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Forging patterns and making waves from
biology to geology: a commentary on
Turing (1952) ‘The chemical basis of
morphogenesis’

Philip Ball

18 Hillcourt Road, East Dulwich, London SE22 0PE, UK

Alan Turing was neither a biologist nor a chemist, and yet the paper he

published in 1952, ‘The chemical basis of morphogenesis’, on the spon-

taneous formation of patterns in systems undergoing reaction and

diffusion of their ingredients has had a substantial impact on both fields,

as well as in other areas as disparate as geomorphology and criminology.

Motivated by the question of how a spherical embryo becomes a decidedly

non-spherical organism such as a human being, Turing devised a mathemat-

ical model that explained how random fluctuations can drive the emergence

of pattern and structure from initial uniformity. The spontaneous appear-

ance of pattern and form in a system far away from its equilibrium state

occurs in many types of natural process, and in some artificial ones too. It

is often driven by very general mechanisms, of which Turing’s model

supplies one of the most versatile. For that reason, these patterns show strik-

ing similarities in systems that seem superficially to share nothing in

common, such as the stripes of sand ripples and of pigmentation on a

zebra skin. New examples of ‘Turing patterns’ in biology and beyond are

still being discovered today. This commentary was written to celebrate the

350th anniversary of the journal Philosophical Transactions of the Royal Society.
1. Introduction
Let me begin my exploration of Alan Turing’s paper [1] in what might seem an

unlikely and unpromising place: the list of references. There are just six of these,

and five are to books on rather broad and disparate topics: biological develop-

ment, the permeability of membranes, the theory of elasticity and magnetism.

Aside from standard textbooks, the only paper cited was canonical and

almost 40 years old. It is true that many papers in the 1950s have a concise

way with citations, but even so, this is a remarkably sparse list.

There are usually two reasons for such a state of affairs: either the authors

are writing about a topic that no one cares (nor need care) about, or they have

something of startling originality to say.

Turing’s paper would hardly be in this collection if it did not fall into the

latter category. But even by that measure, his contribution is extraordinary.

While no one could reasonably assert that this paper has had as profound an

impact on biology as that published a year later by Watson and Crick on the

structure of DNA (which paper has?), it surpasses their achievement in this

one regard: before Turing, no one had even really thought to ask the question

that he poses.

At first it does not sound that way. ‘The purpose of this paper’, Turing

writes, ‘is to discuss a possible mechanism by which the genes of a zygote

may determine the anatomical structure of the resulting organism’ [1, p. 37].

Little new there, surely? The patterning and elaboration of an embryo, and

how it is dictated by genes, are after all the matters discussed in the books
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by American zoologist Charles Manning Child and the Brit-

ish biologist Conrad Waddington that constitute two of the

references. That body of work was, however, essentially

experimental. Studies in the 1930s by Waddington and

others had shown that some tissues can act as ‘organization

centres’ that, if implanted at a different location on the organ-

ism—or even sometimes on that of a different species—could

induce the host tissue to undertake a new developmental

path. Waddington spoke rather vaguely of a substance

called an evocator that represents the ‘active principle’ of

the organization centres; he seemed to regard it as a chemical

compound of some kind. But how can chemicals, which

simply diffuse through the fluid medium that contains

them, give rise to order and structure?

That was the central question that Turing addressed. He

presents a theoretical model in which chemicals that are diffus-

ing and reacting may produce neither bland uniformity nor

disorderly chaos but something in between: a pattern. This

notion is, as we shall see, not entirely without precedent, but

no one previously had thought to relate such an abstruse

phenomenon to the question of biological growth and form—

in short, to suggest how chemistry alone might initiate the pro-

cess that leads from a ball of cells to a starfish, a horse or to us.
Figure 1. Alan Turing (1912 – 1954). Copyright & The Royal Society.
2. The codebreaker
A decade ago, the English mathematician Alan Turing, despite

being an almost legendary figure to many scientists and the

subject of an excellent biography [2], was largely unknown

to the general public. If recent television dramatizations and

stories about his wartime code-breaking work at Bletchley

Park had not already changed that, then the 2014 biographical

movie The imitation game has surely done so. The centenary of

his birth in 1912 was marked with a number of commemora-

tive events and eulogies, which highlighted in particular the

shameful treatment he received after the war, precipitating

what is generally thought to have been his suicide.

Turing (figure 1) studied mathematics at Cambridge,

where he published perhaps his most important work at the

age of just 24. In that paper, he showed that there exist some

numbers that are not computable, meaning that they cannot

be calculated as decimal numbers within a finite time. To

make this argument, Turing needed to invoke the concept of

an automatic ‘computing machine’, which is now regarded

as a blueprint for the digital computer—a universal computing

device that may store and execute programs.

When war broke out in 1939, Turing was enlisted at

Bletchley Park, where he helped to crack the Enigma code

used by the Germany Navy. His contribution was vital.

‘I won’t say that what Turing did made us win the war’,

one of his Bletchley colleagues said later, ‘but I daresay we

might have lost it without him’ [3]. When the war ended,

Turing moved to the National Physical Laboratory in

London to assist with the construction of an electronic digital

computer along the lines he had outlined. As it happened, the

first such device was in fact built in Manchester in 1948,

where Turing became the head of the Computing Machine

Laboratory. During this period, he outlined the basics of

what would later become known as artificial intelligence. Per-

haps his best known contribution to this field is the so-called

Turing test for determining whether machines can think. It

involves a human interrogator who poses questions to the
machine and to a human foil, and seeks to identify which

is which. If there is no discernible difference in the responses,

we have no logical reason to deny that the machine is think-

ing. This idea (adapted by the science fiction writer Philip

K. Dick as the ‘Voigt-Kampff test’) was famously used in

the opening sequence of Ridley Scott’s 1982 movie Blade
runner to identify non-human ‘replicants’.

Turing was actively homosexual at a time when this was

illegal in Britain. In 1952 he was prosecuted, and his sexual

orientation was deemed to pose a security risk in view of

his wartime work (some of which remained classified for

the rest of the century). He was sentenced to take a course

of ‘corrective’ hormone therapy, and although Turing is

said to have borne this sentence with ‘amused fortitude’,

the shame and the physical effects of the hormone seem to

have driven him to take his life in 1954 by biting on an

apple laced with cyanide (some have asserted that his

death was accidental). In 2009 the British prime minister

Gordon Brown issued an apology for the way he was treated,

saying that ‘on behalf of the British government, and all those

who live freely thanks to Alan’s work I am very proud to say:

we’re sorry, you deserved so much better’ [4]. During the

2012 centenary, a bill was introduced to the House of Lords

asking for an official pardon for Turing’s conviction for

‘gross indecency’, and in late December of 2013 the Queen

signed a pardon, invoking the ‘royal prerogative of mercy’.

There was much debate at the time about whether any kind

of pardon can be appropriate for activities that are no

longer, and never should have been, regarded as a crime.

At any rate, at the time of his death, Turing was still highly

productive, and the loss to British science was immense.
3. On growth and form
If you could have placed a bet, before the Second World War,

on who might have asked the question that Turing posed,

you would not have expected it to come from this
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mathematician. You should have been more likely to look to

the Theoretical Biology Club of Cambridge University, a

loose collection of innovative thinkers that included Wad-

dington, J. Desmond Bernal, Joseph Needham and J. B. S.

Haldane. All were sympathetic to the idea that biology

might benefit from a reductive ‘physicist’s’ approach, rather

than the purely statistical methods of classical genetics.

They saw that the fundamental questions of biological devel-

opment were about the generation of shape and form—of

what was called morphogenesis—and Needham even

approached the Rockefeller Foundation to fund a proposed

Institute for Morphology. They recognized that the basic

task was to understand how genetics, which they hoped

might be ultimately understood at the atomic level, could

give rise to aspects of symmetry and geometry in the whole

organism. This notion of biological morphology was strongly

felt in the first half of the twentieth century, not least because

of the impact of the 1917 book by Scottish zoologist D’Arcy

Wentworth Thompson, On growth and form, which is another

of Turing’s scant references. Thompson called for a more math-

ematical approach to biology that took account of the physical

forces and constraints on an organism’s development.

Turing left Cambridge in the year that the Theoretical

Biology Club was formed, but he seems to have had no con-

tact with Waddington’s crowd while he was there, and it is

not clear that he would have done so had he remained. All

the same, the interests of this august group might have

been expected to prepare the ground for a warm reception

of a paper claiming to offer an explanation of the ‘chemical

basis of morphogenesis’. That, on the contrary, Turing’s

paper was largely ignored for several decades is partly an

ironic consequence of the fact that another Cambridge scien-

tist with a physicist’s pedigree—Francis Crick—reoriented

interest in the ‘chemical basis’ of developmental biology in

another direction. For Crick and Watson’s discovery of how

genetic information may be encoded in DNA seemed at

first to provide a more fruitful avenue for exploring the

roots of growth and form. The task of decoding the molecular

message of the genes, and the molecular mechanisms by

which they interact and cooperate to orchestrate the cell,

was to preoccupy biology for most of the second half of the

century. It is only in recent years that this gene-centred view

of biology has begun to reconnect with the mathematical

and physico-chemical picture provided by Turing.

Quite aside from the biologist’s notorious aversion to

mathematics (there is plenty of it in Turing’s paper, albeit

not of a terribly advanced form, as he tried to reassure the

reader), one can see why scientists familiar with the messy

contingencies of cell cultures and assays might have been

deterred from Turing’s paper. Even he admits from the

outset that ‘this model will be a simplification and an idealiz-

ation, and consequently a falsification’ [1, p. 37]. Mentioning

that at one point ‘the cells are idealized into geometrical

points’ [1, p. 37], Turing then begins to talk about Newton’s

laws of motion, elasticities and imaginary numbers in the

kind of way that still today is apt to leave biologists despair-

ing at the physical scientist’s tendency to make biology

abstract beyond all reach of reality.

Yet, the paper does not do that at all. Rather, it follows the

physical scientist’s instinct to express the basic problem in the

simplest possible terms, and then to explore what the minimal

requirements are of a model that captures the essential

phenomena. Turing points out that the question of how an
embryo develops and acquires shape and form—bilateral sym-

metry, say, and the budding of limbs—is one of symmetry-
breaking. ‘An embryo in its blastula stage has spherical sym-

metry’, he writes [1, p. 41]. But how, if it consists simply of

molecules randomly diffusing and reacting, can it ever

escape that perfection? One might naively think that, as

Turing writes, ‘It certainly cannot result in an organism such

as a horse’—which he points out, in what looks like a sly

meta-joke, ‘is not spherically symmetrical’ [1, p. 41]. (Whether

or not this is an expression of Turing’s playful nature, one of the

paper’s referees, J. B. S. Haldane, gently took him to task for

occasionally belabouring the biologically obvious.)

Turing posits that among the molecular ingredients of

this bundle of cells are components called morphogens

(‘shape-formers’), which are somehow responsible for trigger-

ing development of a cell or tissue along a certain pathway.

Waddington’s vague chemical ‘evocators’ of anatomical devel-

opment were exactly what he had in mind here. Genes too, he

said (and no one knew at that point quite what these inheritable

entities were), are a ‘special class’ of morphogen, albeit ones

that are locked in the chromosomes and so are not free to dif-

fuse through the cells. Hormones and skin pigments might

also act as morphogens. All one really needs to know about

them is that they diffuse and they react (triggering some devel-

opmental feature). This is why Turing’s model is now known

as an example of a reaction–diffusion system. It was not,

however, the first such, as we shall see later.

Given the presence of these morphogens, one can see that

there are deviations from spherical symmetry in the blastula.

That is because random diffusion does not produce perfect

uniformity: there are small, chance fluctuations in the concen-

trations of the substances, just as there are random local

variations in national birth statistics or in the local tempera-

ture of a glass of water. Over time, these should average

out and vanish—unless some process exists that will amplify

such irregularities, so that they break the symmetry

spontaneously and irrevocably.

Turing was not a physicist, and it is not clear that he realized

that such symmetry-breaking by fluctuations was already well

known in physical theory. It occurs, for example, in the behav-

iour of a magnet cooled through its so-called Curie point, where

it switches from being non-magnetic to magnetic. Above the

Curie point, the poles are randomly oriented; below it, they

are aligned, creating a net magnetic field. But which way do

they all point, given that any direction is equivalent to any

other? The balance is tipped by chance fluctuations at the

Curie point. In this way, symmetry (uniformity) is broken

even though there is no driving force that specifies the direction

in which it breaks. By the same token, a needle balanced on its

tip (symmetrical along the vertical axis) breaks symmetry by

falling over, even though no measurable force ‘pushes’ it in

any particular direction. Turing is, however, aware of this gen-

eral kind of ‘unstable equilibrium’, to which he alludes with

reference to a marble placed on top of a dome.

The question is then: into which kind of arrangements

does a system of diffusing morphogens tip? What sort of pat-

terns can we expect to see as a result? Much of Turing’s paper

is taken up with finding a mathematical answer to that ques-

tion. To do so, he needed to assume a particular geometric

arrangement of cells in which the morphogens move and

interact. For the sake of simplicity, he chose to study a circular

ring of cells. He wrote down equations describing the reac-

tion and diffusion of morphogens, and showed that two



(a) (b) (c)

Figure 2. (a) The morphogen pattern in a ring of cells as deduced by Turing. The greyscale indicates concentration differences. (b) Turing’s hand-calculated ‘dappled
pattern’ created by a morphogen scheme in two dimensions [1, fig. 2]. (c) The resemblance to animal markings (here a cheetah) was obvious, albeit at this point no
more than qualitative.
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situations might result. In both of them, the concentrations

rise and fall around the ring in the form of waves. In one

case, the waves are stationary, like acoustic standing waves:

the peaks and troughs of concentration stay in the same

place, creating a series of bands. In the other case, the

waves are oscillatory, meaning that the peaks and troughs

move around the ring: they are ‘travelling waves’.

In fact, there may be several such waves of different wave-

lengths, and their interference can result in a series of ‘blobs’

that differ from one another in size—a pattern, but not a per-

fectly regular one. Because he had to solve his equations by

hand—not difficult, but laborious—Turing could offer only a

rather sketchy indication of what the patterns would look

like. One of them, in a 20-cell ring, is shown schematically in

figure 2a. Turing showed this rather less strikingly as a histo-

gram of concentrations; but a two-dimensional pattern that

he calculated for a particular case of his reaction–diffusion

system was much more evocative. It is shown in figure 2b,

and one can see at once what it evokes: a dappled animal

marking (see, for example, figure 2c), as Turing himself hinted.

Given his initial intention to explain embryonic mor-

phogenesis, Turing focused the discussion of biological

implications on the matter of how the scheme could account

for the shapes of organisms that approximated his ideal geo-

metries: for example, the sprouting of shoots as radial whorls

in plants such as woodruff, or of tentacles on the cylindrical

stems of the primitive aquatic animals called hydra. But, the

glory of dappled things has excited more interest, and indeed

Waddington wrote to Turing in 1952 saying that the best

application of his theory would be ‘in the arising of spots,

streaks and flecks of various kinds in apparently uniform

areas such as the wings of butterflies, the shells of molluscs,

the skins of tigers, leopards, etc’ [5]. Much of the focus of

interest in chemical ‘Turing structures’, as his stationary-

wave patterns are now known, has subsequently turned to

these pigmentation patterns as the ideal test-bed for whether

Turing’s theory stands up. I will turn to that shortly. First,

it is apt to look more closely at why the theory, for all its

originality, had precedents [6].
4. Chemical waves
The key attributes of the chemical system that Turing

described, in which travelling or stationary waves in concen-

tration can arise from a combination of reaction and diffusion,

had already been discussed more than 40 years earlier. In

1910, the Austrian–American ecologist and mathematician

Alfred Lotka described a chemical reaction that could
undergo oscillations of this kind [7]. Lotka was not particu-

larly interested in chemistry per se. For him, the reaction

was an analogy for the dynamics of animal populations,

and the collisions and reactions that may take place between

molecules were just proxies for the interactions between pred-

atory beasts and their prey. Chemical ingredients can be

‘consumed’ by reactions just as prey can be consumed by

their predators. And both predators and prey can multiply

their own kind by reproduction.

This last aspect is the crucial one: an ingredient of the process

can produce more of itself. This is possible for a chemical reagent

if it is autocatalytic, which means that it acts as a catalyst that

speeds up the rate of its own formation. Autocatalysis is a posi-

tive feedback process: the more that is made, the faster it appears.

That kind of blow-up allows small, random fluctuations in con-

centration to be amplified into large non-uniformities—into the

‘patches’ that Turing’s process can generate. Unchecked, positive

feedback will blossom out of control, at least until the ingredients

that feed it are exhausted. For chemical reactions, fresh reagents

are brought into playat any location when they diffuse there, and

so the outcome depends on a delicate balance between the rates

of reaction and the rates of diffusion.

Lotka’s paper described only a chemical system in which

oscillations are transient—eventually they die out, like the

damped oscillations of a ringing bell. But 10 years later he

outlined conditions under which they could persist [8].

And in 1921, chemical oscillations were reported by

William Bray of the University of California at Berkeley in a

real reaction, that between hydrogen peroxide and an

iodate salt to produce iodine. Although Bray was a distin-

guished chemist, no one knew what to make of his

observations and they were largely ignored.

Travelling wavefronts resulting from a reaction–diffusion

process were also identified in the 1930s by the geneticist

Ronald Fisher, who devised a mathematical model [9]—

extended by the Soviet mathematical physicist Andrei

Kolmogorov [10] and now called the Fisher–Kolmogorov

equation—describing how an advantageous allele spreads in a

population. This model is now regarded as a very general pre-

scription for a certain type of reaction–diffusion process, but

at the time, with theoretical biology in its infancy (Fisher was

one of the pioneers), there was little appreciation that an

approach devised in one area of biology (population genetics)

should have anything to say about another (morphogenesis).

In this respect, Lotka’s perception that population

dynamics could be rephrased as a problem of chemical kin-

etics was deeply insightful, and foreshadowed Turing’s own

recasting of a biological problem as a chemical one. It was

also prescient, for at the same time that Turing was working



Figure 3. Patterns in the Belousov – Zhabotinsky reaction. Image courtesy of
Michael C. Rogers and Stephen Morris, University of Toronto.
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out a theory that could account for pattern-forming reaction–

diffusion processes, the first chemical system of this kind to

receive serious attention was being discovered. In the 1950s,

the Soviet biochemist Boris Belousov devised a cocktail of

reagents as a simplified model of the process in which sugars

are broken down in the body, and he found that the mixture

oscillated back and forth between two states. His claims were

met with scepticism, because they seemed at face value to vio-

late the second law of thermodynamics, which can be

interpreted as stipulating that any chemical process can only

proceed in one direction. Specifically, the second law states

that all change happens in the direction that increases the net

entropy of the universe—this, you might say, is the ‘downhill’

direction. Belousov’s results appeared to be tantamount to

saying that his reaction was ‘downhill’ in both directions,

which made no sense. Sadly for Belousov, no one had noted

what Lotka had already made plain decades earlier, which

was that thermodynamics can tell us only about the stable,

unchanging equilibrium state of a system. If, Lotka said, a

system is provided with an unceasing flux of energy and ingre-

dients, it can be driven away indefinitely from an equilibrium

state: it becomes a non-equilibrium system. Then, classical ther-

modynamics is silent about the outcome. The oscillating

chemical reactions of both Bray and Belousov will, if left

alone, eventually exhaust themselves and settle into an equili-

brium state. But this can take a long time, and there is no

thermodynamic prohibition to their changing direction on

the way. Moreover, if these reactions are constantly provided

with fresh ingredients, and if the reaction products are carried

away, the oscillations continue indefinitely, persisting in what

is then a permanently out-of-equilibrium system.

In the absence of this understanding, Belousov’s results

were dismissed and he was barely able to publish them.

But in the 1960s they were explored by Anatoly Zhabotinsky,

a graduate student at Moscow State University, who discov-

ered a variation of Belousov’s mixture that would switch

back and forth between red and blue. Such dramatic contrasts

were impossible to deny, and Zhabotinsky gradually won

acceptance within the Soviet Union that oscillating chemical

reactions are real. When he discussed these findings at an

international conference in Prague in 1967, chemists in the

West were intrigued and began to figure out what was

going on. During the 1970s, the mechanism of the so-called

Belousov–Zhabotinsky (BZ) reaction was decoded, and it

came to be seen that autocatalysis of some of the intermediate

molecular reagents was the key [11].

Moreover, it became recognized that the BZ reaction could

produce patterns not just in time—the red–blue oscillations—

but in space too. In a well-mixed solution, the colour changes

all at once. But, if the reaction mixture is placed in a shallow

dish, and particularly if the diffusion of molecules is slowed

down by infusing the chemical mixture in a gel, the colour

change may be initiated at a particular location, thanks to

some random fluctuation in concentration or another disturbing

influence, from which it radiates as a ‘reaction front’—a travel-

ling wave of a different colour from its surroundings. And

because the reaction oscillates, subsequent waves follow at regu-

lar intervals, producing a series of concentric rings like ripples in

a pond. Where these wavefronts touch, they annihilate one

another. Other triggers can elicit spiral waves instead, making

the BZ reaction a rich source of chemical patterns (figure 3) [12].

All the same, the BZ reaction is not quite the kind of

phenomenon sketched by Turing that generates travelling
waves. They are all variants of pattern-forming reaction–

diffusion processes, but the states they produce depend on

the details: on the relative rates of reaction and diffusion, for

example, and the nature of the reactions themselves. Given

the highly mathematical and abstract nature of Turing’s analy-

sis, none of this was clear from his paper; indeed, it is almost

devoid of any intuitive, physical picture of how the patterns

arise, and one can only speculate about whether Turing had

such a picture himself, or deemed it necessary. His reaction–

diffusion equations are not wholly consistent with a real

molecular picture, for instance—they can lead to negative

concentrations, although Turing prohibited this by fiat.

The qualitative essentials of his model did not emerge until

two decades later. In 1972, developmental biologists Hans Mein-

hardt and Alfred Gierer at the Max Planck Institute for Virus

Research in Tübingen, Germany, devised a theory of biological

pattern formation caused by diffusing reagents that paralleled

Turing’s [13]. They did not knowing about Turing’s work until

a referee of their paper pointed it out (Meinhardt 2012,

personal communication). In Meinhardt and Gierer’s model,

stationary chemical patterns can result from two interacting

ingredients—equivalent to Turing’s morphogens—if they have

specific characteristics. One is an ‘activator’, which is autocataly-

tic and so introduces positive feedback. The other is an ‘inhibitor’,

which suppresses the autocatalysis of the activator. Crucially,

they must have different rates of diffusion, the inhibitor being

faster. In effect, this means that the activator’s self-amplification

is corralled into local patches, whereas the inhibitor prevents

another such patch from growing too close by. Meinhardt and

Gierer found that Turing’s equations describe just this situation

[14]. By a curious coincidence, a theoretical model similar to

this activator–inhibitor scheme was also proposed in 1972 for a

predator–prey system [15], although it tends to be unjustly

overlooked today.

The availability of computers made it easier to deduce

what are the generic patterns produced by activator–inhibitor

systems: they generate quasi-ordered spots and stripes, with

pattern features all of roughly the same size and separation

(figure 4). These outcomes—a chemical leopard and chemical

zebra—made it all the more plausible that Turing patterns

might explain animal markings. In the 1980s, Meinhardt

and mathematical biologist James Murray at the University of



Figure 4. The generic patterns of an activator – inhibitor scheme. Images:
courtesy of Jacques Boissonade and Patrick De Kepper, University of Bordeaux.

(a) (b)

Figure 5. (a) The ‘rosette’ spots of a jaguar, and (b) an analogous pattern
produced by two coupled activator – inhibitor processes. (b) Courtesy of Philip
Maini, University of Oxford. From [19], & American Physical Society.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140218

6

Washington in Seattle worked independently to show that

Turing’s theory offered a possible explanation for a wide

range of animal pigment patterns, from zebras to giraffes to

seashells [16–18]. The idea here is that the morphogens turn

on or off genetic pathways that stimulate the production of pig-

ments—in mammal skins this is the pigment melanin, which

generates colours from tawny to black.

More recently, Turing models have been shown capable

of reproducing some of the specific fine details of animal

markings. For example, two coupled activator–inhibitor pro-

cesses can produce the broken ring markings characteristic of

jaguars (figure 5) [19], and a Turing scheme implemented on

the curved shells of ladybirds can produce patterns looking

very such like those seen in nature [20].

The stripes of the angelfish offer a particularly suggestive

example. These are unusual in that they continue to grow and

develop as the fish grow, rather than just being laid down

during embryogenesis and then getting blown up like mark-

ings on a balloon. The detailed changes in these patterns,

such as a characteristic ‘unzipping’ of two merging stripes,

is perfectly mimicked by a Turing model [21]. However,

later work with the similar patterning system of the zebrafish

has shown that although this pattern does seem to result from

autoactivation and long-range inhibition between the two

pigmented cell types (black melanophores and yellow

xanthophores)—making it a genuine Turing pattern—these

interactions do not depend on the diffusion of morphogens,

but result from the properties of the network of direct

cell–cell interaction [22].

Turing’s travelling waves might also produce pigmentation

patterns. Meinhardt has shown that an activator–inhibitor

scheme with a third morphogen that creates short-ranged but

long-lasting inhibition can reproduce the kinds of complex pat-

terns seen on some mollusc shells, which are in effect frozen

traces of two-dimensional travelling waves on the rim of the

growing shell (figure 6) [23].

It is worth pointing out that there is still no real consensus

on what many of these animal markings are for. The default

assumption has tended to be that they conceal the animal as

camouflage, but this is by no means obviously true in many

cases. Some molluscs, for example, spend much of their life

cycles covered in mud, with the pigmentation invisible. Mein-

hardt speculates that here pigmentation might be a side-effect

of mechanisms for removing wastes from the mollusc itself.

Even for the zebra, the classic example of a striking quasi-

regular pigmentation pattern, it is not clear that the markings

are for concealment. Several other functions of the stripes have

been proposed, ranging from heat regulation to deterrence of

biting insects [24,25]. For wildcats there does seem to be a corre-

lation between those with spots or other markings and a habitat
with a variegated appearance—as Rudyard Kipling put it in the

Just so stories (1902), ‘full of trees and bushes and stripy, speckly,

patchy–blatchy shadows’. But there are also outliers, such as the

cheetah, which are spotted despite a preference for open habi-

tats. It also seems that the available ‘pattern space’ provided

by a Turing-type model accounts fairly well for the range of

markings seen in 32 species of wildcats [26]. But it remains

unclear how well the precise details of the skin patterns match

the visual appearance of the environment in which the animals

dwell—in other words, how ‘carefully’ evolution is selecting

from the available palette, if indeed that is what is going on.
5. But are they real?
Even in purely chemical systems, Turing patterns proved elu-

sive for long after they were proposed. It was not until 1990

that they were first reported in a real chemical system: an

oscillating reaction somewhat similar to the BZ reaction,

known as the chlorite–iodide–malonic acid (CIMA) reaction.

Patrick De Kepper, Jacques Boissonade and their collabor-

ators at the University of Bordeaux saw a band of

stationary spots develop in a strip of gel into which the

CIMA reagents diffused from opposite sides [27,28]. The fol-

lowing year, extended Turing structures were generated in a

two-dimensional layer of the CIMA mixture, and switching

between spots and stripes was achieved by altering the con-

centrations of the reagents (figure 7) [29].

In biology, it turns out that Turing’s mechanism is in fact not

generally necessary to break the symmetry of a fertilized egg—

in many organisms this is disrupted from the outset by maternal

proteins diffusing from one side of the embryo. There is

evidently a great deal more symmetry-breaking that must

happen for a zygote to acquire its full body plan—but it remains

far from clear that Turing patterns have much to do with this.

For example, the stripe patterns of protein expression that

appear in the fruitfly embryo look superficially like Turing’s

stripes, but they are not generated by the self-organization

inherent in his model. Instead there is a hierarchical cascade

of patterning steps involving the straightforward diffusion of

morphogenetic proteins. Here, a concentration threshold for

activating particular genes converts a smooth gradient into an

abrupt interface, which becomes a more complex pattern by

sequential elaboration of the same simple mechanism [30,31].

For such reasons, until recently Turing’s work had rather

little impact on developmental biology outside the special

case of animal pigmentation. Over the past decade or so,

however, good evidence has emerged that Turing patterns

and related reaction–diffusion mechanisms do feature in



Figure 6. Patterns on seashells and their analogues in theoretical activator – inhibitor systems. From [23], courtesy of Hans Meinhardt, MPI for Developmental
Biology, Tübingen.

Figure 7. Turing structures in the CIMA reactions: spots and stripes. From [29] courtesy of Harry Swinney, University of Texas at Austin, and Qi Ouyang, Peking
University.
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other patterning processes during developmental morpho-

genesis [32]. For example, the proteins Nodal and Lefty

appear to operate as an activator–inhibitor pair during the

induction of the mesoderm of metazoans, as demonstrated

in experiments on zebrafish and mice [33,34]. And there is

some evidence that the hair follicles of mice are positioned

in their quasi-regular array on the skin by a process of acti-

vation and inhibition involving proteins called Wnt (the

activator of follicle formation) and Dkk2 and Dkk4 (inhibitors

of Wnt) [35]. For example, genetic mutant mice that produce

Dkk proteins in abnormally high amounts develop follicle

patterns that match those predicted theoretically from

Turing-style activator–inhibitor models of the diffusion and

interaction of Wnt and Dkk. However, the details of this pat-

terning process seem likely to be complex, involving various

networks of protein and gene interactions rather than a

simple activator–inhibitor pair. Something analogous to the

patterning of hair follicles may also be at work in the regular

arrangement of feathers in birds and the scales of lizards and

butterfly wings.

The diverse family of Wnt-type developmental proteins

seem likely to produce a range of different patterning mechan-

isms. Meinhardt [36] has argued that one such protein

morphogen organizes the formation of tentacles around the

cylindrical gastric column of the hydra—essentially the ring

symmetry explored by Turing. The periodic positioning of

bird feather barbs can be explained if the protein product

of a gene called Sonic hedgehog (Shh)—a common patterning

gene in many species—behaves as an activator while the

bone morphogenic protein 2 is an inhibitor [37]. Through

the interaction of these components, the uniform epithelium of

the developing feather bud becomes divided into a series
of stripe-like ridges that prefigure its break-up into distinct

barbs. Meanwhile, the regularly spaced ridges of the mam-

malian mouth palette seem to be arranged by a Turing-type

reaction–diffusion mechanism involving the proteins fibro-

blast growth factor and Shh as the activator and inhibitor,

respectively—albeit with the possible involvement also of

other proteins, including those of the Wnt family [38].

Perhaps the most striking challenge to the predominant

view that biological development is largely dictated by

smooth, long-range biochemical gradients comes from recent

evidence that digit formation in the embryo can be regarded

as arising from striped Turing patterns [39]. Here too, Wnt pro-

teins play a role. Digit formation is ultimately under the control

of a gene called SOX9, which triggers differentiation of soft

tissue towards the formation of bone and cartilage. WNT
gene products and bone morphogenetic proteins (products of

BMP genes) influence the activity of SOX9 in a manner

described by an activator–inhibitor scheme, so that drug-

induced suppression of WNT or BMP leads to predictable

changes in the number or spacing of digits.

The important unanswered question for many of these sys-

tems seems to be that, while the central elements of activation

and inhibition, and reaction and diffusion, do appear to pro-

vide a useful basis for framing the problem theoretically, to

what extent can the details be reduced and simplified to the

two-component scheme proposed by Turing?
6. Blossoming theory
Turing’s discussion of the whorled leaf arrangements of the

woodruff plant in his 1952 paper shows that he suspected



Figure 8. The spiral arrangement of florets or leaf-related features on plants
follows the Fibonacci series, as shown here for a sunflower: there are 21
anticlockwise spirals and 34 clockwise spirals. Image: Esdras Calderan/
Wikimedia Commons, used under Creative Commons licence.

Figure 9. Sand ripples can be regarded as a kind of Turing pattern. Image:
EVO, used under Creative Commons licence.
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his theory might have something to say about a biological

patterning process quite different from morphogenesis of

the embryo, namely phyllotaxis: the arrangement of leaves

or related features on plant stems. He promised that ‘the mor-

phogen theory of phyllotaxis’ would be ‘described in a later

paper’, and he had already drafted that paper by the time

of his death—which, however, prevented its publication at

that time [40].1 Turing’s basic idea was that an activator–

inhibitor system of hormones acting at the growing tip of a

plant lays down the spots that grow into buds on the cylindri-

cal stem. This seems plausible in the light of current knowledge

of plant biology. It has been known since the 1930s that the

plant hormone auxin can function as an activator to initiate

the growth of new leaf buds (primordia). In 2003 it was

shown that phyllotaxis is regulated by proteins that ferry

auxin through the outer ‘skin’ of the stem up towards its

apex [41]. Existing leaf buds soak up auxin and thus act as

sinks, inhibiting the formation of any new buds nearby.

Phyllotaxis is one of the oldest and most compelling prob-

lems of biological pattern formation, not least because it has a

mathematical character that seems at first deeply mysterious.

The leaves or florets are typically arranged around the stem

in a spiral pattern, and when this is projected onto a horizontal

plane—as it is in the plant itself for the arrangement of florets in

the head of a sunflower or daisy (figure 8)—one finds that there

are in fact two groups of counter-rotating spirals. In each of the

two groups, the numbers of spirals are always successive num-

bers in the Fibonacci series, generated from the pair f0,1g by

adding together the two preceding numbers: 0, 1, 1, 2, 3, 5, 8,

13, 21, 34 . . .

Why should the spirals obey this rule? A common view is

that the Fibonacci arrangement enables the most efficient pack-

ing of the florets. This may well be true, but it does not explain

the mechanics of how the growing plant ‘finds’ this solution,

any more than explaining the leopard’s spots in terms of

camouflage accounts for how the pigmented spots actually

form on the leopard foetus. It seems conceivable, at least,

that Turing’s scheme might provide the biochemical mechan-

ism: a Turing process involving two sets of activators and

inhibitors operating on a cylindrical stem may produce primor-

dia in a (2,3) spiral phyllotaxis pattern [42]. Whether the model

can generate higher-order Fibonacci spirals is not clear, how-

ever, and there is as yet no direct evidence that such a double

activator–inhibitor process really operates in plants.
7. Sand, cemeteries and crime
Turing’s stripe patterns resemble not only the skin of a

zebra, tiger or angelfish, but also some patterns in inanimate

nature, such as the ripples in wind-blown sand (figure 9).

This may be no coincidence. Meinhardt [23] suggests that, at

root, the formation of these sand patterns is akin to an activa-

tor–inhibitor system. The mounds and ridges of sand are

formed by deposition of wind-blown grains. As a ridge gets

bigger, it enhances its own growth by capturing more sand

from the moving air. But in doing so it acts as a sink, removing

sand from the wind and suppressing the formation of other rip-

ples nearby. The balance between these two processes

establishes a roughly constant mean distance between ripples.

The feedbacks involved in replication, competition and pre-

dation might set up Turing-type patterns in animal and plant

communities. These might account for the patchiness of zoo-

plankton in the sea and the phytoplankton on which they

graze [43]. And there is rather compelling evidence that a

Turing-type mechanism accounts for structures formed by a

species of ant [44]. Mediterranean Messor sancta ants collect

the bodies of expired colony members and arrange them in

piles. The ants constantly pick up and redistribute the corpses,

producing a kind of ‘diffusion’ of bodies. Nonetheless, after a

certain time the locations of the piles stay fixed. Because ants

are more likely to drop a body on a pile as the pile gets

larger, there is a positive feedback (activation) controlling

their growth, analogous to that by which sand ripples form.

There is also long-range inhibition, because the region sur-

rounding a big pile gets swept clear of bodies, making it less

likely for a new one to be started in the vicinity. The result is a

series of stationary clusters of corpses, and if the ants are con-

fined in a Petri dish then these clusters are created around the

perimeter, with precisely the ring geometry that Turing first

explored in 1952 (figure 2). Mechanisms like this might underlie

many other aspects of habitat formation and grouping, such as

nest construction, in higher organisms.

Even human communities, orchestrated by social feed-

backs on behaviour and movement, might organize

themselves into Turing patterns. A reaction–diffusion model

has been proposed to explain the phenomenon of crime hot-

spots: districts in which the crime rate is anomalously high

[45]. Here criminal offenders are modelled as predators who

seek ‘prey’ (victims), while both agents move around (diffuse)

in the available space. The ‘reaction’—predation of criminals

on victims—can be potentially suppressed by an inhibiting

agency such as a security measure or a police force.
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Figure 10. Crime hotspots as Turing structures in a theoretical model of how crime propagates in communities. (a) The hotspots in red. If policing is concentrated
on one of these spots in an effort to suppress crime, the criminality merely spreads elsewhere in a diffuse ring (green, (b)). From [45], courtesy of Martin Short,
University of California at Los Angeles.
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This model produces two types of hotspots through the

competing influences of activation and inhibition. The first

are aggregates of individual crimes with overlapping spheres

of influence. The second type of hotspot is caused more

directly by positive feedback: by the known phenomenon

in which crime induces more crime (figure 10). The first

sort of hotspot can be eradicated completely by a sufficiently

strong inhibiting influence: that is, by locally concentrated

policing. But the second kind, corresponding to Turing-type

patterns, is harder to eliminate. Focused inhibition may

merely cause these hotspots to move or mutate, breaking

up into smaller spots or rings in the close vicinity. If this pic-

ture is an accurate reflection of the world, it suggests that not

all hotspots will yield to the same style of policing, but that

different strategies might be needed in different situations.
8. Conclusion
Alan Turing’s 1952 paper, proposed by an author with no real

professional background in the subject he was addressing, put

forward an astonishingly rich idea. The formation of regular

structures by the competition between an autocatalytic activat-

ing process and an inhibiting influence, both of which may

diffuse through space, now appears to have possible relevance

not just for developmental biology but for pure and applied

chemistry, geomorphology, plant biology, ecology, sociology

and perhaps even astrophysics (a reaction–diffusion mechan-
ism has, for example, been suggested as the origin of spiral

galaxies). Turing seems to have identified one of nature’s

general mechanisms for generating order from macroscopic

uniformity and microscopic disorder. Several of the putative

Turing structures in nature remain speculative, and indeed, it

is notoriously difficult to distinguish between different candi-

date processes for generating a particular pattern. But, there

seems little question that nature, including the living world,

does use Turing’s mechanism as one way of producing its

rich and often beautiful panoply of forms.

From a biological perspective, the broader question is how a

spontaneous process such as that deduced by Turing, which

gives rise to a particular palette of shapes and patterns, interacts

with natural selection. To what extent can evolution adapt and

modify Turing structures? Are all such structures necessarily

adaptive at all? Or are we too readily tempted, when we

descry order and regularity in nature, to attribute a ‘purpose’

to it? Might some of it, at least, represent nothing more than a

kind of intrinsic creative potential in the natural world?
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