean shifts
from 0.19 to 0.22 upon an increase in the extent of recoding
from 10* to 10° steps i.e. the improvement upon a 10-fold
increase in sampling appears to be only marginal.

How malleable are different mRNAs when it comes to
their potential to yield different levels of matching upon
recoding? Depending on the composition of their cognate
proteins, native mRNAs explore different ranges of pro-
file matching with their cognate proteins when recoded.
For each protein, we have analyzed the difference in Pear-
son R between its worst-matched and its best-matched re-
coded mRNA variant (AR = Ryorst — Ruest) @S a quanti-
tative measure of malleability in complementary matching.
Indeed, while the matching of a typical human protein with
its cognate mRNAs covers a range of approximately 1.2
Pearson units, for some human proteins this is close to 0
(no malleability in matching) and for others close to 2 (full
malleability, ranging from perfect matching to perfect anti-
matching) as shown in Figure 4A. Could this potential to
yield different levels of matching, or lack thereof, be bio-
logically and functionally relevant? To address this ques-
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Figure 2. mRNA pyrimidine content (%oPYR) and protein polar require-
ment (PR) profiles for human HLA class I histocompatibility antigen B-59
a chain (UniProt AC: Q29940). Shown are profiles for the best (top), native
(middle) and worst (bottom) mRNA in terms of matching with the protein
PR, as obtained by steered recoding.

tion, we have focused on the bottom and the top 5% of
the distribution of AR, that is, the extremes that exhibit
the smallest and the largest changes in the level of matching
upon recoding, respectively, and analyzed their GO finger-
prints (Figure 4A and C). Among the least malleable hu-
man mRNAs, we observe a significant enrichment of nu-
clear proteins and functions related to DNA and chromatin
binding, transcription and RNA splicing, while the most
malleable mRNAs are completely distinct from this and
encompass cytoskeletal, mitochondrial, extracellular and
ribosome-related functions and processes. Interestingly, the

ribosome-related functions are also strongly enriched in the
group of highly malleable mRNAs in M. jannaschii and E.
coli proteomes (Supplementary Tables S1 and S2). On the
other hand, these two organisms exhibit no statistically sig-
nificant enrichment when it comes to least malleable mR-
NAs.

‘We have also calculated the average A R for each GO term
in H. sapiens associated with 100 or more annotated pro-
teins (Supplementary Table S3, left) and found that GO
terms enriched among the bottom 5% (Figure 4A and C)
exhibit systematically lower malleabilities (AR < 1.2) than
those enriched among the top 5% (AR ~ 1.3 or greater),
even over all proteins. We next analyzed the distributions
of ARs for two exemplary GO molecular functions: ‘chro-
matin binding’ and ‘structural constituent of ribosome’,
which are enriched in bottom and top 5%, respectively
(Figure 4C), and showed they are significantly different
(Wilcoxon rank-sum test, P < 2.2e-16, Supplementary Fig-
ure S2). Taken together, we conclude that even individual
GO terms (Supplementary Table S3) can be distinguished
based on their average ARs, further reinforcing the obser-
vation that malleability of complementary matching is as-
sociated with biological function. Interestingly, there ap-
pears to be a peculiar relationship between the malleability
in matching of a given mRNA and its native level of match-
ing (Figure 4B for H. sapiens and Supplementary Figure
S3A and SB for M. jannaschii and E. coli transcriptomes,
respectively). Overall, the lower the malleability, the higher
the native level of matching: in fact, all mRNAs with AR
< 0.5 have native values of R < —0.8. The converse, how-
ever, is not true: mRNAs with high native matching cover
the whole range of ARs. On the other hand, the higher the
malleability, the wider the range of native levels of match-
ing, while the lower the native matching, the higher the mal-
leability (Figure 4B, Supplementary Figure S3A and SB).

We have next focused on matching-optimized transcrip-
tomes obtained via steered recoding, but this time from the
perspective of their codon-usage patterns. How different are
codon-usage patterns of the best-matched and the worst-
matched transcriptomes when compared to either the na-
tive patterns or those based on the genetic code alone? With
this in mind, we have calculated the RMSD between differ-
ent codon-usage patterns involving the three organisms (na-
tive, best-matched, worst-matched and genetic-code-based,
see Methods for details) and obtained a pairwise distance
matrix with 45 mutual distances in total (Figure SA). For vi-
sualization purposes, we have performed multidimensional
scaling of these distances to 3D as illustrated in Figure 5B
and C. Importantly, embedding in 3D results in a highly
representative picture and captures over 90% of variance
among all of the distances (Figure 5B). There are several im-
portant observations one can glean from this analysis. First,
all three native transcriptomes (Figure 5C, blue) are biased
when compared to codon frequencies based on the genetic
code alone (Figure 5C, orange), with the human transcrip-
tome being least biased, at least when it comes to the 20
codons which were considered in this analysis (see Methods
for details). Second, all recoded transcriptomes (Figure 5C,
red and green) also show significant bias when compared
to the genetic-code baseline. Third, recoded transcriptomes
of all three organisms group together such that all the best-



Nucleic Acids Research, 2015, Vol. 43, No. 6 3017

M. jannaschii E. coli H. sapiens
30
best best 30 o | best
| n o median 20 o median | p o median
20 - native | -0.71 0.15 -0.73 native | -0.62 0.17 -0.64 native | -0.73 0.13 -0.75
best -0.97 0.02 -0.97 best -0.96 0.02 -0.96 20 - best -0.97 0.01 -0.97
o worst [ 019 027 0.9 o worst | 044 019 046 o worst | 026 026 028
_ 10
10 10
i i native
native worst J}atlve\ worst worst
__— o _
0 — 0 - 0 —
T T T T T T T 1 | N — T T T 1 1 1 T T T T T 1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
R R R

Figure 3. Profile-matching distributions for native transcriptomes and transcriptomes constructed from the best and the worst mRNAs in terms of profile
matching. Shown are distributions obtained via steered recoding for M. jannaschii, E. coli and H. sapiens. Inset: distribution parameters (mean, sigma and
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Figure 4. Functional significance of mRNA recoding malleability. (A) Distribution of the difference in Pearson R between the worst and the best recodings
of human mRNAs as obtained by steered recoding. Regions shaded in red correspond to the bottom and the top 5% of the distribution. (B) Relationship
between malleability (AR = Ryorst — Rpest) and the native level of matching R for the human proteome quantified using Spearman correlation coefficient
p. (C) A heatmap showing functional enrichment and depletion for the subset of the least (bottom 5%, left column) and the most (top 5%, right column)
malleable human mRNAs, as indicated by smaller or larger A Rs, respectively. The heatmap is colored based on the significance of FDR-corrected P-values,
with red denoting enrichment and blue depletion. Numbers in the parentheses denote the average AR values per GO term over all proteins.

matched transcriptomes (Figure 5C, red) populate the same
region of the codon-usage space, and the same is true of
all the worst-matched transcriptomes (Figure 5C, green).
The best-matched and the worst-matched groups are, how-
ever, significantly distant from each other. Finally, codon-
usage patterns do not appear to be related to the level of
matching in native transcriptomes, as all three native tran-
scriptomes exhibit similar levels of matching, but highly
distinct codon-usage patterns. The best-matched transcrip-
tomes, on the other hand, exhibit both similar levels of
matching as well as codon-usage patterns, and the same
holds for worst-matched transcriptomes. In other words,
even though recoding is initiated from different starting po-
sitions (i.e. different codon-usage patterns for the three na-

tive transcriptomes), the resulting extremes all exhibit very
similar codon-usage patterns, which differ between different
types of extremes (i.e. best-matched versus worst-matched).

The finding that extreme transcriptomes have similar, yet
highly distorted codon-usage patterns when compared to
native transcriptomes, allows one to examine which partic-
ular codons exhibit the biggest change in usage upon tran-
sition from the worst- to the best-matched transcriptomes.
Indeed, we observe a fairly consistent picture in all three
organisms when it comes to the contribution of individ-
ual codons/amino acids to this transition (Figure 6). The
top five amino acids that most significantly contribute to
the shift of the profile-matching distribution upon worst-to-
best transition are, starting with the most important con-
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tributor: Ile, Arg, Ser, Thr and Ala. This ranking is the
same for all three organisms, with the exception of M. jan-
naschii where Arg and Thr switch places. More specifically,
our analysis reveals that in order to most drastically im-
prove the level of matching, one should increase the us-
age of pyrimidine-rich codons for isoleucine, threonine and
alanine (Ile2, Thr2, Ala2—where the number indicates the
number of pyrimidines in the codon) at the expense of their
pyrimidine poor counterparts (Ilel, Thrl, Alal). Similarly,
usage of intermediate codons in terms of pyrimidine con-
tent for Arg and Ser (Argl and Ser2, as opposed to Arg0
and Arg2 or Serl and Ser3) should also increase (Figure 6).
Here, it should be emphasized that codon-usage bias is by
no means the only factor influencing the extent of pro-
file matching as the amino-acid abundance and the exact

amino-acid scale used for scoring protein sequences (e.g.
the PR scale as used herein) also contribute significantly (1-
3,6-7,10).

Steered recoding by design results in highly biased
mRNA sequences for each given set of proteins and it is
not a priori clear what part of the accessible mRNA se-
quence space is covered by such extreme sequences. In fact,
it is not even clear how large the fraction of the mRNA
sequence space is, which yields native-like levels of match-
ing. A highly pertinent question in this regard is what levels
of cognate mRNA-protein matching would be obtained by
unbiased recoding on average. In other words, what is the
level of matching between a given protein and a typical ran-
dom mRNA sequence belonging to it? We have performed
transcriptome-wide non-steered recoding of mRNAs (see
Methods for details), in which each cycle begins with the
same native mRNA sequence, and finally results in 10 000
independently recoded mRNAs per native mRNA, each of
them exploring the codon-usage landscape in a non-steered
fashion (Figure 1, right). In this way, we have obtained
an approximate, albeit undersampled picture of the com-
plete mRNA sequence landscape, allowing us to study its
global features. Our analysis reveals that mRNA sequences
recoded in a non-steered fashion largely overlap with the
native ones when it comes to their level of matching with
cognate protein sequences (Figure 7A). For example, the
average level of matching of native human sequences cor-
responds to a Pearson R of —0.73, while the grand aver-
age over 10 000 variants of the human transcriptome, re-
coded in non-steered fashion as described above, is —0.71
(and a similar situation is seen for M. jannaschii and E.
coli). What is more, if one performs non-steered recoding
of the type described above, but this time uses organism-
specific codon frequencies instead of those dictated by the
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genetic code alone, the same conclusion is reached: native
levels of matching do not require exclusive optimization to
be reached, but are shared by the large majority of different
realizations of synonymous transcriptomes as obtained in a
non-steered manner (Supplementary Figure S4).
Non-steered recoding also allowed us to analyze how
much native matching of a given mRNA /protein pair de-
viates from the matching of typical recoded variants of the
same mRNA. For some proteins, for example, the mRNAs
recoded in the non-steered fashion are on average signifi-
cantly better-matched and for some they are significantly
worse-matched than the native mRNA (the full list is given
in Supplementary Table S4). Such signals of potential evo-
lutionary optimization may be particularly relevant in those
cases where the native level of matching is in absolute terms
a significant outlier from the behavior of average proteins
in a given organism. Human a-synuclein, a protein involved
in the pathophysiology of Parkinson’s disease, is a prime ex-
ample in this sense (Figure 7B). At the Pearson R of 0.37,
the native a-synuclein and its mRNA exhibit the second-
worst level of matching among all human proteins (the only
worse R belonging to the relatively short mitochondrial cy-
tochrome C oxidase subunit 8, Supplementary Table S4).
In addition, the native mRNA of a-synuclein is by almost
three standard deviations worse-matching than its average
synonymous variant recoded in a non-steered fashion (Fig-
ure 7B, Supplementary Table S4). In other words, the native
mRNA of a-synuclein appears to be significantly optimized
to weaken compositional complementarity with its cognate
protein, and one may speculate that the purpose of this may
be to reduce the binding between the two, whatever its po-
tential biological function may be. What makes this partic-
ularly attractive is the fact that a-synuclein exhibits a strong
propensity to self-aggregate in the cell (25-27). It is possi-
ble that complementary interactions with their cognate mR -
NAs help solubilize proteins, a feature which may be re-
duced in the case of a-synuclein and its mRNA for some

other biological purpose. Recently, Tartaglia and cowork-
ers have used computational methods to predict that o-
synuclein may strongly interact with its cognate transcript,
especially in the 5 UTR (28). It will be exciting to explore
a potential connection between these two not necessar-
ily contradictory findings. The above possibilities notwith-
standing, our preliminary GO analysis of mRNA /protein
pairs with native sequences that appear particularly well-
optimized for or against matching (outliers in the list given
in Supplementary Table S4) did not reveal any statistically
significant enrichment of particular functions or processes
among these two groups (data not shown).

DISCUSSION

The level of compositional sequence complementarity be-
tween a given mRNA and its cognate protein depends, in
principle, on three key factors: (1) the structure of the ge-
netic code, (2) the specific composition of the mRNA and
(3) the specific composition of the protein. Changes in any
of these three factors could affect the level of complemen-
tary mRNA /protein matching. Here, we have asked how
synonymous mRNA recoding affects the level of matching
with its cognate protein, provided that the universal genetic
code is used for encoding and that protein sequence remains
fixed. Remarkably, we have shown that it is indeed possible
to recode the mRNA pools of different organisms such that
the level of matching with their cognate proteins is not only
nullified, but actually moved in the direction of significant
anti-matching on average (Figures 2 and 3). Importantly,
however, our results show that the great majority of possible
mRNA encodings still retain the native-like level of match-
ing, with only a small subset of mRNA sequences having
the potential to either strongly improve or worsen the na-
tive matching (Figure 7A). In light of the hypothesis that
compositional complementarity between mRNAs and their
cognate proteins is indicative of their binding potential (1-
3,6-7,10), our results suggest that although most mRNA
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variants for a given protein exhibit similar binding poten-
tial, the genetic code provides enough flexibility to steer it
in any direction needed.

There are several caveats concerning our analysis that
should be discussed. First, we have used the standard
genetic code throughout our randomization experiments,
which may have biased the results in the case of eukaryotic
proteins encoded by the mitochondrial genome as these are
known to be translated via a modified genetic code. How-
ever, given that there are only 13 such proteins in the hu-
man mitochondrial genome (29), this has not affected our
main conclusions to any appreciable extent. Second, there
is no guarantee that the PR scale (5), which was in an in-
variant form used in all of the above analysis, optimally re-
flects the physical interaction propensity of different amino
acids for real codons. This scale, based on pyridine inter-
action propensity of individual amino acids (1,4-5), is only
a proxy for their interaction propensity with uracils and cy-
tosines. It is possible that the malleability in terms of codon-
usage patterns as discussed above is biased by the properties
of the PR scale used. On the other hand, the general con-
sistency between the PR scale and knowledge-based poten-
tials capturing the affinity of amino-acid residues for bio-
logically relevant pyrimidines (3) suggests that the bulk of
the effect is still captured by the PR scale. In any case, it
will be important to perform similar analyses using other
nucleobase/amino-acid interaction propensity scales (3,6—
7). Our expectation, however, is that one would see general
behavior similar to that of the PR scale. Finally, all of our
analysis was carried out at the primary sequence level and it
is not a priori clear how this relates to the case of folded 3D
structures of mRNAs and proteins. One possibility, already
discussed before (1-3,6-7,10), is that putative complemen-
tary binding manifests itself only in those situations where
both polymers are largely unstructured, such as, for exam-
ple, during translation, but we do not exclude the possibility
of such interactions also being relevant for folded biopoly-
mers (10).

Our analysis has shown that there is a strong statistical
association between the malleability of mRNAs and cer-
tain biological functions and processes, and it is tempting
to speculate that this may indicate functional significance
of profile matching for these groups of mRNAs and pro-
teins. Indeed, low malleability is strongly associated with
a high level of native matching (Figure 4B), and it is pos-
sible that in those cases, direct binding between mRNAs
and their cognate proteins may play an important func-
tional role. mRNA sequences with low malleability are in-
deed enriched with nuclear functions and processes, many
of which involve direct interactions between nucleic acids
and proteins, including cognate ones (Figure 4C). Alterna-
tively, it is possible that the observed association between
malleability and function simply reflects either composi-
tional biases or insufficient sampling due to length differ-
ences of these particular subsets of proteins/mRNAs. It
is, however, generally hard to separate and evaluate these
effects independently since they are simply inherent prop-
erties of proteins/mRNAs. Larger differences between the
worst-matching sets than between the native or the best-
matching sets belonging to the three organisms studied
herein (Figure 3) are there probably because of similar rea-

sons. First, these differences reflect the features of pro-
teome composition and codon usage bias, which differ be-
tween different organisms. For example, a lower abundance
of residues whose codon pyrimidine content can at all be
changed means less dramatic shifts no matter how good the
sampling. In fact, the extent of the shifts in the worst di-
rection upon recoding (i.e. Ryorst — Rnative Which equals 0.9,
0.99 and 1.06 for M. jannaschii, H. sapiens and E. coli, re-
spectively, Figure 3) follows the same order as the fraction
of residues in those proteomes whose codon PYR content
can at all be changed (i.e. fractions of Ile, Leu, Val, Thr,
Ala, Ser, Pro, Arg, Gly combined, which are 54.3%, 59.3%
and 61.9% for M. jannaschii, H. sapiens and E. coli, respec-
tively). Second, the above difference may to some extent be
a consequence of incomplete sampling: it is possible that the
worst-matching distributions are not fully converged, unlike
the best-matching distributions. Although both our conver-
gence analysis (Supplementary Figure S1) as well as our
analysis of codon-usage bias among the worst sequences
(Figure 5) speak against this possibility, one cannot fully
discount it. However, we should again emphasize that the
primary goal of the present study was to test if significant
shifts of matching distributions are at all possible, and not
to determine them exactly.

The ability to recode entire mRNA transcriptomes to ex-
hibit a much stronger or a much weaker level of matching
when compared to native ones (Figure 3) comes at a price of
distorting the original, organism-specific codon-usage bias
(Figure 4C). This may provide a part of the explanation for
why one does not necessarily observe the levels of match-
ing that are as high or low as in the extreme transcriptomes
obtained via steered recoding. Namely, organism-specific
codon-usage bias represents an evolutionarily optimal solu-
tion to a set of different requirements and constraints. For
example, it is known that codon-usage bias in a given or-
ganism mostly reflects mutational biases (i.e. biases in point
mutations, or biases during base repair) or the adaptation
to cellular tRNA abundances (i.e. translational optimiza-
tion) to various extents (11-12,30-31). In addition, it may
also directly influence mRNA secondary structure (32,33),
or even the efficiency of transcription factor binding to cod-
ing regions of DNA (34). The fact that different organisms
exhibit distinct codon-usage signatures actually reflects the
complexity of meeting various specific requirements when
it comes to gene regulation and expression in an organism-
specific manner. On the other hand, the level of mRNA-
protein complementarity appears to be largely insensitive
to details of organism-specific codon-usage bias; in fact, the
large majority of different mRNA encodings for most pro-
teins lead to significant levels of complementary matching
(Figure 7A). We would like to interpret this as evidence that
such complementarity is or was indeed functionally relevant
to such a degree that it was actually embedded in the struc-
ture of the genetic code. As discussed before (1-3,6-7,10),
one such function in primordial systems could have been
translation via direct templating of proteins from their cog-
nate mRNAs, which as a corollary could have led to comple-
mentarity between the two polymers. However, from struc-
tural stabilization of mRNAs to translational feedback con-
trol to protein and mRNA chaperone activity (2), cognate
mRNA /protein interactions could be functionally relevant



even in present-day systems and even to a degree that is still
not fully appreciated. Future work will shed light on this
exciting possibility.
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