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ORIGINAL RESEARCH

Altered Cerebral Microstructure in Adults 
With Atrial Septal Defect and Ventricular 
Septal Defect Repaired in Childhood
Benjamin Asschenfeldt , MD, PhD; Lars Evald , MSc, PhD; Camilla Salvig, MD; Johan Heiberg , MD, PhD, DMSc; 
Leif Østergaard , MD, PhD; Simon Fristed Eskildsen , MSc, PhD; Vibeke Elisabeth Hjortdal , MD, PhD, DMSc

BACKGROUND: Delayed brain development, brain injury, and neurodevelopmental disabilities are commonly observed in infants 
operated for complex congenital heart defect. Our previous findings of poorer neurodevelopmental outcomes in individuals 
operated for simple congenital heart defects calls for further etiological clarification. Hence, we examined the microstructural 
tissue composition in cerebral cortex and subcortical structures in comparison to healthy controls and whether differences 
were associated with neurodevelopmental outcomes.

METHODS AND RESULTS: Adults (n=62) who underwent surgical closure of an atrial septal defect (n=33) or a ventricular septal 
defect (n=29) in childhood and a group of healthy, matched controls (n=38) were enrolled. Brain diffusional kurtosis imaging 
and neuropsychological assessment were performed. Cortical and subcortical tissue microstructure were assessed using 
mean kurtosis tensor and mean diffusivity and compared between groups and tested for associations with neuropsychologi-
cal outcomes. Alterations in microstructural tissue composition were found in the parietal, temporal, and occipital lobes in the 
congenital heart defects, with distinct mean kurtosis tensor cluster-specific changes in the right visual cortex (pericalcarine 
gyrus, P=0.002; occipital part of fusiform and lingual gyri, P=0.019). Altered microstructural tissue composition in the subcorti-
cal structures was uncovered in atrial septal defects but not in ventricular septal defects. Associations were found between 
altered cerebral microstructure and social recognition and executive function.

CONCLUSIONS: Children operated for simple congenital heart defects demonstrated altered microstructural tissue composition 
in the cerebral cortex and subcortical structures during adulthood when compared with healthy peers. Alterations in cerebral 
microstructural tissue composition were associated with poorer neuropsychological performance.

REGISTRATION: URL: https://www.clini​caltr​ials.gov; Unique identifier: NCT03871881.

Key Words: atrial septal defect ■ cerebral cortex ■ diffusional kurtosis imaging ■ magnetic resonance imaging ■ neurodevelopmental 
outcome ■ subcortical structures ■ ventricular septal defect

Neurodevelopmental disabilities are frequently de-
scribed in the population with congenital heart 
defects (CHD). The disabilities manifest during 

childhood1,2 and persist into adolescence3 indicating a 
lifelong challenge. The etiology of neurodevelopmental 
disabilities in CHD is not completely understood, but 
a key aspect may be the abnormal brain development 
observed in infants operated for complex CHD.4–7 
Of particular concern are reports of abnormal third 

trimester deceleration in intrauterine brain growth6 and 
a pattern of preoperative brain injury similar to that 
found in preterm neonates,4 which suggest an in-utero 
brain vulnerability in infants with CHDs.

The prenatal factors may indeed be related to brain 
abnormalities such as reduced brain volumes8,9 and 
white matter (WM) alterations10,11 described in adoles-
cence with complex CHD. Specifically, alterations in 
WM microstructure and network topology have been 
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found associated with neurodevelopmental disabilities 
and clinical risk factors.10–15 Despite the importance of 
gray matter (GM) integrity in relation to neurocognitive 
abilities and motor skills, studies on the long-term im-
pact of CHD on microstructural GM development are 
lacking, probably due to methodological restrictions.

With the continues technological improvement of 
MRI, the recently developed method of Diffusional kur-
tosis imaging (DKI), has shown able to characterize and 
measure age-related diffusion changes in the develop-
ing and aging brain.16 DKI measures the mean kurto-
sis tensor (MKT) that is a principal metric of diffusional 
non-Gaussianity and is believed to arise from diffusion 
barriers, such as cell membranes and organelles, and 
water compartments in the tissue.17,18 Hence, the MKT 
can be regarded as an index of tissue microstructural 
complexity.19–21 The MKT differs from the conventional 
mean diffusivity (MD) measured with diffusion tensor 

imaging in that it does not require spatially oriented tis-
sue microstructure and hence is equally applicable on 
both GM and WM brain tissue and more sensitive to 
developmental changes.22

At present, DKI is primarily considered a research 
tool when applied on the brain tissue as normal values 
have not yet been fully established. Nevertheless, the 
method appears ideal for investigating microstructural 
gray matter tissue during development.16

Considering the simple CHDs, such as atrial septal 
defect (ASD) and ventricular septal defect (VSD), little 
is known about their long-term cerebral development. 
Our group, however, previously reported neurocogni-
tive deficits, similar to those demonstrated in complex 
CHD, in adults who underwent childhood surgery for 
a simple CHD.23 These unsettling findings justify an 
in-depth investigation of the cerebral development 
in simple CHD. Accordingly, we now report cortical 
and subcortical GM microstructural tissue compo-
sition measured by DKI in the same group of adults 
who underwent childhood surgery for a simple CHD 
compared with healthy peers. Further, we explored 
associations between neurocognitive deficits and GM 
microstructural diffusion properties within the group 
with simple CHD.

METHODS
Design and Study Population
The study was approved by the Regional Committee 
on Biomedical Research Ethics of the Central Denmark 
Region (chart: 1-10-72-233-17) and the Danish Data 
Protection Agency (chart: 2012-58-006). Further, it com-
plies with the World Medical Association’s Declaration of 
Helsinki. In compliance with Danish law, all participants 
provided written informed consent before enrollment.

This study elaborates on our previously reported 
neuropsychological status in simple CHD23 and is reg-
istered on clinicaltrials.gov (identifier: NCT03871881). 
The data that support the findings of this study are 
available from the corresponding author upon reason-
able request.

All participants underwent magnetic resonance 
imaging (MRI) of the brain and a standardized neu-
ropsychological assessment during the study period 
from March 2018 to November 2018. Inclusion criteria 
were (1) surgical closure of isolated ASD or (2) surgi-
cal closure of isolated VSD between 1990 and 2000. 
Exclusion criteria were (1) coexistence of other con-
genital cardiac or extracardiac abnormalities, (2) syn-
dromes associated with CHD (eg, Down’s and 22q11 
deletion syndrome), (3) medical history with brain dis-
order, (4) pregnancy, (5) MRI contraindications, and 
(6) lack of Danish languages skills. Surgical treatment 
was performed at Aarhus University Hospital and is 

CLINICAL PERSPECTIVE

What Is New?
•	 The present study demonstrated altered mi-

crostructural tissue composition in the cerebral 
cortex and subcortical structures in a cohort of 
adults with surgically corrected simple congeni-
tal heart defects.

•	 Changes in cerebral cortical and subcorti-
cal microstructural tissue composition were 
associated with poorer neuropsychological 
performance.

•	 Adults with surgically corrected simple congeni-
tal heart defects are at risk of an impaired long-
term cerebral development.

What Are the Clinical Implications?
•	 These findings point toward an overlooked early 

cerebral vulnerability in children with surgically 
corrected simple congenital heart defects.

•	 We emphasize the importance of neurodevel-
opmental surveillance in patients with simple 
congenital heart defect.

Nonstandard Abbreviations and Acronyms

CHD	 congenital heart defect
DKI	 diffusional kurtosis imaging
FWE	 family-wise error
GM	 gray matter
MD	 mean diffusivity
MKT	 mean kurtosis tensor
WM	 white matter
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described elsewhere.23 A group of healthy volunteers, 
without history of cardiac disease, was included as 
control group. They were approached through local fly-
ers and internet-based announcements and matched 
to patients on age, sex, and educational attainment.

MRI Acquisition and Processing
Data Acquisition

Brain MRI was performed using a Siemens Magnetom 
Prisma 3T MRI system with a 32-channel head coil. 
Diffusional kurtosis imaging was acquired with both 
anterior-posterior and posterior-anterior phase encod-
ing directions at b-values 0, 700, 1200, and 2800  s/
mm2. For each phase encoding direction, a total of 
191 image volumes were acquired (distribution over 
b-values: 11/30/60/90; b0 images interleaved through-
out the sequence) with repetition time=2972 ms, echo 
time=65 ms, at istotropic 1.8 mm resolution (acquisition 
matrix: 112×112, 60 axial slices). A structural T1-weigthed 
scan was obtained with a Magnetization-Prepared 2 
Rapid Acquisition Gradient Echo (MP2RAGE) sequence 
with the following parameters: repetition time=6.5s, 
inversion time 1=0.5s, inversion time 2=2.9s, α1=4°, 
α2=7°, 3D sequence imaged at isotropic 0.9 mm reso-
lution (acquisition matrix: 240×256, 192 sagittal slices) 
with turbo factor of 144 as defined by others.24

MRI Analyses

MP2RAGE images were processed using the frame-
work described in Aubert-Broche et al25 Images were 
denoised, bias field corrected, and linear and nonlin-
ear registered to Montreal Neurological Institute space. 
Images were then skull-stripped and classified into 
GM, WM, and cerebrospinal fluid . Subcortical nuclei 
were either segmented using a patch-based estimator 
(hippocampus and thalamus)26 or by merging tissue 
classes with an atlas in Montreal Neurological Institute 
space (caudate, fornix, putamen, and globus pallidus). 
For each hemisphere of the cerebrum, surfaces in 3D 
were fitted to the WM, midcortical layer, and pial sur-
face using fast accurate cortex extraction.27

The DKI images were denoised28 and corrected for 
artifacts related to Gibbs ringing,29 motion and eddy 
currents.30 MD and MKT were calculated using an 
in-house pipeline based on Hansen et al31 b0 images 
were coregistered32 to MP2RAGE images and cortical 
surfaces were transformed to DKI native space. DKI pa-
rameters were interpolated and mapped to the midcor-
tical surface thereby minimizing partial volume effects. 
Individual surfaces were registered33 to an average 
nonlinear template surface in Montreal Neurological 
Institute space.34 DKI parameters were then mapped to 
the average template and smoothed using a geodesic 
smoothing kernel with a full width half max of 20 mm. 

The segmentations of subcortical nuclei were trans-
formed to native DKI space and the mean of each DKI 
parameter was calculated for each nucleus.

Neurodevelopmental Assessment
The neurodevelopmental assessment included the 
Wechsler Adult Intelligence Scale – Fourth Edition,35 
the Delis-Kaplan Executive Function System,36 the 
Rey-Osterreith Complex Figure Test,37–39 the Rey 
Auditory Verbal Learning Test,40 the Reading the Mind 
in the Eyes Test41 and was previously published.23

Statistical Analysis
Data are presented as mean±SD, absolute numbers 
with percentages of participants, or as medians with 
total ranges, as appropriate. Continuous data were 
compared using Student unpaired t tests, Wilcoxon 
rank-sum tests, or multivariable linear regression ad-
justed for sex and age, as appropriate. Binary data are 
presented as absolute numbers and relative percent-
ages and compared using the χ2 tests. Statistical sig-
nificance was considered as P value <0.05. Multiple 
testing was accounted for by calculating a false dis-
covery rate q-value.42 Cortical parameter maps were 
fitted with a general linear model with age and sex as 
fixed effects for each DKI parameter and cortical thick-
ness using the SurfStat toolbox43 running in MATLAB 
2016b (MathWorks, Natick, MA). The statistical maps 
were family-wise error (FWE) corrected using a cluster 
defining threshold of α=0.001.44 Associations between 
MRI variables and neuropsychological outcomes were 
examined using multivariable linear regression ad-
justed for age and sex. All statistical analyses, except 
the statistical maps, were conducted using Stata/SE 
15.1 for Mac (StataCorp, College Station, TX).

Sample Size Justification
A sample size justification with a power of 80% and a 
significance level of 0.05 using the Student t test for this 
cohort of participants has been published elsewhere.23

RESULTS
Cohort
A total of 66 subjects with CHDs and 40 controls were 
enrolled in the study. MRI data from 6 subjects were ex-
cluded from further analyses because of claustrophobia/
anxiety during MRI or inadequate image quality. Hence, 
62 CHD participants (ASD=33 and VSD=29) and 38 
controls were included in the MRI analyses. At enroll-
ment, the mean age was 24.5±5.1  years in the group 
with CHDs and 25.6±4.5  years in the control group 
(P=0.925), and sex was evenly distributed between 
groups. Information on basic demographics, educational 
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achievement, perioperative information, and medical his-
tory of the study participants are reported elsewere.23

Group Differences of Diffusional Variables 
Between CHD and Control Subjects
Cortical Gray Matter Microstructure

Comparison of MKT and MD between the CHD and 
control participants are shown in Figures 1 and 2, re-
spectively. We identified substantial differences in the 
cortical GM microstructural tissue composition in the 
group with CHDs when compared with the control 
group. The group with CHDs had higher MKT located 
in the occipital (medial occipital surface), parietal (pre-
cuneus and cuneus domains), and temporal (the infe-
rior temporal gyri) lobes. A higher cluster-specific MKT 
value in the right pericalcarine gyrus and in the occipi-
tal part of the fusiform and lingual gyri remained after 
FWE correction (P=0.002 and 0.019, respectively).

A subgroup analysis showed that primarily the group 
with ASDs contributed to the higher MKT in the perical-
carine gyrus and, moreover, had a higher MKT value in 
the right parietal lobe at the temporoparietal junction 
that remained significant after FWE correction (P=0.005 
and 0.025, respectively). The group with VSDs had a 
higher MKT value in the fusiform and lingual gyri com-
pared with the control group; however, significance did 
not remain after FWE-correction. Moreover, the group 
with VSDs disclosed a higher MD in the cuneus and 
precuneus domains compared with controls. Higher 
MD values of the right parieto-occipital fissure remained 
significant after FWE correction (P=0.039).

Subcortical GM Microstructure

The MKT and MD values of subcortical structures in 
the CHD participants compared with that in control 
participants are shown in Table 1 and 2, respectively. 
The group with CHDs disclosed subtle changes in DKI 
parameters (lower MKT in the left fornix, P=0.037); 
however, a subgroup analysis revealed various MKT 
and MD differences in the left and right hemisphere 
subcortical structures in the group with ASDs (left cau-
date nucleus, P=0.048; left fornix, P=0.021; right thala-
mus, P=0.028) compared with controls. Subcortical 
MKT and MD values in the group with VSDs were not 
different from those in the control group.

Correlates of Neurodevelopmental 
Outcomes
Cortical GM Microstructure

Neurodevelopmental outcomes were examined for 
associations with cortical surface DKI parameters. 
First, we tested for general associations between 

neuropsychological outcomes and whole cortical sur-
face DKI parameters (Figure 3 through 6). This revealed 
several significant associations between cortical sur-
face DKI parameters and the neuropsychological 
abilities of social recognition (Figure  3) and execu-
tive functions (Figure 4 through 6), which all survived 
FWE correction. These associations are summarized 
in Table 3. Associations in the group with ASDs were 
unique as no similar associations were found in the 
control group; however, the association in the group 
with VSDs (cortical MKT value and Trail Making Test) 
was similarly observed in the control group.

Second, we tested for specific associations be-
tween neuropsychological outcomes and mean val-
ues within FWE-corrected clusters with altered cortical 
surface DKI parameters. However, only few associa-
tions were found, and none remained significant after 
false discovery rate correction (Table 4).

Subcortical GM Microstructure

Neurodevelopmental outcomes were examined for 
associations with DKI parameters of the subcortical 
structures. First, general associations were revealed 
within the groups; however, these varied from group 
to group, and none remained significant after false 
discovery rate -correction. Second, we tested for 
specific associations between neuropsychological 
outcomes and subcortical structures with altered DKI 
parameters. This revealed associations between the 
basal ganglia (left caudate nucleus) and intelligence 
and verbal learning and memory, and between the 
limbic system (left fornix and right thalamus) and ex-
ecutive function (verbal fluency test) in the group with 
ASDs, which are shown in Table 5. Interestingly, the 
MKT and MD of the left fornix were strongly associ-
ated with executive function (verbal fluency test) and 
remained significant after false discovery rate correc-
tion. No similar associations were found in the control 
group.

DISCUSSION
Young adults who underwent full-flow bypass surgery 
for an ASD or VSD during early childhood revealed al-
tered microstructural tissue properties in the cortical 
GM and in subcortical structures when compared with 
healthy peers. Key differences in microstructural prop-
erties were located in the visual cortex domain in the 
occipital lobe and in structures of the limbic system 
and basal ganglia. Associations between altered cer-
ebral microstructural properties and worse neuropsy-
chological outcomes were uncovered in the group with 
ASDs.
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Altered Cerebral Microstructural 
Properties
Abnormal Microstructural Properties of the 
Cerebral Cortex

Applying the DKI technique on this study cohort re-
vealed increased cortical kurtosis and diffusivity in GM 
of adults who were operated for a simple CHD during 
childhood. The main alterations in cortical microstruc-
ture were located in the occipital region, at the primary 
and secondary visual cortex in the group with CHDs. 
MKT was increased in the group with CHDs but more 
pronounced in the group with ASDs than in the group 
with VSDs. Moreover, the group with VSDs had in-
creased MD in the right cuneus in the occipital region.

In the context of our findings, the term micro-
structure refers to brain tissue structures that act as 
barriers for free diffusion of water such as cell mem-
branes, myelin layers, axon sheaths, etc. Also, the 
term properties refer to the tissue characteristics in 

term of number, density, orientation, and organization 
of microstructures.

In the healthy brain, increased kurtosis and dif-
fusivity are associated with brain maturation and 
improved cognitive function17,45 and a higher com-
plexity of the tissue microstructure.17,18,46 The higher 
cortical MKT and MD values in our study may there-
fore indicate more diffusion barriers, that is, more 
densely packed cells, higher dendritic density, or 
higher axonal density.47 More diffusion barriers af-
fect the motion of water molecules and subsequently 
the kurtosis and diffusion coefficient. Given that in 
patients with simple CHD, the MKT relationship in 
cognitive function appears to follow the same pat-
tern as in healthy individuals (increased kurtosis as-
sociated with better cognitive function), we speculate 
that the observed MKT and MD increase in patients 
with ASD and VSD may mirror a layered effect of 
pathology in addition to typical microstructural orga-
nization in occipital GM.

Figure 1.  Mean kurtosis tensor (MKT) in the cortical gray matter.
Comparison of cortical GM MKT between ASDs and controls (left), VSDs and controls (middle), and all CHDs and controls (right). 
Data are presented as statistical t-value maps adjusted for age and sex using linear regression and thresholded at P<0.05. Negative  
t-values indicate reductions (blue nuances), and positive t-values indicate increases (red nuances) in MKT. The black arrows and 
outlines denote clusters surviving family-wise error correction for multiple comparisons at α=0.001. Box plots with group mean and 
95% CI are shown for the most significant clusters. ASD indicates atrial septal defect; CHD, congenital heart defect; and VSD, 
ventricular septal defect.



J Am Heart Assoc. 2022;11:e020915. DOI: 10.1161/JAHA.121.020915� 6

Asschenfeldt et al� Altered Cerebral Microstructure in Simple CHD

Owing to the lack of histological studies on the 
brain in adults with simple CHD, a thorough explana-
tion to the alterations in cortical microstructure remains 
speculative. However, alterations in microstructural 
GM properties have been reported in cohorts with 
other diseases or conditions, such as attention-deficit 
hyperactivity disorder, Parkinson’s disease, multiple 
sclerosis, and schizophrenia.17,45,48–50 Similar to our 
findings, McKenna et al.50 demonstrated an increased 
MKT and MD in cortical GM within several brain 
lobes in patients with schizophrenia, however, not in 
the occipital lobe as in our cohort. McKenna et al.50 
speculate whether the microcellular changes were an 
indicator of one or several pathological mechanisms 
including higher-order inflammation, protein accumu-
lation, oxidative stress, iron deposits, and hypometab-
olism pathology. In animal studies, increased MKT has 
also been associated with increased astrocyte immu-
noreactivity, fiber dispersion, and protein deposition 

in mouse neurodegenerative models including brain 
trauma and Huntington and Alzheimer disorders.51–53 
In all, increased kurtosis and diffusivity values in GM 
tissue may be associated with pathological changes 
on a microcellular level.

Abnormal Microstructural Properties of 
Subcortical Structures

Alterations were located within the limbic system and 
basal ganglia in the patient group. The term “limbic 
system” refers to a collection of subcortical structures 
involved in processing emotion and memory. In the left 
fornix, a structure within the limbic system, we demon-
strated a prominent decrease in MKT and increase in 
MD in the group with ASDs. The fornix is a WM bundle 
in the limbic circuits, a predominant outflow tract of the 
hippocampus and one of the most important subcorti-
cal structures related to memory.54,55 A rapid increase 

Figure 2.  Mean diffusivity (MD) in the cortical gray matter.
Comparison of cortical GM MD between the ASDs and controls (left), VSDs and controls (middle), and all CHDs and controls (right). 
Data are presented as statistical t-value maps adjusted for age and sex using linear regression and thresholded at P<0.05. Negative 
t-values indicate reductions (blue nuances), and positive t-values indicate increases (red nuances) in MD. The black arrow and outline 
denote a cluster surviving family-wise error correction for multiple comparisons at α=0.001. Box plots with group mean and 95% CI 
are shown for the most significant clusters. ASD indicates atrial septal defect; CHD, congenital heart defect; and VSD, ventricular 
septal defect.
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in WM MKT normally occurs during the transition from 
adolescence to adulthood reflecting the late stages of 
cerebral maturation.16

In adulthood, MKT decrease is probably related 
to the degenerative changes and neuronal shrinkage 
that occurs with normal aging.16 It is reasonable to as-
sume that a lower WM MKT during adolescence may 
result in an abnormal WM MKT in the late decades 
of life. Therefore, the lower WM MKT of the left fornix 
in the group with CHDs may imply an increased age-
dependent cerebral vulnerability.

Alzheimer’s disease causes alterations in the for-
nix with demyelination or axonal loss compromising 
the microstructural tissue properties.56 As a conse-
quence of these pathological changes in the limbic 
system, impairment in memory and executive func-
tion emerge. In view of the Alzheimer’s disease pa-
thology, we speculate whether the fornix alterations 
found in the group with ASDs may predispose to an 

accelerated decline of memory and executive func-
tions in the late decades of life. This concern is sup-
ported by the previously demonstrated increased risk 
of dementia in adults with CHDs, including acyanotic 
CHD, compared with the general population.57 Also, 
it is worrying that our cohort of adults with CHDs al-
ready appear to have widespread impaired neurode-
velopmental outcomes including poorer memory and 
executive functions.23

The thalamus, another limbic structure, showed a 
unilateral increase in MD in the group with ASDs. This 
is somewhat an interesting finding being mindful of the 
visual system. The group with ASDs had significant MKT 
changes in the right primary visual cortex, which receives 
afferent signals from the corpus geniculatum laterale, an 
area of thalamus. Therefore, the finding of microstruc-
tural changes in both thalamus and the primary visual 
cortex in the right cerebral hemisphere may indicate ab-
normalities in the visual system in the group with ASDs.

Figure 3.  Association between mean kurtosis tensor (MKT) in cortical gray matter and social recognition (Reading the Mind 
in the Eyes Test).
Associations between cortical gray matter MKT and RMET are shown for the group with ASDs (left), group with VSDs (middle), and 
control group (right). Data are presented as statistical t-value maps adjusted for age and sex using linear regression and thresholded 
at P<0.05. Negative t-values indicate negative associations (blue nuances), and positive t-values indicate positive associations (red 
nuances). The black outlines denote clusters surviving family-wise error correction for multiple comparisons at α=0.001. A scatterplot, 
with Pearson’s correlation (grey line), shows the association between MKT value and RMET score in the most significant cluster. ASD 
indicates atrial septal defect; RMET, Reading the Mind in the Eyes Test; and VSD, ventricular septal defect.
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The term “basal ganglia” refers to deep subcorti-
cal nuclei responsible for primarily motor control and 
several cognitive functions. Abnormalities within the 
basal ganglia, are previously demonstrated in patients 
with dextro-transposition of the great arteries (d-TGA) 
during adolescence who had reduced volume in the 
bilateral striatum and pallidum.58 In accordance, we 
observed altered microstructural tissue properties in 
the left caudate nucleus, a part of the striatum, in the 
group with ASDs compared with controls. Our finding 
reflects a denser microstructural composition in the 
caudate nucleus but may still mirror a layered effect of 
pathology as in the cortical GM.

Differences in Cerebral Microstructure 
Between the Populations With ASD and VSD

The differences in microstructural cerebral properties 
between the populations with ASD and VSD need to be 

interpreted with caution because of the small size of our 
populations. On the other hand, differences between 
patients with ASD and VSD in our previous studies may 
confirm that they truly are different in some aspects.

We know from some of our previous register-
based studies that preterm birth is more prevalent in 
ASD than in VSD,59 that babies with VSD have smaller 
head circumferences at birth whereas babies with 
ASD have head sizes comparable to the background 
population,60 and that babies with VSD have a smaller 
placenta when born.61 Hence, the differences in the 
cerebral MKT and MD between ASD and VSD may not 
be so surprising after all but remains speculative at his 
point.

Altered Cerebral Morphology in CHD

The microstructural properties of GM are sparsely 
described in patients with CHDs. Nevertheless, our 

Figure 4.  Association between mean kurtosis tensor (MKT) in cortical gray matter and executive function (Verbal Fluency 
Test).
Associations between the cortical gray matter MKT and the Verbal Fluency Test score are shown for the group with ASDs (left), group 
with VSDs (middle), and control group (right). Data are presented as statistical t-value maps adjusted for age and sex using linear 
regression and thresholded at P<0.05. Negative t-values indicate negative associations (blue nuances), and positive t-values indicate 
positive associations (red nuances). The black outlines denote clusters surviving family-wise error correction for multiple comparisons 
at α=0.001. A scatterplot, with Pearson’s correlation (grey line), shows the association between MKT values and Verbal Fluency Test 
score in the most significant cluster. ASD indicates atrial septal defect; and VSD, ventricular septal defect.
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findings are in agreement with previous studies report-
ing abnormal cerebral morphology in various cohorts 
with CHDs during early adulthood. In the study by 
Watson et al.,58 a widespread reduced volume of the 
cortical surface and subcortical brain regions in ado-
lescents with d-TGA were demonstrated. Additionally, 
Latal et al.62 found a reduced volume of the limbic 
structure of hippocampus in a cohort of mixed CHDs, 
and Von Rhein et al.9 reported GM abnormalities such 
as reduced volume of the cortical GM and subcorti-
cal structures of the basal ganglia and hippocampus in 
adolescents with acyanotic CHD.

Although in our previous study we found normal 
brain volumes in the cohort with simple CHDs,23 in the 
present study we established worrying evidence of a 
compromised cerebral microstructure in patients with 
simple CHD that is in agreement with the abnormalities 
in GM morphology previously described by others.9,58,62

Neurodevelopmental Outcome and 
Cerebral Microstructural Properties

We found several associations between neuropsycho-
logical outcomes and DKI parameters of the cerebral 
GM in the cohort with CHDs, albeit not in the control 
group. In general, associations were more pronounced 
in the group with ASDs where these were present in 
both cortical GM and subcortical structures whereas 
associations in the group with VSDs were present only 
in the cortical GM. Interestingly, outcomes in social 
recognition and executive function were highly asso-
ciated with DKI parameters in both cortical GM and 
subcortical structures. Associations in social recogni-
tion were primarily found in the group with ASDs; how-
ever, associations in executive function were present in 
both the groups with ASDs and VSDs. These associa-
tions in our cohort with CHDs point toward an effect 

Figure 5.  Association between mean kurtosis tensor (MKT) in cortical gray matter and executive function (Delis-Kaplan 
Executive Function System: Trail Making Test).
Associations between the cortical gray matter MKT and the Trail Making Test scores are shown for the group with ASDs (left), group 
with VSDs (middle), and control group (right). Data are presented as statistical t-value maps adjusted for age and sex using linear 
regression and thresholded at P<0.05. Negative t-values indicate negative associations (blue nuances), and positive t-values indicate 
positive associations (red nuances). The black outlines denote clusters surviving family-wise error correction for multiple comparisons 
at α=0.001. A scatterplot, with Pearson’s correlation (grey line), shows the association between MKT values and Trail Making Test 
score in the most significant cluster. ASD indicates atrial septal defect; and VSD, ventricular septal defect.
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of cortical and subcortical microstructural changes on 
neurodevelopmental outcome.

In adolescents with complex CHD, impairment in 
social cognition and executive functioning is a well-
known problem, which may lead to psychosocial dis-
orders and a lower quality of life.63 Despite evidence 
of neurocognitive abnormalities in CHD adolescents, 
studies combining neurocognitive outcomes and brain 
MRI diffusion are limited. Rollins et al. reported re-
duced fractional anisotropy in a subset of WM regions 
in adolescents with d-TGA, which were associated 
with poorer cognition including a lower executive func-
tion scored by parental questionaires.10 In an elabo-
rate study on the same cohort with d-TGA, the authors 
described specific WM tracts that were independently 
associated with performance on memory and atten-
tion tasks.11

Associations between neurodevelopmental out-
comes and brain abnormalities identified by conventional 

MRI have also been reported.64–66 Bellinger et al. showed 
that focal infarction or cerebral atrophy was associated 
with poorer outcomes in executive function and social 
cognition in adolescents who underwent the Fontan 
procedure.66 Contrarily, in a similar study but with ad-
olescents with a d-TGA cardiac physiology, no asso-
ciations were found between brain abnormalities and 
neurocognitive outcomes.3 To elucidate the relationship 
between neurocognitive outcomes and alterations to 
the microstructural composition of brain tissue in CHDs, 
studies on larger patient cohorts are warranted, prefer-
ably in a longitudinal setup.

Potential Mechanisms
A considerable aspect in our main findings is the oc-
currence of altered tissue microstructure in posterior 
areas of the brain (including pericalcarine gyrus, fusi-
form, and lingual gyri), which are mainly supplied by 

Figure 6.  Association between mean diffusivity (MD) in cortical gray matter and executive function (Verbal Fluency Test).
Associations between the cortical gray matter MD and the Verbal Fluency Test scores are shown for the group with ASDs (left), group 
with VSDs (middle), and control group (right). Data are presented as statistical t-value maps adjusted for age and sex using linear 
regression and thresholded at P<0.05. Negative t-values indicate negative associations (blue nuances), and positive t-values indicate 
positive associations (red nuances). The black outlines denote clusters surviving family-wise error correction for multiple comparisons 
at α=0.001. A scatterplot, with Pearson’s correlation (grey line), shows the association between MD values and Verbal Fluency Test 
score in the most significant cluster. ASD indicates atrial septal defect; and VSD, ventricular septal defect.



J Am Heart Assoc. 2022;11:e020915. DOI: 10.1161/JAHA.121.020915� 13

Asschenfeldt et al� Altered Cerebral Microstructure in Simple CHD

the posterior cerebral artery. As the posterior cerebral 
artery departs from the vertebral artery via the basilar 
artery, one may speculate whether tissue microstruc-
ture could also be altered in the cerebellum. Though 
we did not include cerebellum in our analysis, previous 
studies have shown cerebellar alterations in CHD.67

The underlying pathophysiology for adverse cere-
bral development in CHD is indeed multifactorial; how-
ever, neonatal environmental factors play a key role 
in this etiology.68,69 Central to this is the link between 
reduced fetal cerebral oxygen delivery and impaired 
brain development in complex CHD.69 The lack of ox-
ygen delivery and adverse impact on brain growth is 
demonstrated in a CHD animal model where cerebral 
hypoxia reduces proliferation and neurogenesis in the 
subventricular zone in the postnatal brain resulting in 
an impaired cortical growth.70 Also, insults associated 
with cardiopulmonary bypass cause WM vulnerability 
in animal CHD models.71 Parallel to this, subcortical 
morphological reductions are associated with an al-
tered metabolism in cerebral WM in both preterm and 
term infants with CHDs.72 Overall, indices of a cerebral 
vulnerability to environmental factors in the perinatal 
period are present and may be highly relevant in the 
understanding of the adverse long-term brain develop-
ment in CHD.

Another relevant aspect of the etiology is a poten-
tial genetic contribution. Homsy et al. reported that 
patients with both CHD and neurodevelopmental dis-
abilities had a higher prevalence of de novo mutations, 
particularly in genes expressed in the developing heart 
and brain.73 Their findings are consistent with those 
of Ji et al., who showed that neurodevelopmental dis-
ability in patients with CHDs may be attributable to 
genes altering both cardiac patterning and the neural 
connectivity.74 As neurodevelopmental disabilities are 

common in our cohort of simple CHDs, a genetic con-
tribution may therefore also be relevant to the etiology 
of altered cerebral microstructural tissue composition 
in this population.

DKI and Clinical Utility
Normal values for MKT in brain tissue have not yet 
been fully established and unfortunately these val-
ues seem to depend on the MRI scanner, sequence, 
and post hoc analyses used when obtaining the data. 
Fortunately, the different types of brain tissue dem-
onstrates a consistent order in MKT value, meaning 
that WM has a higher MKT than GM and subcortical 
GM has a higher MKT than cortical GM because of 
penetrating WM fibers.75 In an approach to establish 
reference values in healthy individuals, Maiter et al. 
demonstrated a cortical GM MKT of 0.82, subcortical 
GM MKT of 1.17, and WM MKT of 1.19 in healthy vol-
unteers. Our MKT values showed the same consistent 
order with increasing MKT from cortical to subcorti-
cal GM; however, we found lower subcortical GM MKT 
values ranging from 0.7 to 1.2 depending on the nu-
cleus. In support of our subcortical findings 2 other 
studies from our research institution demonstrated 
similar subcortical MKT values despite using another 
MRI scanner and sequence: Næss-Schmidt et al. 
demonstrated a thalamus MKT of 0.72 (in our study 
0.83) and a MKT in hippocampus of 0.60 (in our study 
0.71) in a control group,76 and Nygaard et al. found a 
thalamus MKT of 0.63 and hippocampus MKT of 0.56 
in patients with multiple sclerosis.77 It appears that the 
order of the presented GM MKT values in our study is 
consistent with that reported by others, yet a quantita-
tive comparison of MKT values across studies is not 
possible, and therefore, neither normative values nor 
change in MKT have a clinical significance at present. 
In addition, an age-related effect on non-Gaussian dif-
fusion must also be taken into count when interpreting 
brain MKT values.16 Consequently, MKT is considered 
a research tool, but with appropriate development and 
refinement it may evolve into clinical utility but much 
more experience is needed for interpretation of the re-
sults in a clinical scenario.

Limitations
Our study has inherent limitations. First, the cross-
sectional design entails the risk of cohort selection bias 
with a possible overestimation of cerebral alterations. 
Second, the surgical treatments were performed over 
a period of ≈10 years and may suffer from variations in 
surgical techniques and perioperative care. Moreover, 
current guidelines recommend an earlier age at defect 
closure than in the 1990s, wherefore our findings may 
not mirror brain development in ASDs and VSDs op-
erated today. Conversely, the cerebral alterations may 

Table 3.  Summarized Associations Between 
Neuropsychological Outcomes and Cortical Surface 
Diffusional Kurtosis Imaging Values for Congenital Heart 
Defect and Control Participants

Neuropsychological outcome
Cortical diffusional kurtosis 
imaging values

Atrial septal defect

Social recognition* Cortical MKT of bilateral frontal and 
parietal lobes

Executive function† Cortical MKT of left parietal and 
occipital lobes

Executive function† Cortical mean diffusivity of bilateral 
frontal and right occipital lobes

Ventricular septal defect

Executive function‡ Cortical MKT of bilateral frontal and 
right occipital lobes

MKT indicates mean kurtosis tensor.
*Reading the Mind in the Eyes Test.
†Delis-Kaplan Executive Function System: Verbal Fluency Test.
‡Delis-Kaplan Executive Function System: Trail Making Test.
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be established during intrauterine brain development 
due to environmental factors as in complex CHD and 
may therefore continue to be a problem for today’s pa-
tients. Third, the study lacks genetic testing. Excluding 
known associated genetic disorders, such as Trisomy 
21 (Down’s syndrome) and 22q11.2 deletion syndrome 
(DiGeorge syndrome), may not be sufficient because 
other genetic factors associated with CHD, such as de 
novo mutations73 or epigenetic insults, may be relevant 
determinants in explaining our findings. Finally, a large 
variation in DKI parameter values across the cortical 
GM was observed in the groups with ASDs and VSDs 
compared with controls. One may speculate whether 
this variation highlights an unknown precision of using 
DKI to examine this study population. However, the 
large variation in DKI values was not present in the 
control group and in a test-retest study using a similar 
MRI scanner, the MKT coefficient varied only 2.9% in 

WM.78 The DKI variation may very well define the com-
position of GM microstructure in a subgroup rather 
than being a general descriptive factor for the cohort 
with CHDs and could potentially conceal a higher level 
of GM microstructural abnormalities occurring in the 
affected patients with simple CHDs.

CONCLUSIONS
We identified altered microstructural tissue composition 
in the cerebral cortex and subcortical structures among 
adults, who in childhood underwent surgical closure 
of an ASD or VSD, when compared with healthy con-
trols matched on age, sex, and educational attainment. 
Changes in microstructural composition were present in 
the left and right hemisphere cortex with distinct cluster-
specific alterations located in the right occipital and pa-
rietal lobes. Subcortical microstructural changes were 

Table 4.  Associations Between Neurodevelopmental Outcomes and Mean Values Within Clusters With Altered Cortical 
Diffusional Kurtosis Imaging Parameters for Participants With Congenital Heart Defect

R2 B SE B t P value

Atrial septal defect

Social recognition* versus MKT cluster in 
parietal lobe

0.43 0.0011 0.0004 2.44 0.021

Intelligence† versus MKT cluster at 
pericalcarine gyrus

0.50 0.0003 0.0002 2.16 0.047

Ventricular septal defect

Verbal learning and memory‡ versus mean 
diffusivity cluster in parieto-occipital fissure

0.25 0.0014 0.0005 2.71 0.012

Congenital heart defect

Intelligence† versus MKT cluster at 
pericalcarine gyrus

0.50 0.0003 0.0001 3.25 0.002

Data are presented as R2, B±SE, t, and P value from a multivariable linear regression model adjusted for sex and age. None of the associations remained 
significant after false discovery rate adjustment at q<0.05. MKT indicates mean kurtosis tensor.

*Reading the Mind in the Eyes Test.
†Wechsler Adult Intelligence Scale Version IV, processing speed index.
‡Rey Auditory Verbal Learning Test, Delayed Recall Test.

Table 5.  Associations Between Neurodevelopmental Outcomes and Subcortical Structures With Differences in Diffusional 
Kurtosis Imaging Parameters for Participants With Atrial Septal Defect

R2 B SE B t P value

Processing speed* versus left caudate 
nucleus MKT

0.32 0.0005 0.0002 2.26 0.032

Verbal learning and memory† versus 
left caudate nucleus MKT

0.30 −0.0008 0.0004 −2.07 0.047

Executive function‡ versus left fornix 
MKT

0.38 0.0112 0.0031 3.57 0.001§

Executive function‡ versus left fornix MD 0.35 −0.0434 0.0122 −3.57 0.001*

Executive function‡ versus right 
thalamus MD

0.28 −0.0058 0.0019 −3.00 0.005

Data are presented as R2, B±SE, t, and P-value from a multivariable linear regression model adjusted for sex and age. MD indicates mean diffusivity; and 
MKT, mean kurtosis tensor.

*Wechsler Adult Intelligence Scale Version IV.
†Rey Auditory Verbal Learning Test, Delayed Recall Test.
‡Delis-Kaplan Executive Function System, Verbal Fluency Test.
§false discovery rate q<0.05.
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mainly located in the right hemisphere. The variations 
in cerebral microstructural tissue composition were as-
sociated with neuropsychological performance in both 
the groups with ASDs and VSDs. These findings sug-
gest the presence of a compromised long-term cerebral 
microstructural tissue composition that may mirror a di-
vergence in early neurodevelopment.
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