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Abstract: Cytochrome P450 (CYP) catalyzes a wide variety of monooxygenation reactions in plant
primary and secondary metabolisms. Land plants contain CYP703, belonging to the CYP71 clan,
which catalyzes the biochemical pathway of fatty acid hydroxylation, especially in male reproductive
tissues. Korean/Asian ginseng (Panax ginseng Meyer) has been regarded as one of important medici-
nal plant for a long time, however the molecular mechanism is less known on its development. In
this study, we identified and characterized a CYP703A gene in P. ginseng (PgCYP703A4), regarding
reproductive development. PgCYP703A4 shared a high-sequence identity (81–83%) with predicted
amino acid as CYP703 in Dancus carota, Pistacia vera, and Camellia sinensis as well as 76% of amino acid
sequence identity with reported CYP703 in Arabidopsis thaliana and 75% with Oryza sativa. Amino
acid alignment and phylogenetic comparison of P. ginseng with higher plants and known A. thaliana
members clearly distinguish the CYP703 members, each containing the AATDTS oxygen binding
motif and PERH as a clade signature. The expression of PgCYP704B1 was only detected in P. ginseng
flower buds, particularly in meiotic cells and the tapetum layer of developing anther, indicating
the conserved role on male reproduction with At- and Os- CYP703. To acquire the clue of function,
we transformed the PgCYP703A4 in A. thaliana. Independent overexpressing lines (PgCYP703A4ox)
increased silique size and seed number, and altered the contents of fatty acids composition of cutin
monomer in the siliques. Our results indicate that PgCYP703A4 is involved in fatty acid hydroxylation
which affects cutin production and fruit size.

Keywords: cytochrome P450; reproductive tissues; PgCYP703A4; fatty acid; reproduction; Panax ginseng

1. Introduction

The cytochrome P450 (CYP) superfamily of enzymes, which catalyze diverse sub-
strates through oxygenation and hydroxylation reactions, are found in all organisms [1].
Plant CYPs are involved in a variety of biochemical pathways that produce primary and
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secondary metabolites, which constitute one of the largest families of enzymes in higher
plants [2]. The diversification of land plant CYP families emerges during flowering plant
evolution and specializes plant species with unique reactions [3]. The identification of
CYP genes aids in understanding the evolution of various groups of enzymes and their
conserved and diversified functions.

The CYP703 gene family was found across the land plant taxa, suggesting that it
encodes an essential function [4]. Land plants developed specialized cell layer to adapt
to the environment, including cutin synthesis. As cutin cover in most plant organ of land
plant, male reproductive organ of flowering plants is covered with a hydrophobic polymer
barrier derived from fatty acids. The production of functional gametophytes leads to a
successful proliferation in flowering plants [5]. Male reproduction is a complex and highly
coordinated biological process that includes the development of the male reproductive
organ: the stamen that contains the microspores and pollen. The study of male reproduction
is important not only for increasing crop yield but for producing improved crops, such as
superhybrid plants, through the use of male sterile lines [6].

The CYP703 family is involved in the in-chain hydroxylation of mid-chain fatty acids,
which is essential for the biopolymers of pollen exine, the outer wall of a pollen grain [7,8],
and cutin, one of the most abundant lipid polymers and an important adaptive trait of
plants to their terrestrial environment [9]. A. thaliana CYP703A2 (AtCYP703A2) catalyzes
the conversion of medium-chain saturated fatty acids to the corresponding monohydroxy-
lated fatty acids, with a preferential hydroxylation of lauric acid at the C-7 position [8]. In
comparison, Oryza sativa CYP703A3 (OsCYP703A3) can only catalyze in-chain hydroxyla-
tion of lauric acid (C12), preferentially at position 7 [7]. The A. thaliana mutant, cyp703a2,
exhibits impaired pollen development and a partial male sterile phenotype due to the lack
of an exine [8]. O. sativa CYP703A3 resulted in a complete male sterility with an abnormal
anther epidermis, as well as defective pollen exine, indicating that the diversified function
of CYP703A during evolution [7]. Both participated in a conserved pathway of in-chain
hydroxylation of lauric acid that is required for male reproductive development. Some
male-specific gene sequences that determine sex, where CYP703 was found, have been
identified in the Phoenix tree which belongs to dioecious species. [10]. Further studies in
other plants will help elucidate the diversified CYP703 function of fatty acid hydroxylation
in plant reproductive development.

Panax ginseng is a perennial herb that has been cultivated for its highly valued root
for medicinal purposes [11]. P. ginseng typically starts its reproduction at the third year of
growth [12,13]. Attempts to increase the yield of P. ginseng and ginsenosides have been
conducted by developing P. ginseng hybrids, and although they display heterosis, F1 hybrid
plants exhibited male sterility that derived from pollen defects at the young microspore
stage [13]. We previously studied and described the morphogenesis of the anther and carpel
at a cytological level to understand and specify the reproductive developmental phases of
P. ginseng [12,14] and identified the gene expression of PgCYP703 in the anther tapetum
layer [12]. Despite the importance of P. ginseng reproductive development, studies on
functional gene analysis and molecular regulation remain scarce. In the studies presented
here, we isolated and cloned the CYP703A gene from P. ginseng, PgCYP703A, which is
highly expressed in flower buds during anther development. Surprisingly, in A. thaliana,
overexpression of PgCYP704B1 resulted in the enhanced in silique length, in terms of fruit
size, which is potentially caused by the alteration of saturated fatty acids and hydroxy fatty
acids in siliques.

2. Material and Methods
2.1. Plant Materials and Growth Conditions

The ginseng (P. ginseng Mayer) plant organs (root body, stem, leaf, flower bud, and
fruit) were obtained from hydroponically cultured ginseng. Columbia ecotype (CS60000) of
A. thaliana was used for gene overexpression. Sterilized seeds were sown on half-strength
Murashige and Skoog medium (Duchefa Biochemie) containing 1% sucrose, 0.8% (w/v)



Plants 2022, 11, 383 3 of 13

agar, and pH 5.7. Three-day-old cold-treated seeds were germinated under long-day pho-
toperiods of 16-h light/8-h dark at 23 ◦C. The transformants were screened on hygromycin
(50-µg/mL)-selective medium plates. Ten-day-old seedlings were then transplanted to soil
and cultivated for five weeks under the same light/dark conditions [15].

2.2. Identification of PgCYP703A4 Gene and Sequence Analysis

To obtain a coding sequence (CDS) of the PgCYP703A4 gene, homologous sequences of
CYP703 was obtained based on A. thaliana sequence by homology-based PCR from P. ginseng
flower cDNA. A complete genomic DNA sequence was obtained and analyzed from the
database of the P. ginseng genome (http://ginsengdb.snu.ac.kr, accessed on 20 January 2022),
and the putative ORF sequence was verified by sequencing after subcloning.

The predicted amino acid sequence of PgCYP703A4 was used to search for homol-
ogous proteins via National Center for Biotechnology Information-Basic Local Align-
ment Search Tool (NCBI-BLASTX, http://www.ncbi.nlm.nih.gov/BLAST/, accessed on
18 January 2022). Sequence alignment was conducted using Clustal X V1.83, and a neighbor-
joining tree was constructed using the MEGA4 software V.4.0.1, with the reliability of
each node established by the bootstrap method. The subcellular localization for the
N-terminus was predicted by PSORTdb (http://www.psort.org/psortb/, accessed on
18 January 2022) [16], and the hydropathy value was calculated using the previously
described method [17]. The 1000-bp sequence upstream of the ATG-coding site in the
genomic DNA sequence of PgCYP703 were used as promoters to predict Cis-acting ele-
ments by New PLACE (http://www.dna.affrc.go.jp/PLACE/?action=newplace, accessed
on 20 December 2021) [18].

2.3. Vector Construction and A. thaliana Transformation

The full-length CYP703 gene was amplified from P. ginseng flower cDNA and cloned
into the SalI and SpeI sites of the pCAMBIA1390 vector containing the Cauliflower Mosaic
Virus 35S promoter and yellow fluorescent protein. After nucleotide sequence verifica-
tion, A. thaliana transformation was conducted using Agrobacterium tumefaciens C58C1
(pMP90) [19]. The insertion of transgenes into the transformants was confirmed via poly-
merase chain reaction (PCR). Heterozygous plants with a 3:1 segregation ratio on antibiotic
plates which indicate the single gene insertion, were selected for additional analyses.
Among the several T2 independent lines, two lines were selected for further statistical and
metabolite analyses.

2.4. Gene Expression Analysis

Total RNA extraction from frozen samples was performed using the RNeasy Mini Kit
(Qiagen, Valencia, CA, USA.), where 1-µg of the total RNA was used as a reverse transcrip-
tion template. For qRT-PCR, 100-ng cDNA in a 10-µL reaction volume and SYBR® Green
Sensimix Plus Master Mix (Quantace, Watford, England) were used. Specific primers for Pg-
CYP703A4 (F-5′-CTACGGGTGCAATGATGTTG-3′ and R-5′- TGCATGGAAAACGACTCA
AG-3′) and a constitutively expressed P. ginseng actin gene (forward, 5′-AGAGATTCCGCTGT
CCAGAA-3′ and reverse, 5′-ATCAGCGATACCAGGGAACA-3′) or A. thaliana actin gene
(forward, 5′-GTGTGTCTTGTCTTATCTGGTTCG-3′ and reverse 5′-AATAGCTGCATTGT
CACCCGATACT-3′) were used as an internal reference. qRT-PCR was conducted using
a CFX Connect Real-Time PCR Detection System (BIO-RAD, Hercules, CA, USA) with
the following program: 30 s at 95 ◦C, followed by 40 cycles of 95 ◦C for 3 s and 60 ◦C
for 20 s. The threshold cycle (Ct) reflects the number of cycles where the fluorescence
intensity at the original exponential stage of PCR amplification was significantly greater
than the background fluorescence. To determine the relative fold differences in template
abundance for each sample, the Ct value for PgCYP703A4 was normalized to the Ct value
for β-actin and calculated relative to a calibrator using the formula 2−∆∆Ct. Each qRT-PCR
was technically repeated at least three times. Spatial expression of PgCYP703 transcript in
ginseng anther was analyzed by In situ hybridization, as reported previously [12].

http://ginsengdb.snu.ac.kr
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.psort.org/psortb/
http://www.dna.affrc.go.jp/PLACE/?action=newplace
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2.5. Histological Analysis

Semi-thin sectioning was performed using anthers of mature flowers from 4-week-
old plants. After fixing in FAA, the samples were dehydrated with an ethanol gradient
(70%, 80%, 90%, and 100%) allowing 30 min for each step. Samples were then embedded
in KULZER Technovit 7100 cold polymerizing resin by pre-infiltration, infiltration, and
embedding at 45 ◦C, according to the previously described methods [20]. Samples were
sectioned to a thickness of 4 µm in an Ultratome III ultramicrotome (LBK) and stained with
0.25% toluidine blue O (Chroma Gesellshaft Shaud). Bright-field photographs of the anther
and silique sections were obtained using a Nikon ECLIPSE 80i microscope.

Scanning electron microscopy (SEM) was employed to analyze mature anthers that
were fixed in FAA and dehydrated using 20–100% ethanol (10% increments) allowing 3 min
for each step. The samples were then dried at the critical point temperature (Leica EM
CPD300). A 5-nm-thick Aurum coating was paced on the samples with a Leica EM SCD050
ion sputter. The Aurum-coated samples were observed using a Hitachi S3400N SEM.

2.6. Analysis of Silique Fatty Acids

Cutin from the siliques of 5-week-old plants were examined as previously
described [15,21]. Dried siliques (10–20 mg) were extracted in 2 mL of chloroform and
spiked with 10 µg of tetracosane (Fluka) as the internal standard. Solvent was evapo-
rated under a light stream of nitrogen, and the compounds containing free hydroxyl and
carboxyl groups were transformed to trimethysilyl ethers and esters using 20-µL bis-(N,
N-trimethysilyl)-trifluoroacetamine (Sigma-Aldrich, St. Louis, MO, USA) in 20-µL pyridine
for 40 min at 70 ◦C. The monomers were identified from their electron ionization–mass
spectrometry spectra (70 eV, m/z 50 to 700) after GC separation (column 30 mm × 0.32 mm
× 0.1 µm film thickness [DB-1; J&W Scientific]). Gas chromatography–mass spectrometry
(GC-MS) (Agilent gas chromatograph coupled with an Agilent 5973N quadrupole mass
selective detector) and gas chromatography–flame ionization detection (GC-FID) (Agilent
6890 gas chromatograph) analyses were conducted. The means of three independent repli-
cates were statistically analyzed and compared with control (* p < 0.05) using Student’s
t-test.

3. Results
3.1. Identification of CYP703 Gene in P. ginseng

CYP families often have many paralogs, but the CYP703 family was reported to
be a single-gene-member family [8]. Analysis of the P. ginseng genome scaffold and
CDS revealed that P. ginseng contains two scaffold sequences with high similarity to
CYP703. Among the two scaffolds, scaffold 1562 contained a full-length CDS of CYP703
(Pg_S1562.26), which contained a two-exons and one-intron structure (Figure 1), similar to
the A. thaliana gene structure. On the contrary, two CDS sequences, S6323.1 and S6323.2,
present in scaffold 6323 were partial sequences of CYP703. Therefore, we concluded that
the P. ginseng genome encodes just one PgCYP703 member, whereas the others are nonfunc-
tional genes. The recent genome duplications of the P. ginseng genome [22] might explain
the presence of two genes that can duplicated, in which one of the gene has retained the orig-
inal sequence and function, whereas the other became a pseudogene. Similarly, CYP703A
was noted as a single functional sequence in the poplar genome (Populus trichocarpa) [8].
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Figure 1. Analysis of gene and promoter structure of PgCYP703A4 and its pseudogene. Genomic se-
quence of scaffolds containing PgCYP703A4 and similar sequences were identified from the P. ginseng
genome database (http://ginsengdb.snu.ac.kr/ accessed on 20 January 2022). (A) PgCYP703A4 gene
was confimed as Pg_S1562.26 CDS, which encoded on Scaffold 1562. The coding regions (orange and
green boxes) are interrupted by 1009 base pair (bp) intron. The upstream 1000-bp region from the
translation start site has four POLLEN1LELAT52 binding-predicted sites and four MYBCORE binding-
predicted sites. (B) A similar sequence structure was identified from Pg_scaffold6323 encoding two
CDSs, assumed to be pseudogenes. The transcript was separated into two partial CDS sequences
(Pg_S6323.2 and Pg_S6323.1). Dashed line indicates closed sequences between two scaffolds.

A putative ORF sequence, which had a length of 1119 bp and encoded 372 amino acids
(Figure 1), was verified by sequencing, and an NCBI-BLAST search displayed the conserved
superfamily CYP. There are three functionally reported genes: two CYP703A members
registered in the Plant P450 Database (http://erda.dk/public/vgrid/PlantP450/, accessed
on 10 December 2021) (CYP703A1 from a Petunia hybrida [23] and AtCYP703A2 [8]) and
O. sativa CYP703A3 [7]. We named the CYP703 gene identified in P. ginseng as PgCYP703A4.

3.2. Sequence Alignment and Phylogenetic Analysis

CYP703 enzymes belong to the CYP71 clan, which includes the diverse families of P450
in plants [4,7]. To obtain information about the potential functions and evolutionary roles
of PgCYP703A4, the full-length protein was used as a query to search for homologs in NCBI
databases and the The A. thaliana Information Resource using NCBI-BLASTX. Highly simi-
lar homologs of PgCYP703A4 were detected in various dicot plant species whose genome
sequences were available, although functional studies were limited. To see similarity of
amino acids in various plant species, we selected the 10 closest sequences, and representa-
tive CYP71 members from A. thaliana were used to create a phylogenetic tree (Figure 2).
Based on our phylogenetic comparison, PgCYP703A4 was placed in subfamily CYP703,
separate from the other subfamilies of the CYP71 clan; CYP98, CYP73, CYP78, CYP84,
CYP82, CYP81, CYP76, CYP61, CYP83, CYP705, and CYP701. CYP78 members hydoxylate
short-chain fatty acids [24], CYP73 family members hydroxylate cinnamic acid [25], and
CYP84 members are involved in lignin and flavonoid synthesis [26], thus indicating CYP71
clan subfamilies are not specific, rather showed various functions on metabolites.

http://ginsengdb.snu.ac.kr/
http://erda.dk/public/vgrid/PlantP450/
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minus [29] The predicted transit peptide of PgCYP703A4 (indicated arrow in Figure S1) 
was shown to be positioned at its N-terminus with a cytoplasmic location [16] targeting 
ER with 69% certainty, predicted by PSORT (Prediction of Protein Localization Sites, ver-
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Figure 2. Phylogenetic analysis of PgCYP703. Neighbor-joining method analysis was conducted
using the full-length amino acid sequences of PgCYP703A4 and closely related CYP703 subfamily
members (Figure S1), in addition to the A. thaliana members of the CYP71 clan and outgroup of the
CYP710 clan. The scale bar shows 0.2 amino acid substitutions per site. The reported CYP703A genes
are distinguished by bold font with black dots. CYP703 subfamilies of the CYP71 clan are indicated
by the yellow box. The functionally reported genes are indicated by circles and brief role in the right
side. In figure, ‘At’ means Arabidopsis thaliana’s protein and ‘Os’ means Oryza sativa’s protein, and
other plants are presented with full scientific name. NCBI accession numbers for other species and
annotation numbers for P. ginseng, A. thalina and O. sativa species are indicated inside bracket.

Multiple sequence alignment (Figure S1) revealed that the CYP703 proteins and Pg-
CYP703A4 contain the conserved domains of the axial ligand for heme, the I-helix involved
in oxygen binding, the Arg of the “PERF” consensus, and the E-R-R of the K-helix con-
sensus (KETLR). Of these domains, only the cysteine of the heme-binding domain and
the E-R-R triad are conserved in all plant cytochrome P450 sequences [27,28]. CYP703
members have a Phe–His substitution in the P(E)R(F) domain of CYP, known as a clade
signature of the CYP703 family [28]. In addition, CYP703 members have an A-A-T-D-T-S
motif (Figure S1) in the A/G-G-X-E/D-T-T/S domain, which is involved in oxygen binding
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and activation [28]. Of the subfamilies in the CYP71 clan, substitution of A for the second
G is unique to the CYP703 subfamily.

Plant P450s are usually bound to membranes, anchoring to the cytoplasmic sur-
face of the endoplasmic reticulum (ER) through a short hydrophobic segment of their
N-terminus [29] The predicted transit peptide of PgCYP703A4 (indicated arrow in Fig-
ure S1) was shown to be positioned at its N-terminus with a cytoplasmic location [16]
targeting ER with 69% certainty, predicted by PSORT (Prediction of Protein Localization
Sites, version 6.4) Prediction program. Fatty acids are hydroxylated in the ER of plant cells
through members of the CYP family [8,30,31]. The PgCYP703 hydrophobicity profile and
those of its closest homologs indicated that both the N- and C-terminal regions, as well as
the CYP703 motifs, are highly conserved (Figure S2).

3.3. Gene Expression Analysis of PgCYP703A4

To verify the conserved function of PgCYP703A4 in the male reproductive organ, as has
been described for A. thaliana [8] and O. sativa [7], we conducted PgCYP704B1 expression
analysis via qRT-PCR using P. ginseng tissues, such as the see, root, stem, leaf, flower buds,
and fruit at different age. PgCYP703A4 was specifically expressed in flower buds (Figure 3A).
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tapetal cell layer and tetrad cells (meiocytes after the second meiosis) in the anther (Figure 
3B). The tapetum, the innermost layer of anther wall, plays a crucial role in pollen devel-
opment by nursing and releasing the microspore [32]. During the developmental stage of 
anther, the PgCYP703A4 expression was observed in meiosis to form young microspores 
(Figure 3C,D) [13].  

To illuminate the regulation of gene expression, the 1000-bp upstream region from 
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Figure 3. Tissue expression analysis of PgCYP703A4 in P. ginseng. (A) Quantitative expression
analysis of PgCYP703A4 in various tissues at different age of P. ginseng plant. The expression
levels were analyzed via realtime PCR, and PgActin served as the control. Values indicate mean
of three technical replicates ± SE. (B) In situ hybridization analysis of PgCYP703A4 in P. ginseng
anther at stage 4 showing its expression (dark pink) in tapetal cells and microspores. Right image
shows the anther with hybridized PgCYP703A4 sense probe, as control. Scale bars indicate 500 µm.
(C) Flower tissues of the P. ginseng at anther developmental stages [14] were used for RT-PCR. The
scale bars of uppder photo indicate 1 mm, and lower photo indicate 500 µm. (D) RT-PCR gel images
of PgCYP703A4 at seven stages of P. ginseng flowers show that PgCYP703A4 are expressed only
during Stage 3 to 5. PgActin served as a control.
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In situ hybridization experiments revealed that PgCYP703A4 was expressed in the tapetal
cell layer and tetrad cells (meiocytes after the second meiosis) in the anther (Figure 3B). The
tapetum, the innermost layer of anther wall, plays a crucial role in pollen development by
nursing and releasing the microspore [32]. During the developmental stage of anther, the Pg-
CYP703A4 expression was observed in meiosis to form young microspores (Figure 3C,D) [13].

To illuminate the regulation of gene expression, the 1000-bp upstream region from the
coding sequence of PgCYP703A4 was analyzed for cis-elements (Figure 1). The promoters
contained various elements. Among them, we noted POLLEN1LELAT52 and MYBCORE,
known as regulatory factors that are related to pollen and early pollen development,
respectively [33,34]. These results indicated that MYBCORE and POLLEN1LELAT52
might bind to the promoters of PgCYP703, which leads to their specific expression during
anther development.

3.4. Phenotype Analysis of PgCYP3A4 Overexpressing A. thaliana

Due to difficulties in obtaining transgenic regenerated P. ginseng plants, we gener-
ated PgCYP703A4 overexpressing transgenic Arabidopsis (PgCYP703A4ox) to examine its
functional role in planta (Figure 4A–D). The stable incorporation of the PgCYP703A4 gene
and its heteroexpression was confirmed via RT-PCR (Figure 4B). PgCYP703A4ox produced
slightly taller plants compared with the wild type, but not significant (Figure 4A). Notably,
the siliques increased in size by 20% compared with the wild type and PgCYP703A4ox
siliuqes contain higher number of seeds than wile type significantly (Figure 4C,D).
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four different PgCYP703A4 overexpression lines and wild type at 2 week- and 7 week- old. Scale
bar indicates 5 cm. (B) Detection of PgCYP703A4 transcription in transgenic A. thaliana’s rosette
leaves. At actin served as the control. (C,D) Silique size of PgCYP703A4 overexpression lines. Scale
bar indicates 5 mm. Values indicate mean of 20 biological replicates ± SD. * p < 0.05.

A. thaliana CYP703A3 mutant was reported to show impaired pollen walls lacking a
normal exine layer, which leads to partial male sterility [8]. To determine how PgCYP703A4
affects pollen wall formation, we observed the anthers and pollen phenotype by semi-thin
cross-section and SEM (Figure S3). The anther, pollen, and pistil of PgCYP703A4ox appeared
similar to the wild type, whereas CYP703A3 exhibited aborted pollen without outer elegant
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wall formation (Figure S3). Therefore, pollen viability and reproductive organ function was
not altered by PgCYP703A4 gene overexpression.

3.5. Fatty Acid Composition of PgCYP703A4-Overexpressing A. thaliana

The cuticle, a hydrophobic layer that coats the surface of the aerial organs, such
as leaves, stems, flowers, and fruits, is a biopolymer that is composed of two classes of
lipophilic constituents, namely, cutin and waxes [35,36]. Since the silique phenotype of
PgCYP703A4ox is elongated and the exocarp is made of cutin, we further conducted GC-MS
and GC-FID.

The overall sum of cutin monomers were not significantly different between wild
type and PgCYP703ox lines. We found that two independent lines alter the composition
of fatty acids, with some variation, which might explain complex fatty acids metabolism
for the cutin polymer. For example, compared with the wild type, the PgCYP703A4ox #10
significantly increased saturated fatty acids of C18:0, C18:1, C26:1 and C28:0, (Figure 5A),
dicarboxylic fatty acids of C18:0, C22:0, C24:0, and C26:0 (Figure 5C) and terminal-hydroxy
fatty acids of C18:3, C22:0, and C24:0 (Figure 5D), and C28:0 alcohol type (Figure 5E).
PgCYP703A4ox #15 increased C24:0, C25:0, and C26:0 saturated fatty acids (Figure 5A),
and 2-hydroxyl fatty acids, such as C16:0, C23:0, C24:0, C25:0, C26:0 (Figure 5B). The dicar-
boxylic fatty acids of C22:0 and C24:0 were significantly increased in the PgCYP703A4ox
lines (Figure 5C). The levels of the terminal-hydroxy fatty acid C22:0 was found to in-
crease up to two times in PgCYP703A4ox in comparison with the wild type (Figure 5D).
These data indicate that the PgCYP703A4 overexpression in A. thaliana affects the fatty acid
composition of cutin monomers in siliques.
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milligram of dry weight (ug/mg). Values indicate mean of five biological replicates ± SD. * p < 0.05.
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4. Discussion

Plants have evolved a variety of enzymes for the in-chain α-, β-, and ω-hydroxylation
of fatty acids. Hydroxylated fatty acids are the biosynthetic intermediates of plant biopoly-
mers, such as cutin and suberin, which make up the barriers from land plant stress sit-
uations. Thus, fatty acid metabolic enzymes are critical for plants; however, the role of
CYP members in controlling the development of P. ginseng has not been well studied. In
this study, we characterized PgCYP703A4 and its role in the fatty acid metabolism. The
PgCYP703A4 expression only detected at the flowering stage during microspore formation
in the tapetum and gamete cells, which are active in sporopollenin synthesis. The overex-
pression of PgCYP703A4 in A. thaliana increased silique size and seed production without
affecting gamete cell, similar to PgCYP704B1 [15].

CYPs constitute the largest family of enzymes in plant metabolism and represent plant
evolution in terms of plant metabolism in development and adaptation, such as signaling,
defense, and polymerization of complex chemical substances [37]. Among the 11 land plant
clans, the CYP71 clan represents more than half of all CYPs in higher plants; consequently,
a wide diversity of functions makes them more difficult to predict their preferred substrates
than other clans [37]. In addition to CYP703, CYP77 family members, AtCYP77A4 and
AtCYP77A6, can in-chain-hydroxylate fatty acids to form precursors of cutin [9,38,39].
Looking at their phylogenetic relationship, CYP703 diversified prior to the emergence of
CYP77s as spore protectors. CYP703 is an ancient gene family that is required for land
plants, whereas CYP77 is required in only angiosperms [37]. However, both CYP703A and
CYP77A function as in-chain hydroxylases, compared with most other enzymes that are
end-chain (ω) hydroxylase [30].

In addition, a part of the CYP71 clan, the CYP78 subfamily genes exhibited fatty
acid hydroxylation reactions, particularly for short chains [24]. Different from a single
member of CYP703 (Figure 2), the CYP78 family contains several members in A. thaliana
(Figure 2), indicating late gene duplication for the species. CYP78A family members reg-
ulate reproductive organ development but are more related to female organs. A. thaliana
gene CYP78A9 was reported to be involved in the control of carpel shape [40]. The over-
expression of CYP78A9 results in large, seedless fruit, although the metabolites have not
been discovered [40]. O. sativa gene OsCYP78A13 promotes seed growth by regulating
the embryo and endosperm size, as well as spikelet hull development [41]. PaCYP78A9
regulates fruit size in Prunus avium, showing increases in silique and seed size in A. thaliana
by hetero-overexpression [42]. In addition to the above studies of the CYP71 clan other
functions include glucosinolate production [43], p-coumaraldehyde hydroxylation [44],
and pathogen defense function [45], as indicated in Figure 2. It is clear that the CYP71
clan has a large diversity of functions, but only CYP703 and CYP78 families of this clan,
have the conserved PERF consensus, and both subfamiles are involved in plant reproduc-
tive development. Further studies are required to identify its positive relationship with
biological function.

In P. ginseng, reproductive development and functional studies are scarce. We previously
identified a functional ortholog of AtCYP704B1, termed PgCYP704B1 [15]. The CYP704B
family, which belongs to the CYP86 clan, is involved in the ω-hydroxylation of long-chain
fatty acids. Altered exine in the pollen wall was detected in mutant of A. thaliana cyp704B1 [46],
Brassica napus CYP704B1 [47], and O. sativa CYP704B2 [36]. However, O. sativa CYP704B2 also
had an undeveloped anther cuticle and sterile male phenotype [36]. It is similar to CYP703A,
although it is in a separate clan. Similarly, CYP701A and CYP88A, which belong to the
CYP71 and CYP85 clans, respectively, act sequentially in the same pathway as ent-kaurene
oxidase and kaurenolic acid oxidase, respectively [48]. With the early evolution of CYPs,
CYP703 and CYP704 could be involved in cutin biopolymer synthesis, particularly for pollen
wall polymers, for in-chain and ω-hydroxylation, respectively. This study was limited by
the difficulty of obtaining flowers from transgenic P. ginseng. However, further studies on
P. ginseng development is required to develop hybrid and male sterile system for breeding.
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Taken together, PgCYP703A4, a member of CYP703A in the CYP71 clan, and Pg-
CYP704B1 [22], in the CYP86 clan, are similarly expressed in the P. ginseng tapetum and
meiotic cells, and overexpression in A. thaliana affects fatty acid metabolism in siliques.
Previous studies on A. thaliana and O. sativa examined knockout mutants displaying partial
or full male sterility [7,9,36,46] and therefore did not further investigate the phenotype
regarding fruit development. This requires further investigation to determine the role of hy-
droxylated fatty acids in sporopollenin synthesis and the development of the silique cuticle.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants11030383/s1, Figure S1: Multiple alignment of PgCYP703 with homologous proteins from
other plant species. Figure S2: Superimposed hydrophobicity profile predictions for PgCYP703A4
and selected homologs from the 703A4 family. Figure S3: Cytological analysis of an Arabidopsis
mutant and the PgCYP703A4 overexpression line.
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