
OPEN ACCESS

ll
Tutorial

Efficient compression of SARS-CoV-2
genome data using Nucleotide Archival Format
Kirill Kryukov,1 Lihua Jin,2 and So Nakagawa3,*
1Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
2Genomus Co., Ltd., Sagamihara, Kanagawa 252-0226, Japan
3Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
*Correspondence: so@tokai.ac.jp
https://doi.org/10.1016/j.patter.2022.100562
THE BIGGER PICTURE Sequence data undergo explosive growth, best exemplified by the huge number of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes accumulated during just 2 years of
the pandemic. To date, more than 11 million SARS-CoV-2 genomes have been sequenced and deposited in
databases. Downloading and using these massive data is a challenge due to suboptimal compression used
by sequence databases. In this paper, we compared the available compressors on SARS-CoV-2 genome
data and found that Nucleotide Archival Format (NAF) provides a dramatic improvement to file sizes, down-
load speeds, and decompression times. Compared with currently used methods, NAF provides up to 30–50
times better efficiency of data distribution. Timely analysis of new SARS-CoV-2 genomes is important for
controlling the pandemic; therefore, it would be beneficial to use NAF for distributing these data. More gener-
ally, we believe that using NAF in sequence databases would make it easier for researchers worldwide to ac-
cess molecular sequence data.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome data are essential for epidemi-
ology, vaccine development, and tracking emerging variants. Millions of SARS-CoV-2 genomes have
been sequenced during the pandemic. However, downloading SARS-CoV-2 genomes from databases is
slow and unreliable, largely due to suboptimal choice of compression method. We evaluated the available
compressors and found that Nucleotide Archival Format (NAF) would provide a drastic improvement
compared with current methods. For Global Initiative on Sharing Avian Flu Data’s (GISAID) pre-com-
pressed datasets, NAF would increase efficiency 52.2 times for gzip-compressed data and 3.7 times for
xz-compressed data. For DNA DataBank of Japan (DDBJ), NAF would improve throughput 40 times for
gzip-compressed data. For GenBank and European Nucleotide Archive (ENA), NAF would accelerate
data distribution by a factor of 29.3 times compared with uncompressed FASTA. This article provides a
tutorial for installing and using NAF. Offering a NAF download option in sequence databases would provide
a significant saving of time, bandwidth, and disk space and accelerate biological and medical research
worldwide.
INTRODUCTION

Whole-genome sequencing of severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2) samples is routinely used

to track the spread of the virus, understand the relationship

between its strains, and develop vaccines.1,2 New variants that

acquired novel characteristics—transmission, virulence, and

therapeutic/vaccine efficacy—can be predicted based on muta-

tion information.3 Therefore, timely distribution and analysis of

SARS-CoV-2 genome data are critically crucial for responding
This is an open access article und
to the rapid evolution of SARS-CoV-2 that potentially changes

various situations around the world.

Millions of SARS-CoV-2 genomes have been already

sequencedby various research groupsworldwide and deposited

into sequence databases. At the beginning of the coronavirus

2019 (COVID-19) pandemic, Global Initiative on Sharing Avian

Flu Data1 (GISAID; https://www.gisaid.org/) emerged as the

primary repository for exchanging SARS-CoV-2 genome data.

As of June 2022, it stores more than 11 million SARS-CoV-2

genomes with severe access restrictions. Alternatively,
Patterns 3, September 9, 2022 ª 2022 The Author(s). 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:so@tokai.ac.jp
https://doi.org/10.1016/j.patter.2022.100562
https://www.gisaid.org/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2022.100562&domain=pdf
http://creativecommons.org/licenses/by/4.0/


ll
OPEN ACCESS Tutorial
SARS-CoV-2 genome data are also available in databases of the

International Nucleotide Sequence Database Collaboration4

(INSDC), which includes DNA DataBank of Japan5 (DDBJ),

European Nucleotide Archive6 (ENA), and GenBank.7 These

open databases provide unrestricted access to their data and

currently (as of June 2022) store more than 5 million SARS-

CoV-2 genomes.

We noticed that downloading the entire set of SARS-CoV-2 ge-

nomes from these databases is often difficult. Problems include

incomplete downloads, lengthy download times, and ample disk

space required for processing and storing the data. We identified

the root of these problems to be suboptimal choices of the data-

compression methods (or no compression in the case of NCBI

and ENA). Therefore, we evaluated the available data-compres-

sion methods that could be used for distributing SARS-CoV-2

data. We compared 36 compressors on SARS-CoV-2 genomes

andonother repetitivedatasets.Wefound thatNucleotideArchival

Format8 (NAF) provides the best balance of compression strength

and speed, making it the most suitable compressed format for

distributing extensive repetitive sequence data.

This article is organized as follows. First, we review the current

options for downloading SARS-CoV-2 data from major data-

bases and point out their limitations. We then provide a brief

overview of sequence compression. We then discuss selecting

a suitable compression method for SARS-CoV-2 data. Next,

we quantify the gains that can be realized by using a better

compressor (NAF) for distributing SARS-CoV-2 data. We then

introduce a NAF-compressed dataset consisting of all public

SARS-CoV-2 sequences to date. Finally, we provide a tutorial

for installing and using NAF.

EXPERIENCES DOWNLOADING SARS-2-CoV
GENOME DATA

This section describes our (and a hypothetical typical user’s)

experiences when attempting to download the entire set of

SARS-CoV-2 nucleotide sequences from major databases. We

outline the limitations and inefficiencies we encountered with

each database.

GISAID, genomic epidemiology
GISAID data are available for downloading only to registered

users. After logging in to the GISAID main page, we navigated

to ‘‘EpiCoV’’, then ‘‘Downloads’’, and in the ‘‘Genomic epidemi-

ology’’ section, we selected a ‘‘FASTA’’ file. The downloaded file

‘‘sequences_2021-12-10_16–41.fasta.tar.gz’’ was 52.1 GB in

size, and the decompressed ‘‘sequences.fasta’’ was 175 GB.

The dataset contained 5,866,384 sequences. Two problems

are apparent with this distribution format: (1) the extremely inef-

ficient compression with a ratio of 3.35 times, and (2) the use of

tar as an intermediate format requires decompressing the

archive in two steps, consuming a total of about 402 GB of

disk space. The sole purpose of using the tar package appears

to include the ‘‘readme.txt’’ file, which describes the data-usage

terms. We believe that this is a suboptimal and unnecessary

choice, impacting the convenience of using the data, for a ques-

tionable benefit. The standard practice of distributing restricted

datasets normally requires an agreement with the terms on the

download page and then provides the usual gzip-compressed
2 Patterns 3, September 9, 2022
FASTA file. We note that the GISAID webpage does require

agreeing with the data-use terms before showing download

links. Therefore, introducing an additional ‘‘readme.txt’’ file in

the downloadable package seems redundant.

GISAID, download package
In the same download page in the GISAID EpiCoV website,

another FASTA file exists in the ‘‘Download package’’ section.

We downloaded it on January 18, 2022. The downloaded file

‘‘sequences_fasta_2022_01_17.tar.xz’’ occupied 2.31 GB and

the decompressed ‘‘sequences_fasta_2022_01_17.tar’’ was

213 GB, and then the tar file unpacked into the ‘‘readme.txt’’

(830 bytes) and ‘‘sequences.fasta’’ (213 GB). The dataset con-

tained 7,148,442 sequences. Using the xz compressor produced

a compression ratio of 92.6—a much more efficient value than

gzip, although still far from optimal. Unfortunately, this download

also uses intermediate tar format to bundle the redundant ‘‘read-

me.txt’’ file. As a result, decompressing the FASTA-formatted

data (in two steps) consumes 429 GB of disk space in total.

Another serious problem with this downloaded dataset is that

it appears to not use unique sequence names. In one instance,

as many as 8 different sequences share the same name. In total,

8,644 sequences have non-unique names in this dataset.

Although GISAID assigns a unique ‘‘gisaid id’’ to each sequence

in their database, for some reason, they do not use these unique

ids in this FASTA file, making establishing a 1-to-1 correspon-

dence between sequences and metadata impossible.

DDBJ
From the DDBJ main page (https://www.ddbj.nig.ac.jp/index-e.

html), we navigated to ‘‘Services’’, then ‘‘ARSA’’, where we

searched for ‘‘Organism: (Severe acute respiratory syndrome

coronavirus 2)’’. The search returned 3,354,578 entries (on

January 17, 2022). We proceeded to select ‘‘Fasta’’ and click

‘‘Download All’’. This resulted in the downloaded file ‘‘arsa_re-

sult.fasta.gz’’ of 4.49 GB in size. Despite a not very large file

size, downloading took several hours, probably because the

data was being gzipped on the fly on the server side. The archive

decompressed into a file ‘‘arsa_result.fasta’’ of 30.4 GB. This

gives a rather inefficient compression with a ratio of 6.78 times.

Another problem is that this procedure failed to download all

3,354,578 sequences. The downloaded FASTA file contained

999,918 sequences. The download was shown as finished suc-

cessfully, and the gzip archive was not malformed; the transfer

occurred without errors. Combined with the nearly round num-

ber of sequences (nearly 1 million), this suggests a probable lim-

itation on the number of sequences in a single download on the

ARSA server side. It is possible to overcome this limitation by

downloading multiple partial datasets using a date filter, e.g.,

by adding ‘‘Date:[20191201 TO 20211014]’’ to the search query.

The user would have to be careful not to exceed the limit within

each part and assemble the downloaded parts together for the

complete set of genomes. A more convenient option of

downloading the entire dataset as a single file seems to be not

supported as of June 2022.

ENA
From the main ENA page (https://www.ebi.ac.uk/ena/browser/

home),we clicked ‘‘Search’’, then ‘‘AdvancedSearch’’.Wechose

https://www.ddbj.nig.ac.jp/index-e.html
https://www.ddbj.nig.ac.jp/index-e.html
https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home


ll
OPEN ACCESSTutorial
‘‘Data type:’’ as ‘‘Nucleotide sequences’’, then clicked ‘‘Next’’.

We then entered the query ‘‘tax_tree (2697049)’’ and clicked

‘‘Search’’. This resulted in 3,178,769 entries (on January 18,

2022). We then clicked on the ‘‘FASTA’’ link located next to the

‘‘Download ENA records:’’ title. This procedure resulted in the

downloaded file ‘‘ena_sequence_20220118-0949.fasta’’ of 38.1

GB. Due to the sheer size of uncompressed data, the download

took several hours. However, the downloaded file was incom-

plete, including only 1,251,333 sequences, which is similar to

DDBJ’s case. The transfer was reported as completed success-

fully, and the last sequence was intact (not truncated). Therefore,

the problem of the incomplete downloaded file was not due to an

interrupted download but rather was caused by the server.

GenBank
From the NCBI main page (https://www.ncbi.nlm.nih.gov/), we

selected the ‘‘Nucleotide’’ database in the drop-down selector,

then entered the query as ‘‘"Severe acute respiratory syndrome

coronavirus 2"[Organism]’’, then clicked ‘‘Search’’. The search

found 3,360,893 entries (on January 17, 2022). We proceeded

to click ‘‘Sent to:’’, select ‘‘File’’, choose format ‘‘FASTA’’, select

‘‘Sort by’’ as ‘‘Default order’’, and click ‘‘Create File’’. This re-

sulted in downloading a file ‘‘sequence.fasta’’ of 102 GB. The

download took more than 30 h. The downloaded file contained

3,360,674 sequences, 219 fewer than what was reported on

the search result page.

Summary
It is not easy to download the entire collection of available SARS-

CoV-2 genomes from major databases. DDBJ and ENA failed to

deliver the complete set of sequences as a single download after

spending hours downloading the partial data. Downloading from

GenBank mostly succeeded after taking more than 30 h.

GISAID’s ‘‘Genomic epidemiology’’ FASTA dataset uses an inef-

ficient gzip compression. GISAID’s ‘‘Download package’’ FASTA

file contains non-uniquely named sequences and uses a

suboptimal xz compression. Also, GISAID provides its FASTA-

formatted sequences in an unfriendly format using intermediate

tar packing, which requires a two-step unpacking before obtain-

ing the sequence data.

GISAID still continues to lead in the number of accumulated

SARS-CoV-2 genomes, storing about two times more data

than the INSDCmember databases. This means that it is difficult

to avoid using GISAID in many areas of SARS-CoV-2 research.

The problem, however, is that GISAID data are not open.9

Registration and approval by GISAID staff are required before

accessing the content of the database. Since GISAID does not

allow redistribution of their data, any inefficiencies with their

data-distribution method cannot be solved by a third party via

repackaging their data in a more efficient format.

Sequence-compression overview
Timely access to the latest SARS-CoV-2 sequence data is

essential for monitoring, researching, and responding to the

ongoing pandemic. As we showed in the previous section,

downloading large sequence datasets may take a long time

and consume a lot of potentially expensive network bandwidth.

It may be especially problematic in developing countries with

slow internet connections. Therefore, it is natural to think about
transferring the data in compressed form to enable faster

downloads and reduce transfer costs. The question then

becomes which of the available compression methods should

be preferred.

FASTA is the established format for storing molecular

sequence data. It owes its success to its simplicity and the popu-

larity of the FASTA alignment software suite,10 where it was first

introduced. Since FASTA is a text-based format, it can be easily

manipulated, either manually or using standard and specialized

software tools. Despite recent developments, such as graph-

based formats (e.g., Li et al.11), FASTA format remains widely

used in sequence databases.

A critical limitation of the FASTA format, however, is its ineffi-

ciency. FASTA encodes each nucleotide base one by one, using

separate text characters. Since DNA sequences use only four

nucleotide codes (with some additional codes for ambiguous

cases), and text is stored using 8 bits per character, this means

that a FASTA format wastes �75% of its size. Also, DNA often

contains repeats and multiple copies of the same fragment.

Finally, often multiple similar sequences are stored together in

the same file, such as in the case of SARS-CoV-2 genomes.

Data compression can exploit these redundancies and drasti-

cally reduce the file sizes. Indeed, today FASTA-formatted data-

sets are usually distributed in compressed form.

Most sequence databases currently rely on gzip for data

compression. Gzip was originally released in 1992 and became

popular due to being free and open source, portable, robust, hav-

ing low memory overhead, and providing acceptable speed and

compactness compared with alternatives at the time. These

days, gzip performance is mediocre compared with the alterna-

tives, but it remains popular because of inertia and because

gzip support is integrated into many sequence-analysis tools. In

addition to gzip, GISAID uses xz, another general-purpose

compressor. It provides stronger compression thangzip, although

it has higher computational demands during compression.

The first practical specialized compressor for sequence data

was biocompress.12 Since then, numerous other specialized

sequence compressors have been developed (see, e.g., Deoro-

wicz andGrabowski13 andHernaez et al.14 for review).Many early

compressors, including biocompress, are not available or sup-

ported anymore, but some can still be used today, such as

dnaX.15 Early solutions for compact storage of DNA data also

included database formats for homology search tools: BLAST16

and BLAT.17 Several compressors were developed with the

primary goal of providing maximum compactness: XM,18 DNA-

COMPACT,19 GeCo,20 GeCo2,21 JARVIS,22 and GeCo3.23

Some closed source or non-free compressors can be possibly

used in limited applications: DELIMINATE,24 MFCompress,25

ALAPY,26 and GTZ.27 Some experimental tools provide limited

DNA compression: Pufferfish,28 UHT,29 and NUHT.30 In addition,

many FASTQ compressors can be adapted for FASTA-formatted

DNA data compression: beetl,31 DSRC,32 Quip,33 fastqz,34

fqzcomp,34 Leon,35 LFQC,36 KIC,37 HARC,38 LFastqC,39 Mini-

com,40 SPRING,41 and FQSqueezer.42

Specialized sequence compressors can be classified into two

categories: referential and reference free. Referential methods

rely on a reference genome, to which all sequences are aligned,

and then only the differences are stored.43,44 Conversely, refer-

ence-free compressors compress just the provided data without
Patterns 3, September 9, 2022 3

https://www.ncbi.nlm.nih.gov/


ll
OPEN ACCESS Tutorial
depending on any reference. Since referential compressors

always need a reference genome, they are applicable to some

datasets, but not others, where such a reference is missing.

Also, selecting a suitable reference genome, and distributing it

together with the compressed dataset, adds substantial

complexity to operating such compressors. Even though refer-

ential compression can be applied to SARS-CoV-2 sequences

(e.g., Tang and Li45), due to the mentioned reasons, we do not

consider it a viable alternative to gzip.

Additionally, recently, a new kind of specialized compressors

have been developed specifically for storing collections of

genomes, such as MBGC46 and AGC.47 These compressors

provide good compactness, but similarly to referential compres-

sors, they require a careful application to only suitable kinds of

data. Considering that specialized compressors mostly failed

to replace gzip in public databases, we realize that any prospec-

tive gzip replacement must provide as little as possible friction of

switching. Such a replacement compressor must not require a

reference genome, and it must be applicable to as wide as

possible range of sequence data. Thus, we consider only refer-

ence-free sequence compressors to be suitable for the purpose

of data distribution by sequence databases.

Previously, Liiv48 evaluated the performance of compressors

on SARS-CoV-2 genomes. However, Liiv’s benchmark has

some limitations: (1) it does not show compression time and

memory consumption, (2) it includes a limited selection of rele-

vant compressors, and (3) it includes many compressors that

are only available as Windows binaries. This makes it difficult

to interpret the results and select a suitable compressor for large

sequence datasets.

We previously comprehensively evaluated the performance of

various relevant compressors on several sequence datasets,

summarized in the Sequence Compression Benchmark49 (SCB;

http://kirr.dyndns.org/sequence-compression-benchmark/). As

of June 2022, SCB includes 50 compressors (31 specialized

and 19 general purpose) and a diverse set of test data. In this

benchmark, in addition to compression strength, we measured

the time and memory required for compression and decompres-

sion and computed several derived metrics (compression-

decompression speed, transfer time and speed, transfer +

decompression time and speed, compression + transfer +

decompression time and speed). The test data include individual

assembled genomes, collections of genomes, repetitive

sequence datasets, RNA gene datasets, and protein datasets.

Now, we also introduced a SARS-CoV-2 dataset into this

benchmark. Therefore, SCBprovides detailed data for evaluating

various compressors and selecting the most suitable

compressor for a given application and type of sequence data.

Selecting compressor for SARS-CoV-2 sequence data
There are two general patterns of distributing database

sequence data. (1) A prepared fixed dataset, compressed and

stored on the database server, is distributed to users. Even if

this dataset is updated periodically, it remains fixed between

the updates. This is what GISAID does with its FASTA-format da-

tasets. Every several days, an updated FASTA file is prepared,

compressed, and shared on the GISAID website, where it stays

the same until the next update. (2) Sequences are looked up in

the database dynamically according to the user’s query and
4 Patterns 3, September 9, 2022
sent to the user, with or without compression (performed on

the fly). This is how INSDC member databases operate.

DDBJ compresses the sequences using gzip while sending it

to the user. ENA and GenBank stream the raw uncompressed

FASTA-formatted sequences.

Depending on which of these scenarios is used, different

criteria become essential for selecting a compressor. For first

use case, the most important measure is the time required for

transferring and decompressing the data. Compression speed

is less important because compression is performed only

once, while decompression is performed by every user of the

data. For the second case, the total time required for compres-

sion, transfer, and decompression, should be minimized.

Additionally, in the first case, multi-threaded compression can

be employed while compressing a fixed dataset because the

entire multi-core machine can be dedicated to the task. In the

second case, on the other hand, single-thread compression is

usually preferable because the server is often serving multiple

requests simultaneously. Thus, we consider transfer + decom-

pression speed the critical measure for selecting a compressor

for the first case and single-threaded compression + transfer +

decompression for the second case. In addition to these two

measures, compression strength also remains an important

measure, as data compactness is important when storing large

data, when copying it between machines, and when loading it

into memory from disk for decompression.

Comparison of compressors on thesemeasures can be visual-

ized on the SCB benchmark website for any of the included

datasets. Recently, we added a SARS-CoV-2 dataset to the

benchmark. For these data, we randomly sampled 100,000 se-

quences (3.05 GB) of at least 25 kbp from the entire set of

SARS-CoV-2 genomes downloaded from GenBank on January

17, 2022. Among the SCB test data, several other datasets

exhibited high redundancy: 16S rRNA gene sequences, mito-

chondrion genomes, influenza genomes, human viruses, and

Helicobacter genomes. Therefore, all these datasets should be

considered for evaluating the applicability of each compressor

to large, repetitive sequence data. We extracted the results of

the best settings of each compressor on the SARS-CoV-2 data-

set (Figure 1; Table S1) and on the remaining repetitive datasets

(Figure S1). This result can also be visualized on the dynamic

website of the SCB database (http://kirr.dyndns.org/sequence-

compression-benchmark/).

Inspecting thebenchmark results, we find thatNAF8provides a

good balance of compactness and speed on repetitive sequence

data, using thementionedmeasures. OnSARS-CoV-2 data, NAF

is surpassed by fastqz34 in compression strength and by brotli50

and zstd51 in transfer + decompression speedon theSARS-CoV-

2 data, and it leads in single-threaded compressions + transfer +

decompression speed.Onother repetitive datasets, NAF leads in

all three metrics.

An important quality of a compressor is compatibility with

different kinds of data and usage scenarios. General-purpose

compressors, such gzip, support a maximally broad range of

uses. Therefore, any potential replacement must also strive to

be useful in diverse scenarios. NAF has a comprehensive feature

set in this regard, supporting both FASTA and FASTQ formats

and supporting not only DNA but also RNA and protein data.

For DNA/RNA data, NAF supports ambiguous nucleotide codes

http://kirr.dyndns.org/sequence-compression-benchmark/
http://kirr.dyndns.org/sequence-compression-benchmark/
http://kirr.dyndns.org/sequence-compression-benchmark/


A

B

C

Figure 1. Comparison of compressors on SARS-CoV-2 genomes
The test dataset is 100,000 SARS-CoV-2 genomes (3.05 GB) selected randomly from the entire set of SARS-CoV-2 genomes downloaded from GenBank on
January 17, 2022, which is available in the Sequence Compression Benchmark database (http://kirr.dyndns.org/sequence-compression-benchmark/).
(A–C) The best settings of each compressor are selected according to the measures compression ratio (A), transfer + decompression speed (B), and single-
threaded compression + transfer + decompression speed (C). 100 Mbit/sec link speed is used for calculating transfer time.

ll
OPEN ACCESSTutorial
and upper/lowercase masking. Also, NAF can compress align-

ments containing gaps denoted as the ‘‘-’’ character. Strong per-

formance benchmark results, and applicability to a wide range of

data, allow us to recommend NAF for the general application of

distributing large sequence datasets.

COMPRESSING SARS-CoV-2 SEQUENCE DATA

We then quantified performance gains that can be achieved by

applying a more efficient compressor (i.e., NAF) to the distribu-

tion of SARS-CoV-2 data. The current approaches are sending

uncompressed FASTA data by ENA and GenBank, compress-

ing on the fly with gzip by DDBJ, and pre-compressing with

gzip and xz by GISAID. Thus, we measured the performance
of NAF, gzip, and xz on SARS-CoV-2 genome data. We used

the GISAID ‘‘Genomic epidemiology FASTA-formatted dataset

as the test data (175 GB, 5,866,384 sequences). We compared

gzip 1.11, xz 5.2.5, and NAF 1.3.0, by using the representative

range of settings of these compressors: 1–9 for gzip and xz,

and 1–22 for NAF. When compressing and decompressing,

we loaded the entire input into the disk cache first (using

‘‘cat >/dev/null’’). During decompression, the output was piped

to /dev/null to avoid spending time and to save disk space. We

timed compression and decompression and measured memory

consumption using GNU Time (‘‘/usr/bin/time -v’’). Same with

the SCB, we used the link speed of 100 Mbit/sec for calculating

transfer time since this is the standard speed of a broadband

internet connection.
Patterns 3, September 9, 2022 5

http://kirr.dyndns.org/sequence-compression-benchmark/


A B

C D

Figure 2. Comparison of best-performing
settings of gzip, xz, and naf
(A and B) Performance in terms of time (on a log
scale) required to complete transfer + decompres-
sion (A) and compression + transfer + decompres-
sion (B).
(C and D) The same results but in terms of speed (in
MB/s), computed as uncompressed data size
divided by the time required for transfer + decom-
pression (C) and compression + transfer + decom-
pression (D).

sudo apt install git gcc make diffutils perl

ll
OPEN ACCESS Tutorial
The benchmark results for this dataset are shown in Table S2

and Figure S2. We then selected the best settings of each

compressor based on the two measures discussed above. The

benchmark results of these selected settings are shown in

Table S3 and Figure 2. These results allow us to quantify the

efficiency improvement that would result from adding NAF as

an optional format for distributing SARS-CoV-2 genome

datasets.

For distributing a static SARS-CoV-2 genome dataset (e.g., for

GISAID use case), we are interested in the shortest transfer +

decompression time. In this scenario, using NAF reduces

transfer + decompression time 141.7 times compared with

distributing an uncompressed FASTA file, 6.1 times compared

with using gzip, and 2.1 times compared with using xz compres-

sion (using the best settings of gzip and xz).

Comparedwith the gzip settings actually used byGISAID, NAF

would provide 52.2 times improvement (naf-13 compared with

gzip-4). It is not clear what xz setting is used by GISAID. The

compression ratio of their xz-compressed data is about 92.2

times, which would place it somewhere between levels 1 and

2. Using this compression ratio and decompression speed

of xz-2, we would get a transfer + decompression speed of

473 MB/s, which is 3.7 times slower than naf-13’s speed of

1,772 MB/s.

For sending a dynamically selected set of sequences (such as

what is done by DDBJ, GenBank, and ENA), we are interested in

compression + transfer + decompression time. For this case, us-

ing NAF reduces the total time required for the three steps 29.3

times compared with sending uncompressed FASTA (such as

what is done by GenBank and ENA), 14.5 times compared with

using gzip compression (used by DDBJ), and 3.4 times

compared with using xz compression. We observed a compres-

sion ratio of 6.78 times in the DDBJ file, which is closest to the

gzip-6 result in our test. gzip-6 provides a 9.15 MB/s compres-

sion + transfer + decompression throughput in our analysis,
6 Patterns 3, September 9, 2022
which is 40 times slower than 366.61 MB/

s provided by NAF (naf-3). For storing

SARS-CoV-2 genome data, using the

strongest setting of each compressor,

NAF provides 8.33 times stronger

compression than gzip and 1.09 times

stronger compression than xz.

NAF-compressed SARS-CoV-2
dataset
In order to provide a practical demonstra-

tion of the sequence data distribution
strategy outlined in this paper, we prepared a NAF-compressed

dataset consisting of all public SARS-CoV-2 nucleotide se-

quences (up to June 17, 2022).

To prepare this dataset, we downloaded all available SARS-

CoV-2 sequences fromGenBank on July 17, 2022.We navigated

to https://www.ncbi.nlm.nih.gov/labs/virus/, where we clicked

‘‘Search by virus’’, then ‘‘Up-to-date SARS-CoV-2’’. The search

returned 5,588,048 sequences. We then clicked ‘‘Download’’,

selected ‘‘Nucleotide’’ in the ‘‘Sequence data (FASTA Format)’’

column, then clicked ‘‘Next’’, selected ‘‘Download All Records’’,

clicked ‘‘Next’’, selected ‘‘Use default’’ (FASTA definition line),

then clicked ‘‘Download’’. This resulted in downloading a 170

GB FASTA file. We compressed it into the NAF format using

the command ‘‘ennaf �22 –fasta –dna -o SARS-CoV-2-NCBI-

2022-06-17.naf sequences.fasta’’. The compressed file

occupied 251 MB.

We now make this dataset available online for the benefit of

those who may need to use these data and to demonstrate the

utility of the NAF format. The dataset is available at the following

URL: http://sayer.nig.ac.jp/kirill/SARS-CoV-2/sequence-data/.

NAF tutorial
Here, we describe how to apply NAF compression to your own

SARS-CoV-2 genome data. We use Linux OS for this tutorial

because Linux is commonly used for large-scale data analyses.

However, NAF can also be used in Windows (via cygwin or

WSL2) as well as MacOS.

Normally, NAF is compiled from source code. Some pre-req-

uisites are required to compile it: git, gcc, and make. Addition-

ally, diff and perl are used by the optional test suite. These

prerequisites can be installed on Ubuntu with the following

command:

https://www.ncbi.nlm.nih.gov/labs/virus/
http://sayer.nig.ac.jp/kirill/SARS-CoV-2/sequence-data/


ll
OPEN ACCESSTutorial
On MacOS, they can be installed as part of the ‘‘Xcode

Command Line Tools’’ package. With pre-requisites in place,

NAF can be installed with the following commands:
git clone –recurse-submodules https://github.com/

KirillKryukov/naf.git

cd naf && make && make test && sudo make install
The first of these commands downloads the NAF sources.

The second one builds and tests the NAF binaries ‘‘ennaf’’

and ‘‘unnaf’’ and copies them to the ‘‘/usr/local/bin’’

directory. An alternative location can be specified by adding

‘‘prefix = DIR’’ to the ‘‘make install’’ command. For

example, without superuser permissions, NAF can be installed

into the user’s home directory with ‘‘make prefix =

� install’’. It’s also possible to omit the ‘‘make install’’

step and just copy the ‘‘ennaf’’ and ‘‘unnaf’’ binaries to a

preferred location.

Alternatively, NAF can be also installed using Bioconda52

(https://bioconda.github.io/). To install Bioconda, run the

following commands for MacOS:
curl -O https://repo.anaconda.com/miniconda/

Miniconda3-latest-MacOSX-x86_64.sh

sh Miniconda3-latest-MacOSX-x86_64.sh
For Linux or Windows WSL2, run the following:
curl -O https://repo.anaconda.com/miniconda/

Miniconda3-latest-Linux-x86_64.sh

sh Miniconda3-latest-Linux-x86_64.sh
Add the following channels including bioconda:
conda config –add channels defaults

conda config –add channels bioconda

conda config –add channels conda-forge
Then, you can install NAF via the following command:
conda install naf
After installation is complete, it can be tested by running the

commands ‘‘ennaf –version’’ and ‘‘unnaf –version’’.

Then, the ‘‘ennaf’’ command can be used for compressing

and ‘‘unnaf’’ for decompressing sequence data. Command-

line options of these commands can be seen by running ‘‘ennaf

-h’’ and ‘‘unnaf -h’’. Simple compression of a FASTA file with

default parameters can be done using this command: ‘‘ennaf

file.fa -o file.naf’’.

Compression level (strength) can be specified with the option

‘‘-#’’, where # is the compression level from 1 to 22. 1 is the fast-

est and weakest level, and 22 is the slowest and strongest one.
The default compression level is 1. The appropriate level can be

selected based on the purpose of the compression. For a

one-time transfer, level 1 may provide the best speed. For

long-term storage, level 22 may be preferable, even though it

takes longer to perform the compression. Level 22 is also optimal

for distribution of fixed datasets by sequence databases

because, in this case, the compression has to be done only

once, while better compactness of the data will benefit

many users.

By default, ennaf assumes that the input contains DNA se-

quences in FASTA format. FASTQ data can be compressed by

adding ‘‘–fastq’’ to the compression command. RNA and

amino acid sequences can be compressed using ‘‘–rna’’ and

‘‘–protein’’, respectively. These options are not needed for

the decompression step, as the decompressed data automati-

cally matches the compressed format and sequence type.

Decompressing a NAF file can be done using ‘‘unnaf file.

naf -o file.fa’’. Streaming a decompressed output into the

next command is the crucial use case of NAF and can be

done as ‘‘unnaf file.naf >file.fa’’. A FASTQ dataset com-

pressed into NAF can be decompressed directly into FASTA

format by adding the ‘‘–fasta’’ option to the decompression

command.

Compression can be done using IO redirection: ‘‘ennaf -c

<file.fa >file.naf’’. This allows, for example, converting

gzip-compressed data into NAF without saving the decom-

pressed sequences, using this command: ‘‘gzip -dc file.gz

| ennaf -o file.naf’’. Decompressing using IO redirection is

also possible and is one of the most important uses of the

NAF-compressed data: ‘‘unnaf file.naf | .’’.

The NAF compression process may use disk storage for

temporary data. The directory for temporary data can be

specified with the ‘‘–temp-dir’’ command line option. By

default, the directory configured in the TMPDIR or TMP envi-

ronment variables is used. Decompression never uses disk

storage.

By default, NAF preserves the line lengths during compression

and decompression. Line length can be overridden using the

‘‘–line-length N’’ option during either compression or

decompression (applicable only to FASTA data, not FASTQ). A

line length of 0means unlimited lines, i.e., each sequence printed

in a single line.

NAF compression and decompression are always single

threaded. Therefore, multiple compression or decompression

tasks may be executed in parallel on a multi-core machine.

When designing a web server that provides dynamically com-

pressed NAF data, care has to be taken to ensure that the

total number of simultaneous compression tasks does not

exceed the number of available cores (or threads for hyper-

thread CPUs).

The number of potential compression tasks and the amount of

available RAM have to be taken into account when choosing the

NAF compression level. Level 22 may use up to about 4 GB of

RAM when compressing large data, while level 1 will use about

10–15 MB. For example, for running 32 compression tasks on

a 32-thread machine with 32 GB of RAM, the NAF compression

level 19 can be selected because it consumes less than 500 MB

or RAM, thus 32 parallel tasks may use less than half of the

available RAM.
Patterns 3, September 9, 2022 7

https://bioconda.github.io/
https://github.com/KirillKryukov/naf.git
https://github.com/KirillKryukov/naf.git


ll
OPEN ACCESS Tutorial
More details about using NAF are available on these GitHub

pages: https://github.com/KirillKryukov/naf, https://github.com/

KirillKryukov/naf/blob/master/Compress.md, and https://github.

com/KirillKryukov/naf/blob/master/Decompress.md.

DISCUSSION AND CONCLUSION

Our results demonstrate that the recent massive SARS-CoV-2

genome data can be efficiently compressed by using NAF. Sig-

nificant gains in efficiency can be unlocked by applying NAF to

the distribution of SARS-CoV-2 datasets. This applies to both

each user and the data-distributing center. In particular, ENA

and GenBank distribute data as uncompressed FASTA files

of SARS-CoV-2 genomes where NAF compression would

decrease the required storage space and network bandwidth

by a factor of over 500. Depending on connection speed, it would

also drastically decrease download times. DDBJ uses gzip for

compressing sequence data. Here, NAF would provide a 14.5

times decrease in waiting time (total time taken by compression

+ transfer + decompression). GISAID uses gzip and xz for pre-

compressing their FASTA datasets. In this case, using NAF

would provide 52.2 and 3.7 times faster downloads (compared

with the gzip and xz settings used by GISAID) and 6 and 2 times

faster downloads comparedwith the best settings of gzip and xz,

respectively (for the strongest gzip setting, the one used by

GISAID is even less efficient).

The best setting of each compressor may be different depend-

ing on the performance measure used as a selection criterion.

Often achieving a good result in speed requires sacrificing

compactness, and vice versa. Different performance measures

have to be considered in combination when selecting a

compressor and its settings. For example, GISAID uses gzip

for distributing a static SARS-CoV-2 dataset. When considering

transfer + decompression speed, level 9 outperforms other gzip

levels while providing a compression ratio of 76.1 times. Howev-

er, GISAID probably uses gzip-4, with much weaker compres-

sion (3.4 times), possibly saving compression time and delivering

the updated dataset faster. The overall balanced setting must

perform well on all metrics.

NAF compression levels between 9 and 12 can be considered

balanced settings for distributing SARS-CoV-2 genome data.

These settings provide compression ratios of 516.9–522.3 times,

compression speeds of 360–284 MB/s, and decompression

speeds around 2.2 GB/s.

For open-access databases, such as DDBJ, ENA and

GenBank, it is possible to download the sequences, re-compress

them into a more efficient format, and redistribute them. Howev-

er, GISAID’s data-usage terms explicitly disallow redistribution.

Also, recompressing and redistributing the data would consume

precious time, which can be critical when accessing the latest

SARS-CoV-2 genome data. Therefore, it would be much more

efficient to be able to apply better compression at the source

database, which would benefit all its users.

After being downloaded, sequence data are often distributed

to multiple computers and used for automated analysis. In these

scenarios, it is efficient to store the data in a compressed form

that allows fast decompression. NAF’s high decompression

speed of �2.2 GB/s makes it particularly suitable for such

uses. gzip and xz can still be used similarly, although with
8 Patterns 3, September 9, 2022
much slower decompression speeds of 422 and 951 MB/s,

respectively. However, GISAID’s use of an intermediate tar

package is incompatible with direct access to the compressed

data and requires a complete decompression before using

the data.

SARS-CoV-2 genome data have been accumulating rapidly

and are a crucial resource for dealing with the pandemic.

Introducing a more efficient compression, such as NAF, for

distributing SARS-CoV-2 genome data will allow faster detection

and reaction to the emergence of new dangerous strains. It

will improve the efficiency of monitoring and controlling the

pandemic. Indeed, changes to various large-scale COVID-19-

related data including epidemiological data are being discussed

for efficient analyses (Xu et al.53; Kraemer et al.54). Therefore, to

avoid disrupting the established genomic data analysis pipe-

lines, it would be also preferable to add NAF as an optional

format for downloading data rather than as the only available

option.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
patter.2022.100562.

ACKNOWLEDGMENTS

This work was supported by the JSPS KAKENHI Grants-in-Aid for Scientific
Research (C) 20K06612 (to K.K.) and JST CREST JPMJCR20H1 (to K.K.)
and JPMJCR20H6 (to S.N.).

REFERENCES

1. Khare, S., Gurry, C., Freitas, L., Schultz, M.B., Bach, G., Diallo, A., Akite,
N., Ho, J., Lee, R.T., Yeo, W., et al. (2021). GISAID’s role in pandemic
response. China CDC Wkly. 3, 1049–1051. https://doi.org/10.46234/
ccdcw2021.255.

2. Attwood, S.W., Hill, S.C., Aanensen, D.M., Connor, T.R., and Pybus, O.G.
(2022). Phylogenetic and phylodynamic approaches to understanding and
combating the early SARS-CoV-2 pandemic. Nat. Rev. Genet. https://doi.
org/10.1038/s41576-022-00483-8.

3. Harvey, W.T., Carabelli, A.M., Jackson, B., Gupta, R.K., Thomson, E.C.,
Harrison, E.M., Ludden, C., Reeve, R., Rambaut, A., COVID-19 Genomics
UK COG-UK Consortium, et al. (2021). SARS-CoV-2 variants, spike muta-
tions and immune escape. Nat. Rev. Microbiol. 19, 409–424. https://doi.
org/10.1038/s41579-021-00573-0.

4. Arita, M., Karsch-Mizrachi, I., and Cochrane, G. (2021). The international
nucleotide sequence database collaboration. Nucleic Acids Res. 49,
D121–D124. https://doi.org/10.1093/nar/gkaa967.

5. Okido, T., Kodama, Y., Mashima, J., Kosuge, T., Fujisawa, T., and Ogasa-
wara, O. (2022). DNA Data Bank of Japan (DDBJ) update report 2021. Nu-
cleic Acids Res. 50, D102–D105. https://doi.org/10.1093/nar/gkab995.

6. Cummins, C., Ahamed, A., Aslam, R., Burgin, J., Devraj, R., Edbali, O.,
Gupta, D., Harrison, P.W., Haseeb, M., Holt, S., et al. (2022). The European
nucleotide archive in 2021. Nucleic Acids Res. 50, D106–D110. https://doi.
org/10.1093/nar/gkab1051.

7. Sayers, E.W., Cavanaugh, M., Clark, K., Pruitt, K.D., Schoch, C.L., Sherry,
S.T., and Karsch-Mizrachi, I. (2022). GenBank. Nucleic Acids Res. 50,
D161–D164. https://doi.org/10.1093/nar/gkab1135.

8. Kryukov, K., Ueda, M.T., Nakagawa, S., and Imanishi, T. (2019). Nucleo-
tide Archival Format (NAF) enables efficient lossless reference-free
compression of DNA sequences. Bioinformatics 35, 3826–3828. https://
doi.org/10.1093/bioinformatics/btz144.

9. Arita, M. (2021). Open access and data sharing of nucleotide sequence
data. Data Sci. J. 20. https://doi.org/10.5334/dsj-2021-028.

https://github.com/KirillKryukov/naf
https://github.com/KirillKryukov/naf/blob/master/Compress.md
https://github.com/KirillKryukov/naf/blob/master/Compress.md
https://github.com/KirillKryukov/naf/blob/master/Decompress.md
https://github.com/KirillKryukov/naf/blob/master/Decompress.md
https://doi.org/10.1016/j.patter.2022.100562
https://doi.org/10.1016/j.patter.2022.100562
https://doi.org/10.46234/ccdcw2021.255
https://doi.org/10.46234/ccdcw2021.255
https://doi.org/10.1038/s41576-022-00483-8
https://doi.org/10.1038/s41576-022-00483-8
https://doi.org/10.1038/s41579-021-00573-0
https://doi.org/10.1038/s41579-021-00573-0
https://doi.org/10.1093/nar/gkaa967
https://doi.org/10.1093/nar/gkab995
https://doi.org/10.1093/nar/gkab1051
https://doi.org/10.1093/nar/gkab1051
https://doi.org/10.1093/nar/gkab1135
https://doi.org/10.1093/bioinformatics/btz144
https://doi.org/10.1093/bioinformatics/btz144
https://doi.org/10.5334/dsj-2021-028


ll
OPEN ACCESSTutorial
10. Lipman, D.J., and Pearson, W.R. (1985). Rapid and sensitive protein sim-
ilarity searches. Science 227, 1435–1441. https://doi.org/10.1126/sci-
ence.2983426.

11. Li, H., Feng, X., and Chu, C. (2020). The design and construction of refer-
ence pangenome graphs with minigraph. Genome Biol. 21, 265. https://
doi.org/10.1186/s13059-020-02168-z.

12. Grumbach, S., and Tahi, F. (1993). Compression of DNA sequences. In
Data Compression Conference (IEEE), pp. 340–350. https://doi.org/10.
1109/DCC.1993.253115.

13. Deorowicz, S., and Grabowski, S. (2013). Data compression for
sequencing data. Algorithms Mol. Biol. 8, 25. https://doi.org/10.1186/
1748-7188-8-25.

14. Hernaez, M., Pavlichin, D., Weissman, T., and Ochoa, I. (2019). Genomic
data compression. Annu. Rev. Biomed. Data Sci. 2, 19–37. https://doi.
org/10.1146/annurev-biodatasci-072018-021229.

15. Manzini, G., and Rastero, M. (2004). A simple and fast DNA compressor.
Softw:. Pract. Exper. 34, 1397–1411. https://doi.org/10.1002/spe.619.

16. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990).
Basic local alignment search tool. J. Mol. Biol. 215, 403–410. https://doi.
org/10.1016/S0022-2836(05)80360-2.

17. Kent, W.J. (2002). BLAT–the BLAST-like alignment tool. Genome Res. 12,
656–664. https://doi.org/10.1101/gr.229202.

18. Cao, M.D., Dix, T.I., Allison, L., and Mears, C. (2007). A Simple Statistical
Algorithm for Biological Sequence Compression. In Data Compression
Conference, 2007 (DCC’07), Snowbird, UT, pp. 43–52. https://doi.org/
10.1109/DCC.2007.7.

19. Li, P., Wang, S., Kim, J., Xiong, H., Ohno-Machado, L., and Jiang, X.
(2013). DNA-COMPACT: DNA COMpression based on a pattern-aware
contextual modeling technique. PLoS One 8, e80377. https://doi.org/10.
1371/journal.pone.0080377.

20. Pratas, D., Pinho, A.J., and Ferreira, P.J.S.G. (2016). Efficient Compres-
sion of Genomic Sequences. In Data Compression Conference 2016
(DCC-2016), Snowbird, UT, pp. 231–240. https://doi.org/10.1109/DCC.
2016.60.

21. Pratas, D., Hosseini, M., and Pinho, A.J. (2019). GeCo2: an optimized tool
for lossless compression and analysis of DNA sequences. In Practical Ap-
plications of Computational Biology and Bioinformatics, 13th International
Conference. PACBB 2019, 1005, F. Fdez-Riverola, M. Rocha, M. Moha-
mad, N. Zaki, and J. Castellanos-Garzon, eds. (Springer). https://doi.
org/10.1007/978-3-030-23873-5_17.

22. Pratas, D., Hosseini, M., Silva, J.M., and Pinho, A.J. (2019). A reference-
free lossless compression algorithm for DNA sequences using a compet-
itive prediction of two classes of weighted models. Entropy 21, 1074.
https://doi.org/10.3390/e21111074.

23. Silva, M., Pratas, D., and Pinho, A.J. (2020). Efficient DNA sequence
compression with neural networks. GigaScience 9, giaa119. https://doi.
org/10.1093/gigascience/giaa119.

24. Mohammed, M.H., Dutta, A., Bose, T., Chadaram, S., and Mande, S.S.
(2012). DELIMINATE—a fast and efficient method for loss-less compres-
sion of genomic sequences: sequence analysis. Bioinformatics 28,
2527–2529. https://doi.org/10.1093/bioinformatics/bts467.

25. Pinho, A.J., and Pratas, D. (2014). MFCompress: a compression tool for
FASTA and multi-FASTA data. Bioinformatics 30, 117–118. https://doi.
org/10.1093/bioinformatics/btt594.

26. ALAPY. (2017). https://github.com/ALAPY/alapy_arc.

27. Xing, Y., Li, G., Wang, Z., Feng, B., Song, Z., andWu, C. (2017). GTZ: a fast
compression and cloud transmission tool optimized for FASTQ files. BMC
Bioinf. 18 (Suppl 16 ), 549. https://doi.org/10.1186/s12859-017-1973-5.

28. Pufferfish. (2012). https://github.com/alexholehouse/pufferfish.

29. Al-Okaily, A., Almarri, B., Al Yami, S., and Huang, C.H. (2017). Toward a
better compression for DNA sequences using huffman encoding.
J. Comput. Biol. 24, 280–288. https://doi.org/10.1089/cmb.2016.0151.
30. Alyami, S., and Huang, C.H. (2020). Nongreedy unbalanced huffman tree
compressor for single and multifasta files. J. Comput. Biol. 27, 868–876.
https://doi.org/10.1089/cmb.2019.0249.

31. Cox, A.J., Bauer, M.J., Jakobi, T., and Rosone, G. (2012). Large-scale
compression of genomic sequence databases with the Burrows-Wheeler
transform. Bioinformatics 28, 1415–1419. https://doi.org/10.1093/bioin-
formatics/bts173.

32. Deorowicz, S., and Grabowski, S. (2011). Compression of DNA sequence
reads in FASTQ format. Bioinformatics 27, 860–862. https://doi.org/10.
1093/bioinformatics/btr014.

33. Jones, D.C., Ruzzo, W.L., Peng, X., and Katze, M.G. (2012). Compression
of next-generation sequencing reads aided by highly efficient de novo as-
sembly. Nucleic Acids Res. 40, e171. https://doi.org/10.1093/nar/gks754.

34. Bonfield, J.K., and Mahoney, M.V. (2013). Compression of FASTQ and
SAM format sequencing data. PLoS One 8, e59190. https://doi.org/10.
1371/journal.pone.0059190.

35. Benoit, G., Lemaitre, C., Lavenier, D., Drezen, E., Dayris, T., Uricaru, R.,
and Rizk, G. (2015). Reference-free compression of high throughput
sequencing data with a probabilistic de Bruijn graph. BMC Bioinf. 16,
288. https://doi.org/10.1186/s12859-015-0709-7.

36. Nicolae, M., Pathak, S., and Rajasekaran, S. (2015). LFQC: a lossless
compression algorithm for FASTQ files. Bioinformatics 31, 3276–3281.
https://doi.org/10.1093/bioinformatics/btv384.

37. Zhang, Y., Patel, K., Endrawis, T., Bowers, A., and Sun, Y. (2016). A FASTQ
compressor based on integer-mapped k-mer indexing for biologist. Gene
579, 75–81. https://doi.org/10.1016/j.gene.2015.12.053.

38. Chandak, S., Tatwawadi, K., and Weissman, T. (2018). Compression of
genomic sequencing reads via hash-based reordering: algorithm and
analysis. Bioinformatics 34, 558–567. https://doi.org/10.1093/bioinfor-
matics/btx639.

39. Al Yami, S., and Huang, C.H. (2019). LFastqC: a lossless non-reference-
based FASTQ compressor. PLoS One 14, e0224806. https://doi.org/10.
1371/journal.pone.0224806.

40. Liu, Y., Yu, Z., Dinger, M.E., and Li, J. (2019). Index suffix-prefix overlaps
by (w,k-minimizer to generate long contigs for reads compression). Bioin-
formatics 35, 2066–2074. https://doi.org/10.1093/bioinformatics/bty936.

41. Chandak, S., Tatwawadi, K., Ochoa, I., Hernaez, M., and Weissman, T.
(2019). SPRING: a next-generation compressor for FASTQ data. Bioinfor-
matics 35, 2674–2676. https://doi.org/10.1093/bioinformatics/bty1015.

42. Deorowicz, S. (2020). FQSqueezer: k-mer-based compression of
sequencing data. Sci. Rep. 10, 578. https://doi.org/10.1038/s41598-
020-57452-6.

43. Ochoa, I., Hernaez, M., and Weissman, T. (2015). iDoComp: a compres-
sion scheme for assembled genomes. Bioinformatics 31, 626–633.
https://doi.org/10.1093/bioinformatics/btu698.

44. Numanagi�c, I., Bonfield, J.K., Hach, F., Voges, J., Ostermann, J., Alberti,
C., Mattavelli, M., and Sahinalp, S.C. (2016). Comparison of high-
throughput sequencing data compression tools. Nat. Methods 13,
1005–1008. https://doi.org/10.1038/nmeth.4037.

45. Tang, T., and Li, J. (2022). Comparative studies on the high-performance
compression of SARS-CoV-2 genome collections. Brief. Funct. Genomics
21, 103–112. https://doi.org/10.1093/bfgp/elab041.

46. Grabowski, S., and Kowalski, T.M. (2022). MBGC: multiple bacteria
genome compressor. GigaScience 11, giab099. https://doi.org/10.1093/
gigascience/giab099.

47. Deorowicz, S., Danek, A., and Li, H. (2022). AGC: Compact representation
of assembled genomes. Preprint at bioRxiv. https://doi.org/10.1101/2022.
04.07.487441.

48. Liiv, I. (2020). SARS-CoV-2 Coronavirus Data Compression Benchmark.
Preprint at arXiv. https://arxiv.org/abs/2012.12013v1.

49. Kryukov, K., Ueda, M.T., Nakagawa, S., and Imanishi, T. (2020). Sequence
Compression Benchmark (SCB) database—a comprehensive evaluation
of reference-free compressors for FASTA-formatted sequences. Giga-
Science 9, giaa072. https://doi.org/10.1093/gigascience/giaa072.
Patterns 3, September 9, 2022 9

https://doi.org/10.1126/science.2983426
https://doi.org/10.1126/science.2983426
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1109/DCC.1993.253115
https://doi.org/10.1109/DCC.1993.253115
https://doi.org/10.1186/1748-7188-8-25
https://doi.org/10.1186/1748-7188-8-25
https://doi.org/10.1146/annurev-biodatasci-072018-021229
https://doi.org/10.1146/annurev-biodatasci-072018-021229
https://doi.org/10.1002/spe.619
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1101/gr.229202
https://doi.org/10.1109/DCC.2007.7
https://doi.org/10.1109/DCC.2007.7
https://doi.org/10.1371/journal.pone.0080377
https://doi.org/10.1371/journal.pone.0080377
https://doi.org/10.1109/DCC.2016.60
https://doi.org/10.1109/DCC.2016.60
https://doi.org/10.1007/978-3-030-23873-5_17
https://doi.org/10.1007/978-3-030-23873-5_17
https://doi.org/10.3390/e21111074
https://doi.org/10.1093/gigascience/giaa119
https://doi.org/10.1093/gigascience/giaa119
https://doi.org/10.1093/bioinformatics/bts467
https://doi.org/10.1093/bioinformatics/btt594
https://doi.org/10.1093/bioinformatics/btt594
https://github.com/ALAPY/alapy_arc
https://doi.org/10.1186/s12859-017-1973-5
https://github.com/alexholehouse/pufferfish
https://doi.org/10.1089/cmb.2016.0151
https://doi.org/10.1089/cmb.2019.0249
https://doi.org/10.1093/bioinformatics/bts173
https://doi.org/10.1093/bioinformatics/bts173
https://doi.org/10.1093/bioinformatics/btr014
https://doi.org/10.1093/bioinformatics/btr014
https://doi.org/10.1093/nar/gks754
https://doi.org/10.1371/journal.pone.0059190
https://doi.org/10.1371/journal.pone.0059190
https://doi.org/10.1186/s12859-015-0709-7
https://doi.org/10.1093/bioinformatics/btv384
https://doi.org/10.1016/j.gene.2015.12.053
https://doi.org/10.1093/bioinformatics/btx639
https://doi.org/10.1093/bioinformatics/btx639
https://doi.org/10.1371/journal.pone.0224806
https://doi.org/10.1371/journal.pone.0224806
https://doi.org/10.1093/bioinformatics/bty936
https://doi.org/10.1093/bioinformatics/bty1015
https://doi.org/10.1038/s41598-020-57452-6
https://doi.org/10.1038/s41598-020-57452-6
https://doi.org/10.1093/bioinformatics/btu698
https://doi.org/10.1038/nmeth.4037
https://doi.org/10.1093/bfgp/elab041
https://doi.org/10.1093/gigascience/giab099
https://doi.org/10.1093/gigascience/giab099
https://doi.org/10.1101/2022.04.07.487441
https://doi.org/10.1101/2022.04.07.487441
https://arxiv.org/abs/2012.12013v1
https://doi.org/10.1093/gigascience/giaa072


ll
OPEN ACCESS Tutorial
50. Alakuijala, J., and Szabadka, Z. (2016). Brotli compressed data format.
RFC 7932. https://tools.ietf.org/html/rfc7932.

51. Zstandard - Fast Real-Time Compression Algorithm. https://github.com/
facebook/zstd.

52. Gr€uning, B., Dale, R., Sjödin, A., Chapman, B.A., Rowe, J., Tomkins-Tinch,
C.H., Valieris, R., and Köster, J.; Bioconda Team (2018). Bioconda: sus-
tainable and comprehensive software distribution for the life sciences.
Nat. Methods 15, 475–476. https://doi.org/10.1038/s41592-018-0046-7.

53. Xu, B., Gutierrez, B., Mekaru, S., Sewalk, K., Goodwin, L., Loskill, A.,
Cohn, E.L., Hswen, Y., Hill, S.C., Cobo, M.M., et al. (2020). Epidemiolog-
ical data from the COVID-19 outbreak, real-time case information. Sci.
Data 7, 106. https://doi.org/10.1038/s41597-020-0448-0.

54. Kraemer, M.U.G., Scarpino, S.V., Marivate, V., Gutierrez, B., Xu, B., Lee,
G., Hawkins, J.B., Rivers, C., Pigott, D.M., Katz, R., and Brownstein,
J.S. (2021). Data curation during a pandemic and lessons learned from
COVID-19. Nat. Comput. Sci. 1, 9–10. https://doi.org/10.1038/s43588-
020-00015-6.

Kirill Kryukov is a specially appointed associate professor in the Department
of Informatics at the National Institute of Genetics (NIG), Mishima, Japan. With
a background in computer science, he started bioinformatics research during
his PhD course at the Graduate University for Advanced Studies, Japan. Pre-
viously, he worked at Tokai University, designing computational methods for
10 Patterns 3, September 9, 2022
analyzing medical metagenomes. In 2020, he moved to NIG, where he does
bioinformatics and genomics research, analyzes SARS-CoV-2 genome data,
and develops tools and databases. His interests include data compression,
data analysis pipelines, genome databases, comparative genomics, and
metagenomics.

Lihua Jin is a data scientist working in Genomus, a bioinformatics consul-
tancy. She graduated from Peking University, received an MS degree at the
University of Tokyo, then a PhD at the Graduate University for Advanced
Studies. She previously did comparative genomics research and worked in
several research labs in Japan. Now, she provides computational support to
researchers working with large biological data. Currently, she is involved in
analyzing and interpreting the massive SARS-CoV-2 genome data accumu-
lated during the pandemic.

So Nakagawa is an associate professor at Tokai University School of Med-
icine in Isehara, Japan. He finished his PhD at Tokyo Medical and Dental
University in 2008. He worked as a postdoctoral fellow at the National Insti-
tute of Genetics and Harvard University. Since 2013, he has started working
at the current affiliation. He studies endogenous viral elements, transcrip-
tome and metagenome analyses, and genome evolution, including emerging
viruses. When the COVID-19 pandemic began, he conducted comparative
genome analyses of SARS-CoV-2 and closely related viruses and revealed
various aspects of SARS-CoV-2 in collaboration with experimental molecular
virology.

https://tools.ietf.org/html/rfc7932
https://github.com/facebook/zstd
https://github.com/facebook/zstd
https://doi.org/10.1038/s41592-018-0046-7
https://doi.org/10.1038/s41597-020-0448-0
https://doi.org/10.1038/s43588-020-00015-6
https://doi.org/10.1038/s43588-020-00015-6

	Efficient compression of SARS-CoV-2 genome data using Nucleotide Archival Format
	GISAID, genomic epidemiology
	GISAID, download package
	DDBJ
	ENA
	GenBank
	Summary
	Sequence-compression overview
	Selecting compressor for SARS-CoV-2 sequence data
	NAF-compressed SARS-CoV-2 dataset
	NAF tutorial
	Supplemental information
	Acknowledgments
	References


