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A B S T R A C T

Background: Accurate lymph nodes (LNs) assessment is important for rectal cancer (RC) staging in multipara-
metric magnetic resonance imaging (mpMRI). However, it is incredibly time-consumming to identify all the
LNs in scan region. This study aims to develop and validate a deep-learning-based, fully-automated lymph
node detection and segmentation (auto-LNDS) model based on mpMRI.
Methods: In total, 5789 annotated LNs (diameter � 3 mm) in mpMRI from 293 patients with RC in a single
center were enrolled. Fused T2-weighted images (T2WI) and diffusion-weighted images (DWI) provided
input for the deep learning framework Mask R-CNN through transfer learning to generate the auto-LNDS
model. The model was then validated both on the internal and external datasets consisting of 935 LNs and
1198 LNs, respectively. The performance for LNs detection was evaluated using sensitivity, positive predic-
tive value (PPV), and false positive rate per case (FP/vol), and segmentation performance was evaluated using
the Dice similarity coefficient (DSC).
Findings: For LNs detection, auto-LNDS achieved sensitivity, PPV, and FP/vol of 80.0%, 73.5% and 8.6 in internal
testing, and 62.6%, 64.5%, and 8.2 in external testing, respectively, significantly better than the performance of
junior radiologists. The time taken for model detection and segmentation was 1.3 s/case, compared with 200 s/
case for the radiologists. For LNs segmentation, the DSC of the model was in the range of 0.81�0.82.
Interpretation: This deep learning�based auto-LNDS model can achieve pelvic LNseffectively based on
mpMRI for RC, and holds great potential for facilitating N-staging in clinical practice.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Lymph nodes (LNs) are the most commonmetastatic site for rectal
cancer (RC), and nodal status is critical for treatment decisions and
prognosis. According to the National Comprehensive Cancer Network
(NCCN) guidelines and the American Joint Committee on Cancer
(AJCC) staging criteria, both the location and number of metastatic
LNs should be evaluated pre-treatment for guiding treatment deci-
sions [1,2]. Accurate identification and removal of the metastatic LNs
at surgery are crucial for reducing tumor recurrence, especially for
lateral LNs. Some studies have demonstrated that enlarged lateral
lymph nodes (LLNs) may have a close relationship with local recur-
rence [3], and suggested lateral lymph-node dissection (LLND) for
patients with metastatic LNs in these regions to improve the progno-
sis and reduce the local recurrence rate in low RC patients [4,5].
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Research in context

Evidence before this study

Accurate LN assessment is critical for RC staging based on
mpMRI, and smaller LNs can be challenging to be detected in
limited time.

The auto-LNDS model based on deep learning proposed in
this paper enables fast and accurate nodal localization and
delineation based on mpMRI. This auto-LNDS model outper-
formed junior radiologists, and can help to eliminate inter-
observer differences and reduce the workload for radiologist
potentially.

Added value of this study

Based on the data from multiple clinical centers, we present an
auto-LNDS for the detection and segmentation of LNs and the
model were significantly faster and better than the junior radi-
ologist performance.

Implications of all the available evidence

The proposed method can help to increase the efficiency of the
clinical workflow, and also has the potential to assist physicians
in identifying the distribution of LNs.
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Whereas LLND is another procedure independent of routine total
mesorectal excision (TME) and always has a higher incidence of sur-
gery complications, including operative mortality and long-term sex-
ual and urinary dysfunction [6]. Therefore, accurate detection and
identification of the number and location of metastatic LNs before
surgery is of great importance to inform the treatment decision [7,8].

Multiparametric magnetic resonance imaging (mpMRI) has been
accepted as the first choice for RC examination, and N-staging is neces-
sary for all MR reports, for which accurate detection and segmentation
of LNs is the first step. Then the morphology and signal of the LNs on
each MRI sequence are assessed to determine whether they are meta-
static. In a recent report Gr€one et al. [9] reported an unsatisfactory result
using short-diameter of 5 mm as the cutoff value for metastatis, in
which the sensitivity, specificity and accuracy of MRI diagnosis for RC
N-staging is 72%, 45.7% and 56.7%, respectively. In another study, Lang-
man et al. reported that even LNs � 3 mm in short-diameter still have a
high probability of being malignant (28%, 95/334), suggesting that small
LNs (� 3 mm in short-diameter) should not be overlooked [10]. There-
fore, it is important to identify all the LNs in the scan area as much as
possible. However, it is a highly challenging task. In practice, even LNs �
3 mm in short-diameter may be missed by both inexperienced and
experienced radiologists as a result of their small size, despite rigourous
works. For a radiologist, finding tiny LNs from hundreds or thousands of
images in a limited time is a difficult and monotonous task, which
directly relates to the efficiency of the subsequent diagnosis of meta-
static LNs.

Therefore, fully automated LNs detection and segmentation is desir-
able. This work is challenging due to the lack of comparison between
LNs and the surrounding structures and the individual anatomic varia-
tion. To date, a limited number of studies have been published on auto-
mated LNs detection and segmentation. To the best of our knowledge,
morphological-based blob detectors [[11],12], learning-based methods
combining spatial prior map [13�16], and graph-based and fast-march-
ing methods [17�19] have been used to analyzed CT data for LNs detec-
tion or segmentation. However, all these semiautomatic LN algorithms
require substantial time-consuming manual interaction. Furthermore,
these algorithms are generally applied for a nodal size of 8mm or larger.
For MRI data, some researchers have utilized T1-weighted imaging
(T1WI) and/or T2-weighted imaging (T2WI) for LNs detection and seg-
mentation [20,21]. However, T2WI and diffusion-weighted imaging
(DWI) are themost important sequences for nodal identification in clini-
cal practice [22].

In recent years, deep learning techniques have simulated great
interest for tackling challenging computer vision tasks in medical
imaging, such as tumor segmentation [23�25] and pulmonary nod-
ule detection [26,27]. However, due to the considerable individual
differences in the location and size of LNs, the detection of LNs is
even more complicated and the capability of convolutional neural
networks (CNN) is inadequate for this task. The object detection
framework—Mask R-CNN (regional convolutional neural network)
proposed by He et al. [28] has shown great promise in object detec-
tion. We hypothesize that using the fusion of T2WI and DWI of
mpMRI images as input to the Mask R-CNN may improve the perfor-
mance of MR-based LNs detection and segmentation, especially
including all LNs � 3 mm. In this work, we sought to develop and val-
idate the feasibility of an automated LNs detection and segmentation
(Auto-LNDS) model using deep learning techniques on multivendor
and multicentre mpMRI datasets.

2. Materials and methods

This study was approved by the institutional review boards of the
participating centres. The need for signed informed consent was
waived because of the retrospective nature of our study.

2.1. Dataset

MpMRI data from 293 patients with rectal adenocarcinoma, con-
firmed by surgical pathology between July 2013 and June 2016 at the
Sixth Affiliated Hospital of Sun Yat-sen University (Guangzhou, China),
was collected and used as the training dataset in this study. All scans
were generated on the 1.5T GE OptimaMR360 scanner (General Electric
Medical Systems, Milwaukee, WI, USA) using an eight-channel phased-
array body coil in the supine position. Data from another 31 patients
collected from the same center were utilized as the internal testing
dataset. An external testing dataset consisting of 50 patients was col-
lected from three other medical centres (the First Affiliated Hospital of
Soochow University; Beijing Hospital; and Guizhou Province Hospital of
Traditional Chinese Medicine). The rectal MR protocol of each center is
shown in Supplementary Table S1.

To ensure all the LNs were annotated correctly, the ground truths
were generated based on the decisions of three radiologists with
varying seniority (35, 25 and 24 years, respectively). All LNs � 3 mm
in the short-diameter were annotated on the axial T2WI images by
the two senior radiologists with 25 and 24 years’ experience using
Medical Imaging Interaction Toolkit (MITK) software (version
2013.12.0; http://www.mitk.org/). If there was a difference, the third
senior radiologist (35 years’ experience) was involved to provide a
decision on LN presence. A total of 5789 LNs were annotated in the
training dataset and were used to develop the auto-LNDS model, and
another 2133 LNs were annotated in the internal and external testing
datasets for model evaluation.

2.2. Preprocessing

DWI volumes were aligned to the T2WI volumes using a rigid reg-
istration with trilinear interpolation based on open-source Insight
Segmentation and Registration Toolkit (ITK, version 4.7.2; https://itk.
org/), to obtain the same resolution, spacing, and origin [29]. The
DWI images with high b value were used in this study, as the higher
the b value, the stronger the diffusion effects. On the high b-value
DWI images the signal of the background tissue is well suppressed,
so the high or slightly high signal intensity LNs can be clearly dis-
played and easily identified. In addition, Mask R-CNN requires three-
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channels of image input. In order to obtain the best combination
mode of T2WI and DWI for training the auto-LNDS model, four kinds
of combinations modes, including three channels set T2WI, three
channels set DWI, two channels set DWI + one set T2WI and two
channels set T2WI + one channel set DWI, were tested and compared
for their performance both in the internal and external testing data-
sets. Images were cropped manually with 256 £ 256 matrix as
showed in Fig. 1, and perirectal and lateral LNs were included in this
region for detection and segmentation. Finally, a total of 5694 proc-
essed images (each case has approximately 15 to 25 slices) of each
combination mode were used as training dataset, and another 1192
and 2572 images were used as the internal and external testing data-
sets, respectively. The results of statistical analysis of the size of the
LNs in internal and external testing datasets are shown in Fig. 2.

2.3. Development of auto-LNDS model

2.3.1. Data augmentation
Artificial data augmentation is a common procedure for generat-

ing sufficient training data in the context of CNN. It can also teach the
network the desired invariances and robustness properties when the
data set is insufficient [30]. In this study, we utilized the data aug-
mentation package of python—imgaug (https://github.com/aleju/
imgaug) to extend the training dataset. We adopted image cropping,
affine transformations, flipping horizontally or vertically, adding
noise and blur on image, and changing the contrast and brightness of
image. Our training data set was augmented during the training by
generating new images through 0 to 2 kinds of transformations ran-
domly chosen from those mentioned above. Details are shown in the
Supplementary Material and Methods.

2.3.2. Training model
The framework of Mask R-CNN [28] can efficiently detect objects

in an image while simultaneously generating a high-quality segmen-
tation mask for each instance. Mask R-CNN is composed of the back-
bone network, Feature Pyramid Network (FPN) [31], the Region
Proposal Network (RPN) [32], and the head network. The Resnet-101
[33] was chosen to be the backbone of Mask R-CNN, in which the
identity mapping block was used as a shortcut to solve the degrada-
tion problem and make it possible to train the deeper network.
Details are shown in the Supplementary Material and Methods and
Fig. 1. This image is a three-channel image obtained by the fusion of DWI and T2WI
images. Both the perirectal and lateral lymph nodes are included in the cropping range
(yellow box). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article).
Fig. S1. The FPN inside Mask R-CNN is capable of detecting multi-
scale objects so as to improve the detection of small targets, and the
RPN shares the convolutional features of the full image with the head
network, and can generate the candidates effectively, which broke a
bottleneck for target detection [34,35]. Considering that the number
and size of LNs vary from patient to patient, we adopted Mask R-CNN
for the nodal detection and segmentation. To achieve a quick conver-
gence of our network, a pre-trained Mask R-CNN (initialized on
ImageNet dataset) was applied for LN detection and segmentation (as
illustrated in Fig. 3).

Relying on the high-level neural networks API—Keras, using the
tensorflow as backend, the Mask R-CNN model was trained on an
Ubuntu 16.04 computer with 1 Intel Xeon CPU, using a NVIDIA GTX
1080 Ti 11Gb GPU for training and testing, with 32 Gb available in
RAM memory. Training of layers was performed by stochastic gradi-
ent descent in batches of four images per step using an Adam Opti-
mizer [36] with the default value (b1 = 0.9, b2 = 0.999). The training
hyper parameters are shown in Table 1 and illustrated in more detail
in the Supplementary Material and Methods. Among the training
dataset images, one-tenth randomly selected from the 5694 images
were used to evaluate the learning effect of deep-learning model,
and the remaining images were used to train the model. During test-
ing, our model took less than 1.5 s to complete LN detection and seg-
mentation per volume.
2.4. Evaluation of the auto-LNDS model
2.4.1. Evaluation criteria of LN detection
We evaluated the LN detection results according to the method

used in the Ref. [16], described as following: A true positive (TP)
means that there exists a detection with the center inside the manu-
ally annotated LN bounding box, and a false negative (FN) means
there is no center of any detections inside the box. A detection is con-
sidered to be false positive (FP) if its center is not inside any anno-
tated LN box. We used the sensitivity and positive predictive value
(PPV) to evaluate the model’s performance. The higher the value of
both, the better the performance of the algorithm.

Sensitivity is the proportion of the true LNs detected by auto-LNDS
to total true LNs, being defined as:

Sensitivity¼ TP

TPþFN
ð1Þ

PPV is the proportion of the true LNs identified by auto-LNDS to all
the LNs identified by auto-LNDS, defined as:

PPV¼ TP
TPþFP

ð2Þ

The false positive per volume (FP/vol) is a measure of the average
number of FPs per each case, defined as:

FP=vol¼ FP
cases

ð3Þ
2.4.2. Evaluation criteria of LN segmentation
The Dice similarity coefficient (DSC) quantitatively evaluates the

degree of similarity between the segmentation results of auto-LNDS
and the ground truth. The DSC ranges from 0 to 1, and a larger value
indicates a higher segmentation accuracy. The DSC was defined as Eq.
(4), as follows:

DSCðP;GÞ¼ 2NðP \GÞ
NðPÞþNðGÞ ð4Þ

Where P denotes the segmentation result given by the segmenta-
tion algorithm, G is the ground truth and N represents the number of
pixels in the corresponding set.

https://github.com/aleju/imgaug
https://github.com/aleju/imgaug


Fig. 2. (a) The distribution of lymph nodes short-diameters in the training dataset; (b) The distribution of lymph nodes short-diameters in the testing datasets; The Sensitivity
Curves of the auto-LNDS model for lymph nodes with different short-diameters in the internal and external testing datasets.
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2.5. Comparison of the auto-LNDS model with radiologist performance
and other models

Four radiologists with varying experience in imaging diagnosis of
abdominal diseases (1.5, 4, 7 and 9 years, respectively), were assigned
to read the MR images from the internal and external testing datasets
and marked all the LNs � 3 mm including the perirectal and lateral
LNs. A detection is considered TP if there exists a detection marked
by the radiologist inside the segmented LN of the ground truth; a
detection is considered FP if the marker is not inside any annotated
LN; FN means a ground truth is not detected but marked by the radi-
ologist. The sensitivity, PPV and FP/vol were used to evaluate the
radiologists’ performance. In addition, the results were compared
with the auto-LNDS model results to analyze sensitivity, PPV, FP/vol
and length of time taken.

2.6. Statistical analysis

Statistical analysis was performed by using R software (version
3.5.1, https://www.r-project.org/). Two-side, one sample t-test was
applied to assess the differences of the performance between the
radiologists and auto-LNDS model. A p value smaller than 0.05 was
considered significant.
3. Results

3.1. LN detection performance of the auto-LNDS model

The performances of the auto-LNDS model trained with the four
kinds of T2WI and DWI combination modes are shown in Table 2.
The auto-LNDS model with two channels set DWI and one channel
set T2WI has the best detection performance, with the sensitivity of
80.0% (95%CI, 76.9%�82.2%), PPV of 73.5% (95%CI, 70.7%�76.2%) and
FP/vol of 8.6 (95%CI, 6.9�10.3) in the internal testing dataset; and the
sensitivity of 62.6% (95%CI, 59.5%�65.1%), PPV of 64.5% (95%CI,
61.7%�67.3%) and FP/vol of 8.2 (95%CI, 7.0�9.5) in the external test-
ing dataset.

Table 3 lists the results of the comparison of this auto-LNDS model
with the previously reported LN detection methods. The sensitivity of
the auto-LNDS model for LN detection in the internal testing dataset
(80.0%) is close to Barbu’s (80%) [16] and Feuerstein’s (82.1%) [11]
results, and higher than Kitasaka’s (57%) [12] and Feulner’s [14]
(65.4%) results. However, only Barbu’s research [16] focused on the
pelvic and abdominal LNs and was limited to the LNs > 10.0 mm. The
PPV of the auto-LNDS model for LN detection in the internal testing
dataset (73.5%) was much higher than Feuerstein’s (13.3%) [11], Kita-
saka’s (30.3%) [12] and Feulner’s (52.6%) [14] results, and close to

https://www.r-project.org/


Fig. 3. Architecture of Mask RCNN. The gt_class_id, gt_bboxes, and gt_masks represent the nodal ground truth of class, position, and segmentation.

Table 1
Training Hyper-parameters of Mask R-CNN.

Hyper-parameters Value

Iteration 100
Batch size 4
Learning rate 1.e-6
Optimizer Adam
Weight decay 1.e-4
Scale of anchor [8, 16, 32, 64, 128]
Aspect ratio of anchor [0.5, 1, 2]
RPN NMS threshold 0.8
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Barbu’s (72.6%) [16] results. Though the performance of the auto-
LNDS model declined for the external testing dataset, its PPV is still
higher than Feuerstein, Kitasaka and Feulner's results, and its
Table 2
The performance of the auto-LNDS model trained with four combinatio

Combination Mode Sens (95%CI)

Internal Dataset 3 T2WI 63.0% (59.7%�65.9%)
3 DWI 52.0% (48.7%�55.2%)
2 T2WI+1 DWI 81.3% (78.6%�83.7%)
2 DWI+1 T2WI 80.0% (76.9%�82.2%)

External Dataset 3 T2WI 45.5% (42.7%�48.4%)
3 DWI 36.0% (33.4%�38.7%)
2 T2WI+1 DWI 58.1% (55.2%�60.9%)
2 DWI+1 T2WI 62.6% ( 59.5%�65.1%)

Table 3
The performance of the current auto-LNDS model and others in the literatures for lymph no

Method Target area Scan type #cases Nodal Size #Nodes #FP

Current-IT Pelvic MRI 31 � 3.0mm 935 268

Current-ET Pelvic MRI 50 �3.0mm 1198 412

Barbu[16] Pelvic+Aebden CT 54 >10.0mm 569 172
Feuerstein[11] Mediastinum CT 5 >1.5mm 106 567
Kitasaka[12] Abdomen CT 5 >5.0mm 221 290
Feulner[14] Mediastinum CT 54 >10.0mm 266 157

IT: Internal testing dataset; ET: External testing dataset.
sensitivity is a little higher than or close to Kitasaka’s and Feulner's
results which focused on the LNs > 5 mm in short-diameter
[[11],12,14]. To our knowledge, Feuerstein’s study [11] enrolled the
smallest LNs with a short-diameter > 1.5 mm in mediastinum for
automatic LN detection, and the sensitivity was generally satisfactory
but the FP/vol was too large to exceed the acceptable range. In this
research, we focused on the LNs with a short-diameter � 3 mm and
obtained a relatively acceptable FP/vol, which can meet clinical needs
well. The performance of the auto-LNDS model for the external data-
set from three centres is shown in Table 4. Besides these, the algo-
rithm of this auto-LNDS model is more than ten times faster than the
previous fastest algorithm according to our knowledges [16].

The Sensitivity Curves of the auto-LNDS model for detecting the
LNs with different short-diameters in the internal and external test
datasets are shown in Fig. 2(b), which shows that the sensitivity of
n modes of T2WI and DWI for lymph nodes detection.

PPV (95%CI) FP/vol (95%CI) DSC (95%CI)

54.7% (51.7%�57.7%) 15.7 (13.5�18.0) 0.85 (0.84�0.86)
66.7% (63.1%�70.1%) 7.8 (6.2�9.5) 0.63 (0.62�0.65)
59.7% (56.9%�62.4%) 16.5 (14.1�19.0) 0.83 (0.82�0.84)
73.5% (70.7%�76.2%) 8.6 (6.9�10.3) 0.82 (0.82�0.83)
44.2% (41.4%�47.0%) 13.8 (12.2�15.4) 0.85 (0.85�0.86)
44.7% (41.7%�47.7%) 11.9 (9.9�13.8) 0.56 (0.54�0.57)
56.0% (53.2%�58.7%) 11.0 (9.1�12.9) 0.84 (0.84�0.85)
64.5% (61.7%�67.3%) 8.2 (7.0�9.5) 0.81 (0.80�0.82)

des detection. thods.

#TP #FN Sens (95%CI) PPV (95%CI) FP/vol (95%CI) Time/Vol

745 190 80.0%
(76.9%�82.2%)

73.5%
(70.7%�76.2%)

8.6 (6.9�10.3) 1.37sec

750 448 62.6%
( 59.5%�65.1%)

64.5%
(61.7%�67.3%)

8.2 (7.0�9.5) 1.43sec

455 114 80.0% 72.6% 3.2 15�40sec
87 19 82.1% 13.3% 113.4 1�6min
126 95 57.0% 30.3% 58 2�3h
174 92 65.4% 52.6% 2.9 135sec



Table 4
The performance of the auto-LNDS model for lymph nodes detection in three external datasets.

center Sens (95%CI) PPV (95%CI) FP/vol (95%CI) DSC (95%CI)

Beijing Hospital 67.0% (62.8%�71.0%) 68.9% ( 64.6%�72.8%) 8.0 (5.9�10.0) 0.82 (0.81�0.83)
the First Affiliated Hospital of Soochow University 60.0% (50.4%�68.9%) 62.2% (52.4%�71.0%) 6.0 (2.99.1) 0.83 (0.81�0.85)
Guizhou Province Hospital of Traditional Chinese Medicine 58.4% (54.2%�62.5%) 60.9% (56.7%�65.0%) 9.2 (7.5�10.8) 0.79 (0.78�0.81)
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the auto-LNDS model increases with the size (short-diameter)
increase of the LNs.

Some examples of the performance of the auto-LNDS model for
LNs detection are shown in Fig. 4. The cases from the first row to the
third row show the LNs correctly detected by the auto-LNDS model
both in large and small size, and in discrete and clustered distribu-
tion. Besides these, both of the cases in the first row and the forth
row show the correctly detected right lateral LNs by the auto-LNDS
model. Whereas, the case in the forth row shows two missed LNs by
the auto-LNDS model: one perirectal LN is missed due to insufficient
image registration and inconspicuous display on the fusion image
(c); one left lateral LN is missed due to adjacent to the branches of
iliac vessels and iso-intensity on DWI. And the case in the fifth row
shows three misdiagnosed LNs by the auto-LNDS model: two of them
are cross section of small vessels; one is a small part of intestinal
wall. Therefore, it does exhibit some false positive and false negative
detections as indicated in the Fig. 4, which might be due to insuffi-
cient image registration, the iso-intensity of LN on DWI, and the over-
lap between the LNs and small vessels or intestinal wall as a result of
partial volume effects.

Detection performance of the radiologists for the internal and
external testing datasets are shown in Tables 5 and 6, respectively. In
Fig. 4. Lymph node detection. (a): the original T2WI. (b): the original DWI. (c): the
fusion image. (d): the ground truth of annotated lymph nodes with yellow boxes on
the fusion image. (e): the detected results of auto-LNDS displayed on the fusion
images. The white boxes represent the true positives, the cyan boxes represent the
false positives and the orange boxes represent the false negatives. Vessels were filled
with red. The case in the fourth row shows two missed lymph nodes by the auto-LNDS
model. In the case of the fifth row, two cyan boxes with red color inside are small ves-
sels misdiagnosed as lymph nodes by the auto-LNDS model (cyan arrow), and the
other cyan box is intestinal wall misdiagnosed as a lymph node. See main text for addi-
tional details (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.).
both of the internal and external testing datasets, the sensitivity and
PPV of the auto-LNDS model were higher than those of all the junior
radiologists with less than ten-years experience (p < 0.05, t-test). The
average time consumed by the radiologists was more than 200 s per
case, compared with only 1�2 s per case for the auto-LNDS model (p
< 0.05, t-test).

3.2. LN segmentation performance of the auto-LNDS model

Our auto-LNDS model was evaluated on 745 detected LNs in the
internal testing dataset and 750 detected LNs in the external testing
dataset. DSC is 0.82 (95%CI, 0.82�0.83) and 0.81 (95%CI, 0.80�0.82)
for the internal and external testing datasets, respectively.

The examples of LNs segmentation are shown in Fig. 5. The DSC
distribution of LNs segmentation in internal and external datasets are
shown in Fig. 6. We find that the segmentation boundaries of the
larger LNs have better overlap with the ground truth than those of
the smaller LNs.

The loss function values of the total networks, the detection net-
work, mask network and the region proposal network (RPN) in the
training process were output as shown in Supplementary Fig. S2.

4. Discussion

It is well known that, for patients with RC, detecting all the LNs
and distinguishing the malignant from the benign LNs is an impor-
tant and challenging job for the radiologists. N-staging is one of the
key factors affecting treatment decisions and patient prognosis. The
first step in this process is detecting all the LNs, and it is a monoto-
nous and time-consuming job. In this study, we proposed an innova-
tive deep learning approach (auto-LNDS model) which enables rapid
and accurate detection and segmentation for LNs on MR examination
(T2WI and DWI) in the setting of rectal cancer N staging. By this
method, a map of LNs could be rapidly acquired in less than 2 s to
support the real-time diagnostic interpretation, which can greatly
save the search time for the radiologists. According to our knowledge,
this is the first attempt to automatically detect and segment LNs
simultaneously based on MRI data. Most of the prior attempts with
other methods have focused on the LNs with the short-diameter sizes
> 5 mm [11,12,14,16], whereas our study expands the range of detec-
tion to LNs>3 mm in the short-diameter. Barbu’s method [16]
obtained good results with a PPV of 72.6% and a DSC of 0.76, but that
research focused on LNs with a short-diameter > 10 mm, which
means that all the metastatic LNs with a short diameter � 10 mm
will be missed and these are very common in daily work. Feuerstein's
team [11] tried to automatically detect LNs <5 mm, but the PPV of
13.3% was too low for clinical relevance. In addition, our algorithm is
highly integrated and the output displays the detection and segmen-
tation results, whereas other algorithms [16,18] depend on compli-
cated cascaded detectors with an additional segmentation algorithm
or some manual initialization. Our method aimed at LNs with a
short-diameter � 3 mm and achieved great performance in the inter-
nal testing dataset and good generalization performance on the
external testing dataset. To date, very few studies provide both LNs
detection and segmentation as we do. Meanwhile, we found that the
size of the LNs is an important factor to influence the performance of
the model for LN detection, and the sensitivity of the auto-LNDS
model increases with the size increase in both of the internal and



Table 5
Results of radiologists vs. Auto-LNDS model in internal testing dataset.

Doctor Sens (95%CI) PPV (95%CI) FP/vol (95%CI) Time/sec

D1(1.5y) 43.2% (38.0%�48.4%) 42.0% (38.7%�45.3%) 19.4 (16.7�22.1) 345.6
D2 ( 4y ) 31.1% (25.7%�36.5%) 48.7% (44.0%�53.4%) 10.8 (8.8�12.8) 133.8
D3 ( 7y ) 37.7% (32.6%�42.8%) 43.4% (39.7%�47.1%) 16.7 (13.8�19.6) 199.2
D4 ( 9y ) 40.6% (34.9%�46.3%) 41.1% (36.1%�46.1%) 18.3 (16.1�20.5) 147.0
Mean 38.2% (33.1%�43.3%) 43.8% (40.5%�47.1%) 16.3 (12.6�20.0) 206.4
Auto-LNDS 80.0% (76.9%�82.2%) 73.5% (70.7%�76.2%) 8.6 (6.9�10.3) 1.37
p value 0.0004 0.0002 0.0138 0.0121

P values were derived from the t-test of comparing each metrics between the radiologists and the
auto-LNDS model.

Table 6
Results of radiologists vs. Auto-LNDS model in external testing dataset.

Doctor Sens (95%CI) PPV (95%CI) FP/vol (95%CI) Time/sec

D1(1.5y) 39.2% (33.6%�44.8%) 24.4% (20.7%�28.1%) 27.5 (25.2�29.8) 350.4
D2 ( 4y ) 27.3% (22.7%�31.9%) 43.6% (38.1%�49.1%) 7.5 (6.3�8.7) 118.8
D3 ( 7y ) 34.6% (30.9%�38.3% ) 36.0% (32.0%�40.0%) 14.3 (12.4�16.2) 224.4
D4 ( 9y ) 45.6% (32.6%�58.6%) 39.5% ( 25.6%�43.4%) 15.4 (13.8�17.0) 134.4
Mean 36.7% (29.1%�44.3%) 35.9% (27.8%�44.0%) 16.2 (8.0�24.4) 207.0
Auto-LNDS 62.6% (59.5%�65.1%) 64.5% (61.7%�67.3%) 8.2 (7.0�9.5) 1.43
p value 0.0033 0.0025 0.0755 0.0153

P values were derived from the t-test of comparing each metrics between the radiologists and the
auto-LNDS model.

Fig. 5. Nodal segmentation examples displayed on T2WI. Ground truth results are shown in yellow, and segmentation results of the auto-LNDS model are shown in red. The number
besides the lymph node is the corresponding DSC (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

Fig. 6. DSC distribution of lymph node with different short-diameters in internal and
external testing datasets.
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external testing datasets as shown in Fig. 2(b), which means that the
large LNs are easier to be detected than the small ones. Although the
criterion of 3 mm will reduce the performance of the model, we
believe that it is more meaningful and this setting will better meet
the future clinical needs.

In this study, we tested and compared the performance of the
auto-LNDS model with different T2WI and DWI combination modes
both in the internal and external testing datasets (Table 2). We can
conclude that both of the image type and the algorithm have an
impact on the detection performance. The auto-LNDS models with
the combination of T2WI and DWI achieved better performance than
the models with single sequence on the detection of LNs, which indi-
cates that the information in T2WI and DWI are mutually comple-
mentary. For LNs detection tasks, the performance of the auto-LNDS
model with two channels of DWI is better than that with one channel
of DWI in external testing dataset, which indicates that this combina-
tion mode is more robust.

In addition, as shown in Table 3, our auto-LNDS model obtained
acceptable LNs detection results both in the internal and external
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testing datasets. More meaningfully, as listed in Table 4, the perfor-
mance of the auto-LNDS model for external datasets from other three
hospitals with different MR parameters also achieved good results,
which confirmed the generalization of this model. As shown in Tables
4 and 5, the performance of this auto-LNDS model was much higher
than those of the junior radiologists with less than ten-years experi-
ence (p < 0.05, t-test) in both of the internal and external testing
datasets, which means this auto-LNDS method could significantly
improve the LNs detection ability of junior and inexperienced radiol-
ogists, and could even directly supply LNs maps to surgeons for intra-
operative reference as shown in Fig. 5. Meanwhile, we found inter-
observer variability among the radiologists, which might be attrib-
uted to subjectivity, fatigue, or degree and experience, but the auto-
LNDS model can minimize these differences. So, we believe that this
auto-LNDS model could help to improve the accuracy and shorten
the time of the radiologists for LNs detection. We consider the above
is the most important contribution of this research. Finally, as shown
in Fig. 4, we believe that we can use this auto-LNDS model to auto-
matically detect LNs, including lateral LNs, and it can be predicted
that our auto-LNDS model will provide more favourable help for lat-
eral LNs detection and the decision of LLND in the future.

For RC N-staging, after detection and segmentation of the LNs, the
next step is to assess the LNs for metastatic involvement. Recently, a
deep learning based automated diagnosis model for LNs was reported
[37], in which the reference standard for metastatic LNs was made by
the subjective impression of radiologists based on imaging criteria
(ie, short-diameter � 5 mm, indistinct borders, irregular morphology,
or high signal intensity on DWI images). Whereas, without direct LNs
mapping to pathology results, the true metastatic status of each LN is
still uncertain, and these subjective reference standards had been
proved to be unsufficient to be used as the ground truths [38,39].
Therefore, in this study, we did not further distinguish between
benign and malignant LNs. However, our study has taken an impor-
tant first step towardsautomatic nodal staging, and in the future
assessment using carefully matched one-to-one MR-pathological
confirmed datasets to prompt the final step of identifying malignant
LNs will be necessary for the final step.

We acknowledge limitations to our research. Firstly, our dataset
size is smaller than the natural detection task dataset, which could be
a reason that errors are made in this automatic system. In this study,
both the training and the internal testing datasets were all generated
by the same MR vendor from one medical center, which contained
limited variances. However, the external testing dataset was col-
lected from different medical centres. This may account in part for
the better results acquired from the internal testing dataset, while
the results acquired from the external testing dataset are decreased.
In the future, extending the training dataset to multivendor and mul-
ticentre platforms may further promote the performance of the auto-
LNDS model. Secondly, in this study, there are still some false positive
and false negative results, and the reasons may be related to the fol-
lowing factors: insufficient image registration due to DWI image dis-
tortion and respiratory movement, some overlap between the LN and
vessel or small intestinal wall due to partial volume effect, and not
included the dynamic contrast-enhance MRI (DCE-MRI) sequences in
the datasets. As we know, some LNs show isosignal intensity on high
b-value DWI, and may be missed by the auto-LNDS as the lateral LN
shown in the fourth row in Fig. 4. The thin-layer DCE-MRI was not
included in the dataset in this study, although it is an effective
method to further observe the process of LNs enhancement, which
may be helpful for distinguishing the vessels and LNs and further
identifying the benign and the malignant LNs. Meanwhile, it would
be accurate if one-to-one MR-surgical pathological LN confirmation
could be acquired, but it is really difficult in clinical practice. In this
study we use the common opinion of three senior radiologists to
establish the ground truth. In the future, inviting more reputable
senior radiologists from well-known clinical centres to join the study
may help to obtain more representative results. To evaluate the effec-
tiveness of auto-LNDS, we compared its results with those of four
junior radiologists. Although the four radiologists can not adequately
represent the general level of all junior radiologists under ten years
experience, all of them come from the first-rate hospitals specialized
on gastro-intestinal disease in China, so we suppose that their ability
will not be lower than the average of all junior radiologists. The low
sensitivity and PPV of their results may be related to the fact that, in
order to save time, they neglected part of the small (3�5 mm) LNs
and oblong LNs because they believe that these LNs are less likely to
be malignant, or some small LNs are too small to be noticed.In the
future, to invite more junior radiologists to participate in this test
may give better representation. In this study, the Mask R-CNN we
used is a 2D network, and most of the LNs (diameter, 3�6 mm)
appeared on only one slice (slice thickness of T2WI and DWI:
3�6 mm), which means axis images can cover most of the informa-
tion of LNs, and so the 2D network should be adequate. However,
those LNs with relatively large sizeare likely to be shown on two or
more adjacent images, and a 3D network may be expected to fully
display the overall shape of them. In addition, the performance of LN
segmentation was acceptable but perhaps suboptimal. This likely
relates to the inclusion of very small LNs (often less than 5 pixels per
image), which will continues to pose a challenge.

In conclusion, based on Mask R-CNN, we developed an auto-
LNDS modeland evaluated it both on the internal and external
testing datasets, which shows this deep-learning auto-LNDS
model can accurately detect and segment LNs on mpMRI with
relatively high performance compared with the junior radiologists
and existing studies. So we believe that this auto-LNDS model
could help to quickly detect and segment LNs, improve clinical
efficiency, and minimize the differences among the radiologists
with different experiences.
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