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In the absence of external feedback, a decision maker
must rely on a subjective estimate of their decision
accuracy in order to appropriately guide behavior.
Normative models of perceptual decision-making
relate subjective estimates of internal signal quality
(e.g., confidence) directly to the internal signal quality
itself, thereby making it unknowable whether the
subjective estimate or the underlying signal is what
drives behavior. We constructed stimuli that
dissociated the human observer’s performance on a
visual estimation task from their subjective estimates
of confidence in their performance, thus violating
normative principles. To understand whether
confidence influences future decision-making, we
examined serial dependence in observer’s responses, a
phenomenon whereby the estimate of a stimulus on
the current trial can be biased toward the stimulus
from the previous trial. We found that when decisions
were made with high confidence, they conferred
stronger biases upon the following trial, suggesting
that confidence may enhance serial dependence.
Critically, this finding was true also when confidence
was experimentally dissociated from task performance,
indicating that subjective confidence, independent of
signal quality, can amplify serial dependence. These
findings demonstrate an effect of confidence on future
behavior, independent of task performance, and
suggest that perceptual decisions incorporate recent
history in an uncertainty-weighted manner, but where
the uncertainty carried forward is a subjectively
estimated and possibly suboptimal readout of
objective sensory uncertainty.

Introduction

Humans are capable of estimating the accuracy of
their decisions even in the absence of external feedback.
For example, subjective confidence ratings correlate
with objective accuracy across a variety of perceptual
and mnemonic tasks (Fleming, Weil, Nagy, Dolan, &
Rees, 2010; Song et al., 2011; Ais, Zylberberg,
Barttfeld, & Sigman, 2016; Samaha & Postle, 2017),
indicating that confidence depends, at least in part, on
the same information underlying choices. This meta-
cognitive ability may be crucial for adaptive behavior
as it provides an estimate of performance that could be
utilized in future decision processes such as optimizing
decision policies (van den Berg, Zylberberg, Kiani,
Shadlen, & Wolpert, 2016), learning from mistakes
(Yeung & Summerfield, 2012), or deciding to seek out
new information (Call & Carpenter, 2001; Kepecs,
Uchida, Zariwala, & Mainen, 2008; Hayden, Pearson,
& Platt, 2011).

Because confidence is correlated with task perfor-
mance, however, it is difficult to know if subjective
confidence per se influences subsequent behavior, or if
the underlying sensory uncertainty on which confidence
is based is sufficient to drive future behavior. Indeed,
normative models of perceptual decision-making posit
a direct relationship between sensory uncertainty and
the readout of subjective confidence (Kiani & Shadlen,
2009; Meyniel, Sigman, & Mainen, 2015; Pouget,
Drugowitsch, & Kepecs, 2016; Sanders, Hangya, &
Kepecs, 2016). Typically, experimenters manipulate
stimulus evidence and evaluate the relation between
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decision accuracy and confidence (Kiani, Corthell, &
Shadlen, 2014; van den Berg et al., 2016; Zylberberg,
Fetsch, & Shadlen, 2016). Or, stimulus evidence is kept
constant and trial-to-trial covariation in confidence and
accuracy is examined (Hebart, Schriever, Donner, &
Haynes, 2014). Both approaches, however, do not
allow one to separate the influence of confidence from
the influence of the quality of evidence. By manipulat-
ing evidence externally, as in the former case, or by
relying on internal fluctuations of stimulus evidence, as
in the latter case, previous paradigms have not teased
apart sensory uncertainty and subjective confidence
when examining the effects of confidence on subsequent
behavior (for critical review, see Samaha, 2015).

One exception is a recent study that employed two
stimulus conditions that were equated in terms of
accuracy (and hence evidence quality), but which
differed in terms of confidence. By using these stimuli in
a perceptual discrimination task that allowed subjects
to collect additional evidence when they felt uncon-
fident, the researchers showed that subjective confi-
dence biased information-seeking behavior even when
accuracy was matched (Desender, Boldt, & Yeung,
2018). Here, we apply the same logic to investigate
whether subjective confidence, independent of the
quality of evidence, modulates the influence of a
current perceptual state on subsequent perceptual
decisions, a phenomenon known as serial dependence
(Fischer & Whitney, 2014).

Serial dependence often manifests as a bias toward
reporting that a current stimulus appears more similar
to recently seen stimuli than it actually is. Serial
dependence occurs for a range of stimulus features,
including luminance (Fründ, Wichmann, & Macke,
2014), orientation (Fischer & Whitney, 2014; Fritsche,
Mostert, & de Lange, 2017), spatial location (Bliss,
Sun, & D’Esposito, 2017), direction of motion (Alais et
al., 2017), numerosity (Fornaciai & Park, 2018),
motion variance (Suárez-Pinilla, Seth, & Roseboom,
2018), and higher level features such as face identity
(Liberman, Fischer, & Whitney, 2014). Although
suboptimal in a psychophysical task where stimuli are
temporally uncorrelated, in many real-world scenarios
stimuli are stable across various time scales and serial
dependence may be an adaptive bias that promotes
temporal continuity (Kiyonaga, Scimeca, Bliss, &
Whitney, 2017). It was recently suggested that the
influence of previous trials is mediated by an observer’s
confidence on those trials. Braun and colleagues found
that the magnitude of history biases increased when
responses on the previous trials were correct and faster,
two proxies for confidence (Braun, Urai, & Donner,
2018). This study, however, did not explicitly measure
confidence, and, by design, the proxies for confidence
that were used (accuracy and response time) are
directly related to the quality of evidence. Suárez-

Pinilla and colleagues also found that confidence on the
previous trial modulated serial dependence in motion
variance estimates, but also did not dissociate confi-
dence from task performance (Suárez-Pinilla et al.,
2018). Therefore, it is still unknown whether subjective
confidence is capable of boosting serial dependence
even when divorced from the quality of evidence (see
Figure 1A).

Here, we capitalize on recent findings demonstrating
that confidence judgments are overly reliant on the
magnitude of evidence in favor of a perceptual decision,
whereas decision accuracy is determined by the balance
of evidence for each alternative (Zylberberg, Barttfeld,
& Sigman, 2012; Koizumi, Maniscalco, & Lau, 2015;
Maniscalco, Peters, & Lau, 2016; Peters et al., 2017;
Rausch, Hellmann, & Zehetleitner, 2017; Samaha,
Iemi, & Postle, 2017; Odegaard et al., 2018). We
recently showed that this can lead to a dissociation of
confidence and accuracy by proportionally increasing
the strength (in terms of visual contrast) of the signal
and noise components of a gratingþ white noise
stimulus during an orientation discrimination task
(Samaha, Barrett, Sheldon, LaRocque, & Postle, 2016).
This procedure effectively leaves the quality of evidence
unchanged (thus, task performance is also unchanged).
However, because positive evidence (i.e., the contrast of
the grating component) is increased, this leads to
increased confidence. We refer to this phenomenon as
the positive evidence bias (PEB; where ‘‘positive
evidence’’ refers to the amount of evidence in the
stimulus supporting correct stimulus identification).
Work so far, however, has demonstrated the PEB only
in the context of discrimination tasks, where choice and
confidence computations may differ from those em-
ployed in the continuous estimation tasks often used to
demonstrate serial dependence (Fischer & Whitney,
2014; Liberman et al., 2014; Bliss et al., 2017; Fritsche
et al., 2017; see Discussion).

The motivation for the present experiment is two-
fold. First, we examined whether stimuli judged with
higher confidence would produce larger biases on
subsequent trials even when equating for task accuracy
via the PEB. Second, we sought to replicate the PEB
using a continuous orientation estimation task with
confidence ratings, demonstrating the generality of the
effect from Samaha et al. (2016).

Materials and methods

Participants

Twenty participants were recruited from the Uni-
versity of Wisconsin–Madison (mean age¼ 20.6 years,
SD¼ 2.01, 14 female). All subjects reported normal or
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corrected visual acuity, provided written informed
consent, and were compensated monetarily. Sample
size was chosen to be on par with recent serial
dependence experiments that focus on group-level
statistical inferences (Alais et al., 2017; Bliss et al., 2017;
Fritsche et al., 2017), while also being large enough to
detect the PEB, as per our prior work (Samaha et al.,
2016). Data from this experiment were published
previously as part of a multi-experiment study ad-
dressing different hypotheses (Samaha & Postle, 2017).
This experiment was conducted in accordance with the
University of Wisconsin Institutional Review Board
and the Declaration of Helsinki. In accordance with the
practices of open science and reproducibility, all raw
data and code used in the present analyses are freely
available through the Open Science Framework
(https://osf.io/6uczk/).

Stimuli

Visual stimuli were composed of a sinusoidal
luminance grating (1.5 cycles per degree [CPD], zero
phase) embedded in white noise and presented centrally
within a circular aperture (2 degrees of visual angle
[DVA]). The orientation of the grating was randomly
chosen on each trial from the range 0:1798 in integer

steps. The noise component of the stimulus was created
anew on each trial by randomly sampling each pixel’s
luminance from a uniform distribution. The probe
grating was rendered without noise at 30% Michelson
contrast and was initiated at a random orientation on
every trial to avoid response preparation. A fixation
point (light gray, 0.08 DVA) was centered on the screen
and was dimmed slightly to indicate trial onset (see
Figure 2A). Stimuli were presented atop a gray
background on an iMac computer screen (52 cm wide3
32.5 cm tall; 19203 1200 resolution; 60 Hz refresh rate)
using the MGL toolbox (http://gru.stanford.edu) run-
ning in MATLAB 2015b (MathWorks, Natick, MA)
viewed from a chin rest at a distance of 62 cm.

Procedure

The subject’s task was to rotate a probe grating with
a computer mouse to match the orientation of the
target grating and then provide a confidence judgment.
Subjects pressed the spacebar key to lock in their
orientation response and then used number keys 1–4 to
rate a confidence. Because performance in this task
varies continuously (as opposed to binary correct/
incorrect outcomes), we instructed subjects to use the
confidence scale to indicate how close they think they

Figure 1. Experimental rationale, stimulus construction, and behavioral predictions. (A) Subjective confidence informs future behavior

by providing an estimate of sensory uncertainty. Most experimental evidence to date, however, is compatible both with a model in

which subjective confidence directly informs future behaviors based on an estimate of sensory uncertainty (Model 1) and with a

model in which subjective confidence is epiphenomenal, but correlated with sensory uncertainty, and sensory uncertainty alone

suffices to drive future behaviors (Model 2). (B) Teasing apart these models requires dissociating confidence from sensory

uncertainty. We presented observers with sinusoidal luminance gratings averaged with white noise (upper panel). In the high positive

evidence (PE) condition, stimuli had relatively high contrast noise and high contrast signal. In the low PE condition, signal and noise

contrast was half of that in the high PE condition. Here, the term PE refers to the amount of contrast supporting correct stimulus

identification (i.e., the amount of signal contrast). On the basis of prior work (Koizumi et al., 2015; Samaha et al., 2016), we predicted

that the low PE condition would result in a decrease in confidence without changing the accuracy of orientation estimates (lower

panel), a phenomenon we term the positive evidence bias (PEB).
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came to the true orientation using labels 1 (complete
guess) to 4 (very close). Event timings are shown in
Figure 2A.

Whereas previous experiments examining serial
dependence for orientation have used grating stimuli
well above contrast thresholds (Fischer & Whitney,
2014; Fritsche et al., 2017), we required stimuli to be
near-threshold to replicate the PEB from prior work
(Koizumi et al., 2015; Maniscalco et al., 2016; Samaha
et al., 2016) and to ensure that the entire range of the
confidence scale was used by subjects. We therefore
began each experimental session with 100 trials of a
one-up, three-down adaptive contrast staircase. To
adapt the staircase to an estimation task, responses
were classified as correct or incorrect depending on
whether they were within 6258 of the true orientation.
This procedure aimed to produce ;80% of trials with
less than 6258 error. The staircase began with the
grating component of the stimulus having a Michelson
contrast of 50%, which was then averaged with a 100%
contrast white noise patch. The step size in grating
contrast was adapted according to the PEST algorithm
(Taylor & Creelman, 1967), with an initial starting step
size of 20% contrast. The resulting mean contrast of the
grating (prior to averaging with 100% noise) was 8.5%
(SD ¼ 2.72), which was held constant throughout the
subsequent main task.

For the main task, we presented stimuli from two
conditions: a high positive evidence (PE) condition and a
low positive evidence condition. Following our prior
work (Samaha et al., 2016), the contrast of stimuli in the
high PE condition was taken directly from the staircase

procedure,1 whereas the contrast of the grating and the
noise component of the stimuli in the low PE condition
were both halved with respect to the high PE values (see
Figure 1B). Noise was set to 100% contrast (prior to
averaging with the signal) in the high PE condition, and
was halved (50%) in the low PE condition. This
procedure matches the signal-to-noise ratio across both
conditions, which we anticipate would lead to no change
in estimation accuracy, but would lead to a change in
confidence, if confidence is overreliant on the magnitude
of the grating (signal) contrast, a proxy for the amount
of PE represented in the brain.

A high or low PE stimulus was chosen randomly for
each trial. As recent work has suggested that serial
dependence becomes stronger when the target stimulus
is held in short-term memory (Bliss et al., 2017; Fritsche
et al., 2017), we randomly sampled the duration of the
delay between the stimulus and the probe grating from
the following values (in seconds): 0.6, 3.45, 6.3, 9.15,
and 12. Subjects completed 300 trials of the main
experiment, divided evenly into five blocks. Total task
time was approximately 1.5 hr.

PEB analysis

Error was computed for each trial as the angular
distance between the target orientation and the response
(Figure 3A). We quantified accuracy on high and low PE
trials using four metrics: The median and mean of the
absolute response error as well as the precision and guess
rate obtained from a two-component mixture model fit

Figure 2. Task timing and confidence-error relationship. (A) A target grating was briefly presented with a randomly determined

orientation on each trial. Following a variable delay, a noiseless probe grating appeared and subjects used a computer mouse to

rotate the probe until it matched the orientation of the target. A subsequent confidence rating was given on a 4-point numerical

scale. Grating stimuli contained either high or low PE, randomly determined on each trial. (B) The left panel shows the distributions of

response errors as a function of confidence ratings. The right panel shows mean and median absolute error at each confidence level.

Both plots reveal that error decreases with increasing confidence, suggesting that subjects have knowledge of the accuracy of their

own orientation estimates and were generally using the confidence scale appropriately. Shaded bands and error bars denote 61

SEM.
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to the distribution of response errors for each subject
(Bays, Catalao, & Husain, 2009). The latter two metrics
are obtained via fitting a mixture of a Von Mises and a
uniform distribution to response errors, resulting in a
concentration parameter, j, which describes the preci-
sion of the Von Mises, and a parameter that describes
the height of the uniform distribution, which corre-
sponds to the probability of making a random (‘‘guess’’)
response. The model was fit to data using an expecta-
tion-maximization algorithm implemented in MATLAB
code obtained from www.bayslab.com. We did not
obtain enough trials at each of the five delay durations
to reliably fit mixture models to each combination of
delay and PE level separately. Therefore, any analysis of
PEB with delay as a factor was conducted on mean and
median absolute error. Confidence for high and low PE
conditions was quantified as the mean rating across each
type of trial. The effect of PE on confidence and each
accuracy metric was evaluated statistically using two-
tailed paired-sample t tests. Improbable trials with
responses faster than 200 ms or slower than the 95th
percentile of response times across all subjects (5.04 s)
were discarded prior to any analysis. Lastly, because we
predict a null effect of our PE manipulation on
estimation accuracy, we include Bayes factors whenever
interpreting null hypotheses. All Bayes factors (BFs) are
reported in terms of evidence for the null hypothesis
(BFnull), quantified as how many times more likely the
data are to be observed under the null hypothesis. In the
case of t tests, Jeffreys–Zellner–Siow BFs were com-
puted according to Rouder, Speckman, Sun, Morey, and
Iverson (2009) using a normal prior (Jarosz & Wiley,
2014). In the case of correlations, BFs were computed
according to Wetzels and Wagenmakers (2012).

Serial dependence analysis

Several preprocessing steps were taken prior to
estimating the magnitude of serial dependence. Fol-
lowing others (Bliss et al., 2017; Fritsche et al., 2017),
trials with high error were discarded. Since we
intentionally staircased performance by classifying
trials as correct if they were within 6258 error, we
applied this same threshold to remove incorrect trials
prior to quantifying serial dependence. This step
ensured that trials that were likely unperceived were not
included in the analysis. Indeed, this step was necessary
to observe any reliable serial dependence at all (see
Results and Supplementary Figures S2 and S3). Next,
response errors were demeaned by subtracting each
subject’s mean (signed) error from the error on each
trial. By subtracting each subject’s average error from
each trial, this step removes any small clockwise or
counterclockwise response biases (Bliss et al., 2017;
Fritsche et al., 2017).

We quantified serial dependence using three meth-
ods: a model-based, a model-free, and a Fourier-based
analysis. For the model-based analysis, we sorted error
on the current trial by the relative difference in
orientation between the stimulus on the previous and
current trial (see Figure 4). The first trial of each block
was not considered to have a previous trial. If a trial
was removed due to inaccuracy, then the most
immediately preceding correct trial was considered the
‘‘previous trial’’ (this is not unreasonable, as serial
biases have been shown to extend at least three trials
back; Fischer & Whitney, 2014). If orientation
responses are biased toward the previous trial then
error on the current trial (y-axis) will be pulled toward
the same sign as the relative difference (x-axis), whereas
a repulsive bias would result in response errors of an
opposite sign, and no serial dependence would result in
a flat line. This profile has been previously parameter-
ized by fitting the data with a derivative-of-Gaussian
function (DoG; Fischer & Whitney, 2014; Liberman et
al., 2014; Alais et al., 2017; Bliss et al., 2017; Fritsche et
al., 2017) of the form:

y ¼ xawce�ðwxÞ
2

where x is the relative orientation of the previous trial,
a is the amplitude of the curve peaks, w is the width of
the curve, and c is the constant

ffiffiffi

2
p

=e�0:5, which scales
the amplitude parameter of interest to numerically
match the height of the curve in degrees. Following
others (Bliss et al., 2017; Fritsche et al., 2017), we fit
this function to group-averaged data after first
smoothing individual subject’s data with a 25-trial
moving median filter (changes in filter size within a
reasonable range did not change the results). The
amplitude parameter a and width parameter w were
free to vary across a wide range of plausible values
between [�158, 158] and [0.02, 0.2] respectively. Fitting
was conducted by minimizing the sum of squared errors
using the MATLAB routine lsqcurvefit.m. To deter-
mine the statistical significance of group-level DoG fits,
we used a bootstrapping procedure (DiCiccio & Efron,
1996). On each of 80,000 iterations we sampled subjects
with replacement and fit a DoG to the average of the
bootstrap sampled data. We saved the value of the
amplitude parameter after each iteration, forming a
distribution of the amplitude parameter of our sample.
We computed 95% confidence intervals from this
distribution and a p value was calculated as the
proportion of samples above zero amplitude (no serial
dependence), which was considered significant at a¼
0.025 (two-tailed bootstrap test). To test whether
confidence or PE on the previous trial predicted serial
biases on the current trial, we refit DoG functions to
data split according to whether the previous trial was
high or low confidence (mean split according to each
subject’s mean confidence rating), or high or low PE.
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Statistical significance testing was conducted using the
same bootstrap procedure as above, but the difference
in serial dependence amplitude between conditions was
saved on each iteration and a p value was computed as
the proportion of the difference score distribution
greater than zero (a¼ 0.025, two-tailed bootstrap test).

To ensure that our results were not a quirk of model
fitting, we additionally tested for serial dependence and
its modulation by confidence using a model-free
analysis. For each subject, we computed the median
(signed) error across trials where the relative difference
between the current and previous stimulus fell within
the interval (08, 458), and subtracted that from the
median error on trials within the interval (�458, 08; see
dashed lines in Figure 4). Thus, positive and negative
values indicate an attractive or repulsive bias, respec-
tively. This metric was computed for all levels of
confidence and PE on the previous trial. The influence
of delay on the previous trial was also tested this way,
as there were insufficient trial numbers at each delay to
fit with a DoG. Statistical testing was performed using
two-tailed paired-samples t tests, or by fitting a linear
function to each subject’s bias by confidence or bias by
delay data and comparing the slope against zero at the
group level with a two-tailed paired-samples t test
(Figure 5A, right panel).

The serial dependence curves revealed an additional
repulsive bias at larger orientation differences that was
not captured well by the DoG fit used in prior literature
(Figures 4 and 5; see also Bliss et al., 2017; Fritsche et
al., 2017). Because these bumps in the serial dependence
profile essentially make the curves sinusoidal, we

decomposed these curves into sine waves of varying
amplitude, phase, and frequency using a fast Fourier
transform (FFT). The group-level curves shown in
Figures 4 and 5 were zero padded (frequency resolution
0.33 Hz), linearly detrended, and then transformed into
power spectra by squaring the absolute value of the
complex FFT result (MATLAB function fft.m). Serial
dependence was quantified as the power at the
frequency with highest power for each condition (the
‘‘dominant frequency’’). This is akin to finding the
amplitude of the best-fitting sinusoid that is allowed to
vary in both frequency and phase. Following the
statistical analysis of the DoG fit (described above), a
bootstrap procedure was performed whereby group-
level serial dependence curves were recomputed using a
random subset of subjects (sampled with replacement)
and decomposed with an FFT. On each of 80,000
bootstrap iterations, the power spectrum for each
condition (Figure 5) was saved and the power of the
dominant frequency in each condition was recorded.
Subtracting the distributions created a distribution of
difference scores reflecting the change in sine wave
amplitude across conditions. Using these difference-
score distributions, we computed p values by taking the
proportion of bootstrap samples greater than zero (a¼
0.025, two-tailed bootstrap test) as well as 95%
confidence intervals. Note that the x-axis in the FFT
plots are normalized to reflect the number of cycles of a
particular sine wave across the whole serial dependence
plot, rather than Hz (since the data are not a
timeseries).

Figure 3. The PEB in orientation estimation. (A) Left panel depicts the distribution of response errors for high and low PE stimuli,

binned and averaged across subjects. Right panel shows median absolute response error for each subject. Shaded bands and error

bars denote 61 SEM. The overlap of error distributions and lack of reliable accuracy changes suggests that PE levels did not

noticeably impact estimation accuracy (see Results for additional quantifications of accuracy). (B) Left panel shows the distribution of

responses at each level of confidence as a function of PE. Increasing PE lead to a significant increase in highly confident responses

(‘‘4’’) and a decrease in low confident (guessing) responses (‘‘1’’). Mean confidence (right panel) was higher for high PE stimuli, a bias

present in 17/20 subjects. Error bars span 61 SEM, shaded bands cover 61 within-subject 95% CI (Morey, 2008) (C) Correlations

between individual differences in PE-related variability in confidence (x-axis in all plots) and PE-related variability in accuracy across

four accuracy metrics (subtraction is always low-high PE). Lines denote robust linear fit. No correlations were significant. Collectively,

these results suggest our stimulus manipulation selectively modulated confidence without changing accuracy.
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Results

PEB for orientation estimation

We analyzed accuracy and confidence ratings during
an orientation estimation task where stimuli contained
either high or low PE but were matched for overall
signal-to-noise ratio. Across all trials, estimation error
sharply decreased with increasing confidence (Figure
2B) and single-trial Spearman correlations between
absolute error and confidence revealed negative rela-
tionships for every participant (q range: [�0.46,�0.01]).
This indicates that subject’s confidence ratings reflected
some knowledge of their own performance. A repeated-
measures ANOVA including an interaction term
between delay duration and PE did not reveal any
reliable interaction of PE with delay when predicting
accuracy (mean or median absolute error) or confi-
dence (all ps . 0.05); therefore, we focus on paired
comparisons between high and low PE trials, aggre-
gating over delay duration. As hypothesized, propor-
tionally increasing both signal and noise contrast in a
compound grating stimulus led to no discernable
change in the accuracy of observer’s responses as
characterized by median response error, t(19) ¼�0.27,
p¼ 0.79, BFnull ¼ 5.66, mean response error, t(19) ¼
1.20, p¼ 0.24, BFnull¼ 3.00, the precision of responses
(see Materials and Methods; t[19]¼ 0.17, p ¼ 0.86,

BFnull ¼ 5.78), or the probability of making a random
response, t(19)¼1.10, p¼0.28, BFnull¼3.33 (see Figure
3A and C). This is in line with previous null effects of
the exact same (Samaha et al., 2016) and similar PE
manipulations on two-choice discrimination accuracy
(Zylberberg et al., 2012; Koizumi et al., 2015;
Maniscalco et al., 2016). The BF analysis indicates that,
across different metrics, the change in accuracy we
observed is between 3 and 5.78 times more likely to be
observed under the null.

In contrast to the null result of PE on accuracy, we
observed a highly significant modulation of subjective
confidence ratings, such that mean confidence was
greater for high as compared with low PE stimuli, t(19)
¼�5.06, p¼ 0.00006 (Figure 3B). Analysis of the
proportion of responses at each of the four confidence
levels (Figure 3B) revealed that increasing PE led a
decrease in the use of ‘‘1’’ ratings (complete guess) and
an increase in the use of ‘‘4’’ ratings (very close to the
true orientation; p value per level of confidence: pconf1¼
0.0002, pconf2 ¼ 0.99, pconf3 ¼ 0.35, pconf4 ¼ 0.005).
Additionally, we checked whether individual differ-
ences in the PE-related change in accuracy and the PE-
related change in confidence were correlated. Across all
four metrics of accuracy, there was virtually no
correlation (Spearman’s rho) across subjects (mean
error: q¼�0.073, p¼ 0.75, BFnull¼ 5.60; median error:
q¼�0.024, p ¼ 0.92, BFnull ¼ 5.83; precision: q¼
�0.066, p¼ 0.78, BFnull¼ 5.64; guess rate: q¼�0.176, p

Figure 4. Serial dependence in orientation estimates. Left panel shows error on the current trial as a function of the difference

between the orientation on the current and previous trial. The thick black line shows the fit of a DoG model to the smoothed group-

level data. Negative values indicate counterclockwise differences. The amplitude parameter, a, of the DoG function reflects the height

of the function and captures the magnitude of bias due to the orientation on the previous trial. Positive/negative a denotes an

attractive/repulsive bias. In keeping with other results, close relative orientations (within 458) lead to a significant attractive bias,

which turns to a repulsive bias when the relative orientation on the previous trial was further in stimulus space (greater than 458).

Note that the DoG captures only the attractive bias at smaller relative differences. Dashed lines above the plot denote the windows

used to estimate serial bias in the model free analysis (right panel), which also revealed reliable serial dependence. The middle panel

depicts the power spectrum of the curve in the left plot. This reveals a clear periodicity at around two cycles, reflecting the sinusoidal

nature of the serial dependence profile and better capturing the repulsive bias at larger relative orientation differences. The

amplitude at this peak frequency serves as another quantification of the magnitude of serial dependence using a basis set of

sinusoids. Shaded bands and error bars in all figures span 61 SEM.
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¼ 0.45, BFnull¼ 4.45; Figure 3C). This provides further
evidence of independence between confidence and
accuracy, indicating that even for an individual whose
accuracy benefited from increasing PE, their confidence
did not increase in kind. Analysis of BFs suggest that
the correlation between individual differences are 4.45
to 5.83 times as likely to be observed under the null
hypothesis of no correlation. This result suggests that
confidence is not simply a more sensitive measure of
behavior than estimation error, as individual differ-
ences would likely be correlated under this hypothesis.

Subjective confidence amplifies serial
dependence

We characterized serial dependence by fitting a DoG
function to group-level error expressed as a function of
the relative orientation difference between the previous
and current trial. As shown in Figure 4, trials showed a

significant serial bias, such that responses were biased
toward the orientation on the previous trial when the
previous trial was within ;458 of the current trial
(serial dependence amplitude, a¼ 2.38, 95% CI¼ [1.30,
3.28], p , 0.0001), and a notable repulsive bias at larger
relative orientation differences, consistent with recent
reports (Bliss et al., 2017; Fritsche et al., 2017). This
repulsive-attractive-attractive-repulsive profile pro-
duced an oscillation-like curve, which was verified with
an FFT analysis showing a clear peak at a frequency of
about two cycles (Figure 4, middle panel). Serial
dependence was undetectable when trials considered
incorrect (see Methods) were included (a¼ 1.018, CI ¼
[�0.97, 2.60], p ¼ 0.11), which is sensible given that an
undetected stimulus would not be expected to influence
subsequent responses. The presence of serial depen-
dence was also confirmed in the model-free analysis,
which revealed a bias of comparable magnitude for
trials within 6458 of relative difference (mean bias¼
3.18, CI¼ [1.26, 5.07], t[19]¼3.45, p¼0.002). Serial bias

Figure 5. Confidence boosts serial dependence. (A) Left panel shows serial dependence curves and DoG fits to data separated

according to whether confidence on the previous trial was high or low. High confidence on the previous trial was associated with

increased serial dependence amplitude in the DoG model-based analysis and the corresponding FFT analysis of the serial dependence

curves (middle panel). The model-free analysis at each level of confidence (right panel) also showed that serial biases increased with

increasing confidence on the previous trial. (B) Sorting data by PE on the previous trial revealed that trials with high PE more strongly

biased responses on the subsequent trial in all three analyses: the DoG model-based, the FFT, and model-free analysis. This suggests

that increasing confidence without changing accuracy is sufficient to boost serial biases. Shaded bands and error bars are 61 SEM.

Da refers to the difference in amplitude parameter between conditions.
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showed no reliable linear relationship with delay
duration on the previous (mean slope¼�0.12, t[19] ¼
�0.57, p ¼ 0.57, BFnull ¼ 5.02), or current trial (mean
slope¼0.083, t[19]¼0.54, p¼0.59, BFnull¼5.10), so we
focused subsequent analysis on serial dependence
averaged across all delays.

Before addressing whether selectively increasing
confidence by increasing PE caused an amplification of
serially dependent biases, we first asked whether trial-
to-trial variability in confidence predicted serial de-
pendence. As shown in Figure 5A, the DoG fit to trials
preceded by high or low confidence responses revealed
significant serial biases following high (a ¼ 2.158, CI ¼
[1.25, 3.04], p¼ 0.0001), but not low confidence trials (a
¼ 0.648, CI ¼ [�0.78, 1.82], p¼ 0.16). The difference
distribution formed by subtracting the bootstrapped
distribution of amplitude parameters in each condition
was predominantly greater than zero, (Da¼ 1.50, CI¼
[0.003, 3.21], p ¼ 0.023), indicating significantly larger
biases following high as compared with low confidence
trials. The same conclusion was reached with an FFT
analysis comparing power at the dominant frequency
of serial dependence curves for each condition (Dpower
¼ 0.73, CI ¼ [0.17, 1.35], p¼ 0.005; Figure 5A, middle
panel). This effect was also confirmed in the model-free
analysis: Fitting a line to each subject’s serial bias
magnitude as a function of their confidence on the
previous trial revealed a significant positive relationship
(mean slope¼ 2.988, CI¼ [1.50, 4.46], t[19]¼ 4.22, p¼
0.0004). Paired contrasts at each level of confidence
revealed that serial dependence was present only at
confidence level 3 (p¼ 0.0073) and 4 (p ¼ 0.020), and
not levels 1 (p¼ 0.17) or 2 (p¼ 0.29; Figure 5A, right
panel). These results suggest that confidence on the
current trial may mediate that trial’s attractive influ-
ence on the subsequent trial. However, this finding
conflates confidence with other factors that may relate
to performance. For instance, if subjects were inatten-
tive on the current trial, then confidence and perfor-
mance could both be reduced, leading to a smaller bias
on the subsequent trial. In this explanation, attention
would be the primary variable leading to reduced serial
bias, not subjective confidence.

Our task design teased apart confidence and
performance by holding task performance constant
while selectively increasing subjective confidence. We
first checked that the PEB held for the subset of trials
used for the serial dependence analysis (see Supple-
mentary Figure S1). Indeed, across all four metrics of
accuracy, there was no discernable difference according
to the level of PE in the stimulus (all ps . 0.14, BFnulls

between 2.03 and 4.34, indicating anecdotal to sub-
stantial evidence for the null). In fact, all metrics were
pointing toward a difference in the opposite direction
than the effect on confidence—slightly higher mean and
median error, and lower k in the high PE condition

(guess rate was 0 in all cases since high error trials were
removed). Confidence, on the other hand, remained
significantly higher for high PE stimuli (t[19]¼�4.62, p
¼ 0.0002), confirming the PEB for this subset of trials.
As was the case for the analysis of all trials, individual
differences in the PE-related change in confidence was
uncorrelated with PE-related changes in accuracy
across all metrics (q range¼ [�0.05–0.19], ps . 0.42,
BFnulls between 4.26 and 5.47).

DoG models fit to data sorted by high or low PE on
the previous trial revealed significant serial dependence
amplitudes following high PE trials (a ¼ 2.528, CI ¼
[1.54, 3.49], p¼ 0.00001), and an effect following low
PE trials (a¼ 1.048, CI ¼ [0.12, 1.84], p ¼ 0.022).
Critically, the distribution of amplitude differences
from the bootstrap was significantly non-overlapping
zero (Da¼ 1.48, CI¼ [0.21, 2.90], p¼ 0.011; Figure 5B,
left panel), indicating that high PE on the previous trial
lead to larger biases on the current trial than did low
PE. The FFT analysis corroborated this effect, with
higher power at the peak serial dependence frequency
following high as compared with low PE trials (Dpower
¼ 0.82, CI ¼ [0.20, 1.30], p¼ 0.008; Figure 5B, middle
panel). The model-free analysis also replicated this
result, with a significant bias following high, t(19) ¼
4.57, p ¼ 0.0002, and low PE trials, t(19) ¼ 2.23, p ¼
0.031, and a significantly greater bias following high as
compared with low PE trials, t(19) ¼ 2.32, p¼ 0.031
(Figure 5B, right panel). Because high PE was
associated with a boost in confidence, but no change in
accuracy, these results suggest that increasing confi-
dence independently of accuracy is sufficient for
amplifying serial dependence in orientation judgments.

Discussion

Many researchers have posited that the ability to
assign confidence to one’s own performance serves a
crucial role in formulating future behaviors (Yeung &
Summerfield, 2012; Weil et al., 2013; Meyniel et al.,
2015; van den Berg et al., 2016). The bulk of
experimental work to date, however, has been unable
to separate effects of subjective confidence from effects
of task performance. For instance, a decision experi-
enced with low confidence may alter future decision-
making not because of the felt sense of confidence per
se, but because attention on that trial was diverted and
the stimulus was processed suboptimally. To ascertain
whether subjective confidence can modulate depen-
dencies between current and future decisions, we
designed an orientation estimation experiment that
disentangled confidence ratings from objective task
performance. We found that trial-to-trial variation in
confidence predicted the magnitude of serial biases,
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such that when a trial was performed with high
confidence it exerted a larger bias on the decision in the
subsequent trial. Crucially, this relationship was
replicated when we experimentally manipulated confi-
dence levels without affecting task performance,
indicating that confidence, divorced from performance,
is capable of increasing serial dependence. This finding
suggests that a representation of sensory uncertainty is
carried forward to subsequent trials to influence
decision-making. However, the representation of un-
certainty that is carried forward need not be a perfect
reflection of the actual stimulus evidence used to
perform the task. Our results support a framework in
which a suboptimal readout of sensory evidence forms
the basis of subjective confidence judgments and gets
carried forward to alter future decision behavior.

Why should confidence boost serial dependence? In
the context of psychophysical experiments, serial biases
are suboptimal because they lead to greater error when
stimulus features are temporally uncorrelated. In real
life, however, many stimuli are sufficiently auto-
correlated (e.g., a book on a desk typically maintains
some visual features from one second to the next) such
that taking information from the recent past into
consideration when making current decisions could be
adaptive (Fischer & Whitney, 2014; Kiyonaga et al.,
2017; Braun et al., 2018). As in other information
integration problems, such as cue combination (Ernst
& Banks, 2002), optimal integration of current and past
sensory information requires weighting each represen-
tation by the uncertainty associated with it. In this way,
recent sensory inputs can be thought of as a prior on
current stimulus estimates (van Bergen & Jehee, 2017).
When the prior is associated with high uncertainty (low
confidence) it should be given less weight in the current
decision and thus lead to a smaller serial bias, as we
observed. In this framework, though, our results
suggest that the weights on the prior are determined not
by the actual sensory uncertainty (which we equated)
but by the biased readout of sensory uncertainty
underlying subjective reports of confidence.

Biased estimates of confidence have been found to
drive other decision-related behaviors as well. A recent
experiment used a stimulus manipulation related to the
one used here to manipulate confidence and accuracy
independently (Desender et al., 2018). Consistent with
our findings, the researchers also observed that
selectively modulating confidence was sufficient to
induce changes in future decision behavior, in the form
of seeking additional information when confidence was
low. Notably, though, two recent experiments have
applied similar experimental manipulations of confi-
dence and failed to find effects. Using the PEB in an
orientation working memory task, we recently found
no evidence that selectively modulating perceptual
confidence led to changes in subsequent memory

performance (Samaha et al., 2016). Furthermore,
Koizumi et al. (2015) used PEB-inducing stimuli as cues
in a response inhibition task and in a response
preparation task. Although they successfully increased
confidence without changing performance, this change
did not lead to enhanced performance in either task
(Koizumi et al., 2015). Although there is little work
using a dissociation paradigm such as the PEB to
examine the function of subjective confidence, it is clear
that not all tasks are affected by selectively modulating
confidence. Such effects may be restricted to tasks
involving an ongoing updating of decision policies or
weighting of information in decision-making (e.g.,
history biases, information-seeking, etc.).

The PEB is among a growing number of empirical
demonstrations of a dissociation between objective task
performance and subjective confidence (for review see
Fleming & Daw, 2017, and Rahnev & Denison, 2018).
To our knowledge, however, such a dissociation has
not yet been demonstrated in the context of a
continuous estimation task, such as that used here. This
is nontrivial because decision models based on contin-
uous report performance often treat confidence as an
optimal (in the sense of perfectly tracking accuracy)
readout of sensory uncertainty (Meyniel et al., 2015). In
In the framework of probabilistic population coding
(Pouget, Dayan, & Zemel, 2000; Ma, Beck, Latham, &
Pouget, 2006; Beck et al., 2008), an ideal observer of
neural activity could estimate the stimulus based on
maximum likelihood (ML) decoding of the population
activity and provide confidence by computing the width
of the associated posterior distribution (the probability
distribution of the stimulus conditioned on the
observed spiking activity; Bays, 2016). This normative
solution, however, fails to capture the PEB demon-
strated here. Instead, we speculate that a neurally
plausible computation of confidence based on the sum
of activity across the population could account for the
PEB in orientation estimation. Typically, the sum of
activity across the population is inversely proportional
to the width of the posterior and could therefore inform
confidence (Ma et al., 2006; Meyniel et al., 2015; Bays,
2016). We reason that increasing the contrast of both
signal and noise in our stimuli could lead to increased
firing across all neurons in the population (Figure 6,
right panel). This is plausible because responses in early
visual cortex increase monotonically with contrast
(Dean, 1981; Boynton, Demb, Glover, & Heeger, 1999)
and because the stimulus manipulation used here is
nonspecific with respect to orientation contrast. If
confidence is read out from this population via the sum
of activity across it, confidence will be higher for our
high PE stimuli, whereas the ML estimate of the
orientation will be unaffected. It is possible that divisive
normalization (Heeger, 1992) may operate across this
population, which could effectively cancel out this
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baseline increase in firing. We speculate, though, that
this would only be true if the neurons in the
normalization pool are exactly the same neurons used
in the population read out of confidence, for example,
if the sum of all neurons in the hypothetical population
in Figure 6 is used in the denominator of the
normalization equation (Carandini & Heeger, 2012).

In summary, we demonstrate a novel dissociation of
confidence and performance in orientation estimates,
which has a possible neural grounding in current
models of decision making, but which violates norma-
tive models of confidence. We show that orientation
responses are serially dependent and that trials
associated with high confidence, independent of task
performance, confer larger biases upon subsequent
trials. We interpret this finding as evidence that current
decisions are biased by the recent past in a manner that
is sensitive to the subjectively estimated uncertainty of

recent inputs, thereby promoting uncertainty-weighted
integration of current and future information.

Keywords: confidence, serial dependence, decision-
making, metacognition, population code
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Footnote

1 In Experiment 1 of Samaha and Postle (2017), a
similar stimulus manipulation was used but under
slightly different task conditions. In this experiment,
halving signal and noise contrast led to a decrease in
accuracy as well as confidence. For future work with
this paradigm, we recommend individually staircasing
both high and low PE stimuli to ensure that accuracy is
matched, rather than hoping for matched accuracy
after staircasing the high PE condition and halving the
signal and noise contrasts to form the low PE
condition, as was done here and in Samaha and Postle
(2017).
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