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A central biological question is how natural organisms are so evolvable (capable

of quickly adapting to new environments). A key driver of evolvability is the

widespread modularity of biological networks—their organization as func-

tional, sparsely connected subunits—but there is no consensus regarding why

modularity itself evolved. Although most hypotheses assume indirect selection

for evolvability, here we demonstrate that the ubiquitous, direct selection

pressure to reduce the cost of connections between network nodes causes the

emergence of modular networks. Computational evolution experiments with

selection pressures to maximize network performance and minimize connection

costs yield networks that are significantly more modular and more evolvable

than control experiments that only select for performance. These results will

catalyse research in numerous disciplines, such as neuroscience and genetics,

and enhance our ability to harness evolution for engineering purposes.
1. Introduction
A long-standing, open question in biology is how populations are capable of

rapidly adapting to novel environments, a trait called evolvability [1]. A major

contributor to evolvability is the fact that many biological entities are modular,

especially the many biological processes and structures that can be modelled

as networks, such as metabolic pathways, gene regulation, protein interactions

and animal brains [1–7]. Networks are modular if they contain highly connected

clusters of nodes that are sparsely connected to nodes in other clusters [4,8,9].

Despite its importance and decades of research, there is no agreement on why

modularity evolves [4,10,11]. Intuitively, modular systems seem more adaptable,

a lesson well known to human engineers [12], because it is easier to rewire a

modular network with functional subunits than an entangled, monolithic net-

work [13,14]. However, because this evolvability only provides a selective

advantage over the long term, such selection is at best indirect and may not be

strong enough to explain the level of modularity in the natural world [4,10].

Modularity is probably caused by multiple forces acting to various degrees in

different contexts [4], and a comprehensive understanding of the evolutionary

origins of modularity involves identifying those multiple forces and their relative

contributions. The leading hypothesis is that modularity mainly emerges because

of rapidly changing environments that have common subproblems, but different

overall problems [13,14]. Computational simulations demonstrate that in such

environments (called modularly varying goals: MVG), networks evolve both

modularity and evolvability [13,14]. By contrast, evolution in unchanging

environments produces non-modular networks that are slower to adapt to

new environments [13,14]. Follow-up studies support the modularity-generating

force of MVG in nature: the modularity of bacterial metabolic networks is corre-

lated with the frequency with which their environments change [15]. It is

unknown how much natural modularity MVG can explain, however, because

it is unclear how many biological environments change modularly, and whether

they change at a high enough frequency for this force to play a significant role

[11]. A related theory that also assumes a constantly changing environment

and selection for evolvability is that modularity arises to enable modifying

one subcomponent without affecting others [11]. There are other plausible
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Figure 1. Main hypothesis. Evolving networks with selection for performance alone produces non-modular networks that are slow to adapt to new environments.
Adding a selective pressure to minimize connection costs leads to the evolution of modular networks that quickly adapt to new environments.
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hypotheses (reviewed in [4]), including that variation mechan-

isms, such as gene duplication, create a bias towards the

generation of modular structures [4] and that modularity

evolves because of selection to make phenotypes robust to

environmental perturbations [10].

We investigate an alternate hypothesis that has been

suggested, but heretofore untested, which is that modularity

evolves not because it conveys evolvability, but as a bypro-

duct from selection to reduce connection costs in a network

(figure 1) [9,16]. Such costs include manufacturing connec-

tions, maintaining them, the energy to transmit along them

and signal delays, all of which increase as a function of con-

nection length and number [9,17–19]. The concept of

connection costs is straightforward in networks with phy-

sical connections (e.g. neural networks), but costs and

physical limits on the number of possible connections may

also tend to limit interactions in other types of networks

such as genetic and metabolic pathways. For example,

adding more connections in a signalling pathway might

delay the time that it takes to output a critical response;

adding regulation of a gene via more transcription factors

may be difficult or impossible after a certain number of prox-

imal DNA binding sites are occupied, and increases the time

and material required for genome replication and regulation;

and adding more protein–protein interactions to a system

may become increasingly difficult as more of the remaining

surface area is taken up by other binding interactions.

Future work is needed to investigate these and other hypoth-

eses regarding costs in cellular networks. The strongest

evidence that biological networks face direct selection to

minimize connection costs comes from the vascular system

[20] and from nervous systems, including the brain, where

multiple studies suggest that the summed length of the

wiring diagram has been minimized, either by reducing

long connections or by optimizing the placement of neurons

[9,17–19,21–23]. Founding [16] and modern [9] neuroscien-

tists have hypothesized that direct selection to minimize

connection costs may, as a side-effect, cause modularity.

This hypothesis has never been tested in the context of evol-

utionary biology. The most related study was on non-

evolving, simulated neural networks with a specific within-

life learning algorithm that produced more modularity

when minimizing connection length in addition to perform-

ance [24], although the generality of the result was

questioned when it was not replicated with other learning

algorithms [25]. Without during-life learning algorithms,

carefully constructed MVG environments or mutation
operators strongly biased towards creating modules,

attempts to evolve modularity in neural networks have

failed [10,26,27].

Given the impracticality of observing modularity evolve

in biological systems, we follow most research on the subject

by conducting experiments in computational systems with

evolutionary dynamics [4,11,13]. Specifically, we use a well-

studied system from the MVG investigations [13,14,27]:

evolving networks to solve pattern-recognition tasks and

Boolean logic tasks (§4). These networks have inputs that

sense the environment and produce outputs (e.g. activating

genes, muscle commands, etc.), which determine perform-

ance on environmental problems. We compare a treatment

where the fitness of networks is based on performance

alone (PA) to one based on two objectives: maximizing per-

formance and minimizing connection costs (P&CC). A

multi-objective evolutionary algorithm is used [28] with one

(PA) or two (P&CC) objectives: to reflect that selection is

stronger on network performance than connection costs, the

P&CC cost objective affects selection probabilistically only

25 per cent of the time, although the results are robust to sub-

stantial changes to this value (§4). Two example connection

cost functions are investigated. The default one is the

summed squared length of all connections, assuming nodes

are optimally located to minimize this sum (§4), as has

been found for animal nervous systems [17,18,29,30]. A

second measure of costs as solely the number of connections

yields qualitatively similar results to the default cost

function, and may better represent biological networks with-

out connections of different lengths. More fit networks

tend to have more offspring (copies that are randomly

mutated), and the cycle repeats for a preset number of gene-

rations (figure 1, §4). Such computational evolving systems

have substantially improved our understanding of natural

evolutionary dynamics [4,11,13,14,31,32].

The main experimental problem involves a network that

receives stimuli from eight inputs [13]. It can be thought of

as an eight-pixel retina receiving visual stimuli, although

other analogies are valid (§4), such as a genetic regulatory

network exposed to environmental stimuli. Patterns shown

on the retina’s left and right halves may each contain an

‘object’, meaning a pattern of interest (figure 2a). Networks

evolve to answer whether an object is present on both the

left and right sides of the retina (the L-AND-R environ-

ment) or whether an object is displayed on either side

(the L-OR-R environment). Which patterns count as an

object on the left and right halves are slightly different
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Figure 2. The addition of connection costs leads to higher-performing, functionally modular networks. (a) Networks evolve to recognize patterns (objects) in an
eight-pixel retina. The problem is modularly decomposable because whether an object exists on the left and right sides can be separately determined before
combining that information to answer whether objects exist on both sides (denoted by the AND logic function). (b) Networks from an example trial become
more modular across evolutionary time (also see the electronic supplementary material, video S1) with a pressure to minimize connection costs in addition to
performance (P&CC). (c) Median performance (+95% bootstrapped confidence intervals) per generation of the highest-performing network of each trial,
which is perfect only when minimizing connection costs in addition to performance. (d ) Network modularity, which is significantly higher in P&CC trials than
when selecting for performance alone (PA). (e) The 12 highest-performing PA networks, each from a separate trial. ( f ) The 12 highest-performing P&CC networks,
which are functionally modular in that they have separate modules for the left and right subproblems. Nodes are coloured according to membership in separate
partitions when making the most modular split of the network (see text). The final networks of all 50 trials are visualized in the electronic supplementary material,
figure S1. (g,h) Cost and modularity of PA and P&CC populations across generations, pooled from all 50 trials. A connection cost pushes populations out of high-cost,
low-modularity regions towards low-cost, modular regions. Figure 3 shows the fitness potential of each map area.
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(figure 2a). Each network iteratively sees all possible 256

input patterns and answers true (�0) or false (,0). Its per-

formance is the percentage of correct answers, which

depends on which nodes are connected, how strongly,

and whether those connections are inhibitory or excitatory

(§4). Networks are randomly generated to start each exper-

iment. Their connections stochastically mutate during
replication (§4). Network modularity is evaluated with an

efficient approximation [33,34] of the widely used modular-

ity metric Q, which first optimally divides networks into

modules then measures the difference between the

number of edges within each module and the number

expected for random networks with the same number of

edges [33,34].



0.7
PA
PA, perfect perf.
P&CC
P&CC perfect perf.

m
od

ul
ar

ity
 (

Q
)

0.6

0.5

0.4

0.3

0.2

0.1

0 50 100 150
cost
200 250 300 350

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Figure 3. The highest-performing networks found for each combination of
modularity and cost for the retina problem. Colours indicate the highest-
performing network found at that point in the modularity versus cost
space, with yellow representing perfect performance. This map has been gen-
erated using the MOLE algorithm (§4). The best-performing network at the
end of each of the 50 PA and P&CC runs are overlaid on the map. Networks
with perfect performance exist throughout the space, which helps explain
why modularity does not evolve when there is selection based on perform-
ance alone. Below a cost threshold of around 125 there is an inverse
correlation between cost and modularity for perfectly performing networks.
The lowest cost networks—those with the shortest summed lengths—
that are high-performing are modular.

rspb.royalsocietypublishing.org
ProcR

SocB
280:20122863

4

2. Results
After 25 000 generations in an unchanging environment

(L-AND-R), treatments selected to maximize performance

and minimize connection costs (P&CC) produce significantly

more modular networks than treatments maximizing per-

formance alone (PA) (figure 2d, Q ¼ 0.42, 95% CI [0.25,0.45]

vs. Q ¼ 0.18[0.16, 0.19], p ¼ 8 � 10209 using Matlab’s

Mann–Whitney–Wilcoxon rank sum test, which is the

default statistical test unless otherwise specified). To test

whether evolved networks exhibit functional modularity corre-

sponding to the left–right decomposition of the task we

divide networks into two modules by selecting the division

that maximizes Q and colour nodes in each partition differ-

ently. Left–right decomposition is visually apparent in

most P&CC trials and absent in PA trials (figure 2e,f ). Func-

tional modularity can be quantified by identifying whether

left and right inputs are in different partitions, which

occurs in 56 per cent of P&CC trials and never with PA (Fish-

er’s exact test, p ¼ 4 � 10211). Pairs of perfect sub-solution

nodes—whose outputs perfectly answer the left and right

subproblems—occur in 39 per cent of P&CC trials and 0

per cent of PA trials (Fisher’s exact test, p ¼ 3 � 1026,

electronic supplementary material, figure S1).

Despite the additional constraint, P&CC networks are

significantly higher-performing than PA networks (figure 2c,

electronic supplementary material, figure S13). The median-

performing P&CC network performs perfectly (1.0[1.0, 1.0]),

but the median PA network does not (0.98[0.97, 0.98], p¼
2� 10205). P&CC performance may be higher because its

networks have fewer nodes and connections (see the electronic

supplementary material, figure S8b,c), meaning fewer
parameters to optimize. Modular structures are also easier to

adapt since mutational effects are smaller, being confined to

subcomponents [8]. While it is thought that optimal, non-

modular solutions usually outperform optimal, modular

designs, such ‘modularity overhead’ only exists when compar-

ing optimal designs, and is not at odds with the finding that

adaptation can be faster and ultimately more successful with a

bias towards modular solutions [8].

To better understand why the presence of a connection

cost increases performance and modularity, we searched for

the highest-performing networks at all possible combinations

of modularity and cost (§4). For high-performing networks,

there is an inverse correlation between cost and modularity,

such that the lowest-cost networks are highly modular

(figure 3). Many runs in the P&CC treatment evolved net-

works in this region whereas the PA treatments never did.

There are also many non-modular, high-cost networks that

are high-performing, helping one explain why modularity

does not evolve due to performance alone (figure 3). Com-

paring PA versus P&CC populations across generations

reveals that a connection cost pushes populations out of

high-cost, low-modularity areas of the search space into

low-cost, modular areas (figure 2g,h). Without the pressure

to leave high-cost, low-modularity regions, many PA net-

works remain in areas that ultimately do not contain the

highest-performing solutions (figure 3, pink squares in the

bottom right), further explaining why P&CC treatments

have higher performance. We also found evidence of an

inverse correlation between the total cost of a network and

modularity in randomly generated networks, irrespective of

performance, supporting the intuition that low-cost

networks are more likely to be modular (see the electronic

supplementary material, figure S12).

P&CC networks are also more evolvable than PA net-

works. We ran additional trials until 50 P&CC and 50 PA

trials each had a perfectly performing network (§4) and trans-

ferred these networks into the L-OR-R environment, which has

the same subproblems in a different combination (see the elec-

tronic supplementary material, figure S6). The presence

(P&CC) or absence (PA) of a connection cost remained after

the environmental change. We performed 50 replicate exper-

iments for each transferred network. We also repeated the

experiment, except first evolving in L-OR-R and then transfer-

ring to L-AND-R. In both experiments, P&CC networks

exhibit greater evolvability than PA by requiring fewer gener-

ations to adapt to the new environment (figure 4a, L-AND-R

! L-OR-R: 3.0[2.0, 5.0] versus 65[62, 69], p ¼ 3 � 10278;

L-OR-R! L-AND-R: 12.0[7.0, 21.0] versus 222.5[175.0, 290.0],

p ¼ 9 � 102120). Modular networks thus evolve because their

sparse connectivity has lower connection costs, but such mod-

ularity also aids performance and evolvability because the

problem is modular.

Minimizing connection costs can work in conjunction

with other forces to increase modularity. Modularity levels

are higher when combining P&CC with MVG environ-

ments (figure 4b: solid versus dotted green line, p ¼ 3 � 1025).

Overall, P&CC (with or without MVG) yields similar levels

of modularity as MVG at its strongest, and significantly

more when rates of environmental change are too slow for

the MVG effect to be strong (figure 4: green lines versus

blue solid line).

P&CC modularity is also higher than PA even on pro-

blems that are non-modular (figure 5a, p ¼ 5.4 � 10218). As
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to be expected, such modularity is lower than on modular

problems ( p ¼ 0.0011, modular retina versus non-modular

retina). This non-modular problem involves answering

whether any four pixels were on (black), which is non-mod-

ular because it requires information from all retina inputs. As

mentioned previously, performance and modularity are also

significantly higher with an alternate connection cost func-

tion based on the number of connections (P&CC-NC)

instead of the length of connections (figure 6). We also veri-

fied that modularity and performance are not higher simply

because a second objective is used (figure 6). We further

tested whether modularity arises even when the inputs for

different modules are not geometrically separated, which is

relevant when cost is a function of connection length.

Even in experiments with randomized input coordinates

(§4), a connection cost significantly increased performance

(1.0[0.98, 1.0], p ¼ 0.0012) and modularity (Q ¼ 0.35[0.34,

0.38], p ¼ 1 � 1029), and performance and modularity

scores were not significantly different than P&CC without

randomized coordinates (see the electronic supplementary

material, figure S7).

All the results presented so far are qualitatively similar in

a different model system: evolving networks to solve Boolean

logic tasks. We tested two fully separable problems: one

with five ‘exclusive or’ (XOR) logic modules (figure 5b),

and another with hierarchically nested XOR problems

(figure 5c). P&CC created separate modules for the decom-

posed problems in nearly every trial, whereas PA almost

never did (see the electronic supplementary material, figures

S2 and S3). P&CC performance was also significantly higher

(figure 5b,c), and there was an inverse correlation between
cost and modularity (see the electronic supplementary

material, figure S10). After reading a preprint of this manu-

script, a different research group replicated the main result

in a different domain: they found that a connection cost

causes modularity to evolve when optimizing computer

chip architectures [35]. Confirming the generality of the find-

ing that connection costs improve adaptation rates and that

high-performing, low-cost networks are modular is an

interesting area for future research.
3. Discussion and conclusion
Overall, this paper supports the hypothesis that selection to

reduce connection costs causes modularity, even in unchan-

ging environments. The results also open new areas of

research into identifying connection costs in networks with-

out physical connections (e.g. genetic regulatory networks)

and investigating whether pressures to minimize connection

costs may explain modularity in human-created networks

(e.g. communication and social networks).

It is tempting to consider any component of modularity

that arises due to minimizing connection costs as a ‘spandrel’,

in that it emerges as a byproduct of selection for another trait

[36,37]. However, because the resultant modularity produces

evolvability, minimizing connection costs may serve as a boot-

strapping process that creates initial modularity that can then

be further elevated by selection for evolvability. Such hypoth-

eses for how modularity initially arises are needed, because

selection for evolvability cannot act until enough modularity

exists to increase the speed of adaptation [4].

Knowing that selection to reduce connection costs pro-

duces modular networks will substantially advance fields

that harness evolution for engineering, because a longstand-

ing challenge therein has been evolving modular designs

[8,10,27,38]. It will additionally aid attempts to evolve accu-

rate models of biological networks, which catalyse medical

and biological research [2,9,39]. The functional modularity

generated also makes synthetically evolved networks easier

to understand. These results will thus generate immediate

benefits in many fields of applied engineering, in addition to

furthering our quest to explain one of nature’s predominant

organizing principles.
4. Methods
(a) Experimental parameters
Each treatment is repeated 50 times with different stochastic

events (i.e. different random number generator seeds). Analyses

and visualizations are of the highest-performing network per

trial with ties broken randomly. The main experiments (retina,

non-modular retina, 5-XOR, and hierarchical XOR) last 25 000

generations and have a population size of 1000.
(b) Statistics
For each statistic, we report the median +95% bootstrapped con-

fidence intervals of the median (calculated by resampling the

data 5000 times). In plots, these confidence intervals are

smoothed with a median filter (window size ¼ 200) to remove

sampling noise. Statistical significance is assessed using Matlab’s

Mann–Whitney–Wilcoxon rank sum test.



**** ****

1.0

0.9

0.8(b)(a)

0.6

0.4

0.2

0
PA

P&RO

P&CC-N
C

P&CCPA
P&RO

P&CC-N
C

P&CC

Figure 6. Alternate cost functions. Performance (a) and modularity (b) are significantly higher ( p, 0.0001) either with a cost function based on the length (P&CC)
or number (P&CC-NC) of connections versus performance alone (PA) or performance and a random objective (P&RO). P&RO assigned a random number to
each organism instead of a connection cost score and maximized that random number. Electronic supplementary material figure S7 contains visualizations of
all P&CC-NC networks.

performance

exactly 4 black
pixels?

retina

n.s.

****

**** **** ***

****

modularity (Q) performance modularity (Q) performance

XOR XOR

XORXORXORXOR
XOR XORXORXORXOR

0.81.0

0.9

0.8

1.0

0.9

1.0

0.9 0.8 0.7

0.6

0.4

0.2

PA P&CCPA P&CCPA P&CCPA P&CCPA P&CCPA

PA

PA

PA

P&CC

P&CC
P&CC

P&CC

0

0.8

0.6

0.4

0.2

0

0.8

0.6

0.4

0.2

0

modularity (Q)

(a) (b) multiple, separable problems (c) hierarchical, separable problemsnon-modular problem

Figure 5. Results from tests with different environmental problems. (a) Even on a non-modular problem, modularity is higher with P&CC, though it is lower than
for modular problems. (b,c) P&CC performs better, is more modular, and has better functional decomposition than PA when evolving networks to solve five separate
XOR functions and hierarchically nested XOR functions. The examples are the final, highest-performing networks per treatment. Electronic supplementary material
figures S2 – S4 show networks from all trials. Three and four asterisks indicate p values less than 0.001 and 0.0001, respectively, and n.s. indicates no significant
difference.

rspb.royalsocietypublishing.org
ProcR

SocB
280:20122863

6

(c) Length cost
For P&CC treatments, prior to calculating connection costs, we

place nodes in positions optimal for minimizing connection costs

given the topology of the network, which is biologically

motivated [17,18,29] and can be solved for mathematically

[29]. Inputs and outputs are at fixed locations (see §4d).

Visualizations reflect these node placements.
(d) Geometric coordinates
Nodes exist at two-dimensional (i.e. x,y) Cartesian locations. The

geometric coordinates of the inputs and outputs for all problems

were fixed throughout evolution, including the treatment where

the within-row location of inputs are randomized at the beginning

of each separate trial. The inputs for all problems have y-values

of 0. For the retina problem, the x-values for the inputs are

f23.5, 22.5, . . ., 3.5g and the output is at f4, 0g. For the problem

with 5 XOR modules, the x-values for the inputs are f2 4.5, 23.5,

. . ., 4.5g and the outputs all have y-values of 2 with x-values of

f2 4, 22, 0, 2, 4g. For the problem with decomposable, hierarchi-

cally nested XOR functions, the x-values for the inputs are f2 3.5,
22.5, . . ., 3.5g and the outputs all have y-values of 4 with x-values

of f22, 2g. The geometric location of nodes is consequential

only when there is a cost for longer connections (i.e. the main

P&CC treatment).

(e) Evolvability experiment
The evolvability experiments (figure 4a) are described in elec-

tronic supplementary material, figure S6. To obtain 50 trials

that each had a perfectly performing network in L-AND-R and

L-OR-R, respectively, took 110 and 116 trials for P&CC and

320 and 364 trials for PA. One thousand clones of each of these

networks then evolved in the alternate environment until

performance was perfect or 5000 generations passed.

( f ) Biological relevance of network models
This section provides a brief overview of the network models

in this paper. A more complete review of network models is

provided in [2,40–42] and the references therein.

Network models can represent many types of biological

processes by representing interactions between components
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[2,41,42]. Examples of biological systems that are commonly

modelled as networks are genetic, metabolic, protein interaction

and neural networks. All such networks can be represented

abstractly as nodes representing components, such as neurons

or genes, and the interactions between such components, such

as a gene inhibiting another gene. The weight of connections

indicates the type and strength of interactions, with positive

values indicating activation, negative values indicating inhi-

bition, and the magnitude of the value representing the

strength of the interaction.

Multiple nodes can connect to form a network (e.g. electronic

supplementary material, figure S11b). Typically, information

flows into the network via input nodes, passes through hidden
nodes, and exits via output nodes. Examples include a gene regu-

latory network responding to changing levels of environmental

chemicals or a neural network responding to visual inputs

from the retina and outputting muscle commands.

(g) Network model details
Our model of a network is a standard, basic one used in machine

learning [40], systems biology [2,13,14,43] and computational

neuroscience [44]. It has also been used in previous landmark

studies on the evolution of modularity [13,11]. The networks

are feed-forward, meaning that nodes are arranged into layers,

such that a node in layer n receives incoming connections only

from nodes in layer n 2 1 and has outgoing connections only

to nodes in layer nþ 1 (see the electronic supplementary

material, figure S11b). The maximum number of nodes per

hidden layer is 8/4/2 for the three hidden layers in the retina

problem, 8 for the single hidden layer in the 5-XOR problem,

and 8/4/4 for the three hidden layers in the hierarchical XOR

problem. The possible values for connection weights are the inte-

gers 22, 21, 1 and 2. The possible values for thresholds (also

called biases) are the integers 22, 21, 0, 1 and 2. Information

flows through the network in discrete time steps one layer at a

time. The output of each node in the network is the following

function of its inputs: yj ¼ tanhðlð
P

i[Ij
wijyi þ bÞÞ where yj is

the output of node j, I is the set of nodes connected to j, wij

is the strength of the connection between node i and node j,
yi is the output of node i, and b is a threshold (also called a

bias) that determines at which input value the output transitions

from negative to positive. The tanh(x) transfer function ensures

an output range of [21, 1]. l (here, 20) determines the slope of

the transition between these inhibitory and excitatory extremes

(see the electronic supplementary material, figure S11c). This

network model can approximate any function with an arbitrary

precision provided that it contains enough hidden nodes [45].

(h) Evolutionary algorithm
The evolutionary algorithm is based on research into algorithms

inspired by evolution that simultaneously optimize several objec-

tives, called multi-objective algorithms [28]. These algorithms search

for, but are not guaranteed to find, the set of optimal trade-offs: i.e.

solutions that cannot be improved with respect to one objective

without decreasing their score with respect to another one. Such

solutions are said to be on the Pareto Front [28], described formally

below. These algorithms are more general than algorithms that

combine multiple objectives into a single, weighted fitness func-

tion, because the latter necessarily select one set of weights for

each objective, whereas multi-objective algorithms explore all

possible trade-offs between objectives [28].

The specific multi-objective algorithm in this paper is the

widely used Non-dominated Sorting Genetic Algorithm, version

II (NSGA-II) [28] (see the electronic supplementary material,

figure S11a). As with most modern multi-objective evolutionary

algorithms, it relies on the concept of Pareto dominance, defined

as follows.
An individual x* is said to dominate another individual x, if

both conditions 1 and 2 are true: (1) x* is not worse than x with

respect to any objective; (2) x* is strictly better than x with respect

to at least one objective.

However, this definition puts the same emphasis on all objec-

tives. In the present study, we take into account that the first

objective (performance) is more important than the second objec-

tive (optimizing connection cost). To reflect this, we use a

stochastic version of Pareto dominance in which the second objec-

tive is only taken into account with a given probability p.

Lower values of p cause lower selection pressure on the second

objective. Our results are robust to alternate values of p, including

up to p ¼ 1.0 for static environments (see the electronic supple-

mentary material, figure S5a–d) and p ¼ 0.95 for environments

with modularly varying goals (see the electronic supplementary

material, figure S5e).
This stochastic application of the second objective is im-

plemented as follows. Let r denote a random number in [0; 1]

and p the probability to take the second objective into account.

A solution x* is said to stochastically dominate another solution

x, if one of the two following conditions is true: (1) r . p and

x* is better than x with respect to the first objective; (2) r � p
and x* is not worse than x with respect to either objective and

x* is better than x with respect to at least one objective.

Stochastic Pareto dominance is used in the algorithm twice

(see the electronic supplementary material, figure S11a). (i) To

select a parent for the next generation, two individuals x1 and

x2 are randomly chosen from the current population; if x1 sto-

chastically dominates x2, then x1 is selected, if x2 stochastically

dominates x1, then x2 is selected. If neither dominates the

other, the individual selected is the one which is in the less

crowded part of the objective space [28]. (ii) To rank individuals,

the set of stochastically non-dominated solutions is first ident-

ified and called the first Pareto layer (rank ¼ 1, e.g. l1 in

electronic supplementary material, figure S11a); these individ-

uals are then removed and the same operation is performed to

identify the subsequent layers (additional ranks corresponding

to l2, l3, etc. in electronic supplementary material, figure S11a).
(i) Mutational effects
Mutations operate in essentially the same way as in the study by

Kashtan & Alon [13]. In each generation, every new network is

randomly mutated (see the electronic supplementary material,

figure S11a). Four kinds of mutation are possible, which are

not mutually exclusive: (i) each network has a 20 per cent

chance of having a single connection added. Connections are

added between two randomly chosen nodes that are not already

connected and belong to two consecutive layers (to maintain the

feed-forward property described previously); (ii) each network

has a 20 per cent chance of a single, randomly chosen connection

being removed; (iii) each node in the network has a 1/24 ¼ 4.16

per cent chance of having its threshold (also called its bias) incre-

mented or decremented, with both options equally probable;

five values are available {22, 21, 0, 1, 2}; mutations that produce

values higher or lower than these five values are ignored;

(iv) each connection in the network has a separate probability

of being incremented or decremented of 2.0/n, where n is the

total number of connections of the network. Four values are

available {22, 21, 1, 2}; mutations that produce values higher

or lower than these four values are ignored.

The results in this manuscript are robust to varying these par-

ameters. Because having more mutational events that remove

connections than add them might also produce sparsely con-

nected, modular networks, we repeated the main experiment

with mutation rates biased to varying degrees (see the electronic

supplementary material, figure S9). These experiments show that

even having remove–connection events be an order of
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magnitude more probable than add-connection events does not

reduce the number of connections or produce modular networks.

In each of the experiments with biased mutation rates, the mod-

ularity and performance of the P&CC treatment with default

mutation values was significantly greater than the PA treatment

with biased mutation rate values.

Our main results are qualitatively the same when weights

and biases are real numbers (instead of integers) and mutated

via Gaussian perturbation. Nodes are never added nor removed.

For clarity, following [13], nodes without any connections are not

displayed or included in results.

( j) Multi-objective landscape exploration algorithm
To better understand evolving systems it would be helpful to

visualize important constraints, trade-offs, and other correlations

between different phenotypic dimensions in evolving popu-

lations (e.g. in this study, the performance, modularity, and

cost for each possible network). If the search space is small

enough, such values can be determined by exhaustively checking

every possible solution. Such an approach is intractable for the

problems in this manuscript. For example, for the main problem

in the paper, which is the retina problem, the number of possible

weights is (8 � 8)þ (8 � 4)þ (4 � 2)þ (2 � 1)þ 23 ¼ 129, owing

to the number of nodes in the input, hidden, and output layers,

as well as the bias for each of the 23 possible nodes. Each of these

weights can be one of four values or a zero if no connection

exists, and biases can be one of five values, leading to a search

space of 5129 ¼ 1090. Given that it takes on average 0.0013 s to

assess the fitness of a solution across all possible 256 inputs

using a modern computer, it would take 4.1 � 1079 years of com-

puting time to exhaustively determine the performance,

modularity and cost for each solution in the search space.

Because it is infeasible to exhaustively search the space, we

randomly sampled it to see whether we would find high-

performing solutions with a variety of cost and modularity

scores. Specifically, we randomly generated more than two bil-

lion solutions, but every solution had poor performance. The

highest-performing solution gave the correct answer for only

62 out of 256 retina patterns (24.2%), which is far below the per-

formance of 93 per cent or greater for solutions routinely

discovered by the evolutionary algorithm (see the electronic

supplementary material, figure S1). We thus concluded that

randomly sampling the space would not lead to the discovery

of high-performing solutions.
We therefore designed an algorithm to find high-performing

solutions with different combinations of modularity and length

scores. We call this algorithm Multi-Objective Landscape

Exploration (MOLE). It is a multi-objective optimization search

[28] (see the electronic supplementary material, figure S11a)

with two objectives. The first objective prioritizes individuals

that have high performance. The second objective prioritizes

individuals that are far away from other individuals already dis-

covered by the algorithm, where distance is measured in a

Cartesian space with connection costs on the x-axis and modular-

ity on the y-axis. Algorithms of this type have been shown to

better explore the search space because they are less susceptible

to getting stuck in local optima [46]. Thus, unlike a traditional

evolutionary algorithm that will only be drawn to a type of sol-

ution if there is a fitness gradient towards that type of solution,

MOLE searches for high-performing solutions for every possible

combination of modularity and cost scores. While this algorithm

is not guaranteed to find the optimal solution at each point in the

space, it provides a focused statistical sampling of how probable

it is to discover a high-quality solution in each area of the search

space. The MOLE maps in this paper (figure 3 and electronic

supplementary material, figure S10) show the highest-

performing network at each point in this Cartesian space

found in 30 separate runs.

(k) Video of networks from each treatment evolving
across generations

A video is provided to illustrate the change in networks across

evolutionary time for both the PA and P&CC treatments. In that

the networks are visualized as described in the text. The video

can be downloaded at: http://dx.doi.org/10.5061/dryad.9tb07.

(l) Experimental data and source code
All of the experimental data, source code and analysis scripts are

freely available in a permanent online archive at http://dx.doi.

org/10.5061/dryad.9tb07.
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