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HAPLN1 maintains aggregation and the binding activity of extracellular matrix (ECM)
molecules (such as hyaluronic acid and proteoglycan) to stabilize the macromolecular
structure of the ECM. An increase in HAPLN1 expression is observed in a few types of
musculoskeletal diseases including rheumatoid arthritis (RA); however, its functions are
obscure. This study examined the role of HAPLN1 in determining the viability, proliferation,
mobility, and pro-inflammatory phenotype of RA- fibroblast-like synoviocytes (RA-FLSs) by
using small interfering RNA (siHAPLN1), over-expression vector (HAPLN1OE), and a
recombinant HAPLN1 (rHAPLN1) protein. HAPLN1 was found to promote proliferation but
inhibit RA-FLSmigration.Metformin, anAMPKactivator, was previously foundby us to be able
to inhibit FLS activation but promote HAPLN1 secretion. In this study, we confirmed the up-
regulation of HAPLN1 in RA patients, and found the positive relationship between HAPLN1
expression and the AMPK level. Treatment with either si-HAPLN1 or HAPLN1OE down-
regulated the expression of AMPK-ɑ gene, although up-regulation of the level of p-AMPK-ɑ
was observed in RA-FLSs. si-HAPLN1 down-regulated the expression of proinflammatory
factors like TNF-ɑ, MMPs, and IL-6, while HAPLN1OE up-regulated their levels. qPCR assay
indicated that the levels of TGF-b, ACAN, fibronectin, collagen II, and Ki-67 were down-
regulated upon si-HAPLN1 treatment, while HAPLN1OE treatment led to up-regulation of
ACANandKi-67 and down-regulation of cyclin-D1. Proteomics of si-HAPLN1, rHAPLN1, and
mRNA-Seq analysis of rHAPLN1 confirmed the functions of HAPLN1 in the activation of
inflammation, proliferation, cell adhesion, and strengthening of ECM functions. Our results for
the first time demonstrate the function of HAPLN1 in promoting the proliferation and pro-
inflammatory phenotype of RA-FLSs, thereby contributing to RA pathogenesis. Future in-
depth studies are required for better understanding the role of HAPLN1 in RA.
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1 INTRODUCTION

Rheumatoid arthritis (RA) is a chronic autoimmune disease
characterized by destructive, chronic, debilitating arthritis.
Pannus formation is one of the main features of the disease
(1). During RA development, the number of fibroblast-like
synoviocytes (FLSs), one of the key effector cells (2), increases
significantly, leading to the transformation of the synovial lining
from a delicate structure into an invasive hyperplastic tissue mass
known as pannus (3). The pannus tissue contributes to the
chronic inflammatory milieu in the arthritic joint, resulting in
an expansion of the synovial membrane and the occurrence of a
complex interplay among different dendritic cell (DC) subtypes,
T cells, macrophages, B cells, neutrophils, fibroblasts, and
osteoclasts (4). FLSs transform the synovium into a
hyperplastic invasive pannus by producing various mediators
such as cytokines and proteases, leading to the destruction of the
extracellular matrix (ECM), cartilages, and bones (5). The cell
phenotype of RA-FLSs mimics cancer cells in terms of invasion,
proliferation, and apoptosis (6). The presence of functionally
distinct arthritis-associated fibroblast subsets in human synovial
tissues, along with the identification of fibroblast subsets that
mediate either inflammation or bone/cartilage damage in
arthritis, suggests that targeting FLSs is an attractive
therapeutic approach to treat RA (7).

Hyaluronan and proteoglycan link protein 1 (HAPLN1), also
known as cartilage link protein, was originally identified from the
proteoglycan component extracted from the bovine articular
cartilage (8). Our previous study confirmed the secretion of
HAPLN1by RA-FLSs (9). Physiologically, HAPLN1 is a
component of the ECM required for normal cartilage
development. It maintains stable aggregation and the binding
activity of two important ECMmacromolecules [hyaluronic acid
(HA) and proteoglycan] which, along with other molecules
present in the joint, contribute not only to the maintenance of
the stable macromolecular structure but also to the compression
resistance of the joint (10). The vital role played by HAPLN1 in
regulating bone/cartilage growth was documented previously.
HAPLN1-deficient mice showed a series of cardiac
malformations (e.g., atrial septal and myocardial defects) along
with a remarkable reduction in the level of multifunctional
proteoglycans (11). The most classic disease first reported to be
associated with HAPLN1 is juvenile rheumatoid arthritis (12),
but the mechanisms were not yet fully known. Nevertheless,
genomics research has enabled the clarification of the relation of
HAPLN1 with various rheumatic disorders [including spinal
degeneration, osteoarthritis (OA), ankylosing spondylitis (AS),
and RA] (13–17). The HAPLN1 gene is present adjacent to the
ankylosing spondyli t is-associated single nucleot ide
polymorphism (SNP) (rs4552569) (18). Compared to subjects
with the CC or CT genotype, those with the TT genotype for the
SNP at rs179851 were found to be significantly overrepresented
among the subjects with higher scores for osteophyte formation
and disc space narrowing (13). Importantly, HAPLN1 showed a
significant correlation with the severity of RA (17). We found
that one of the most significantly up-regulated genes in RA-FLSs,
contrary to osteoarthritis (OA)-FLSs, is HAPLN1, whose protein
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level increases in the plasma and synovium of RA patients (9).
Recently, the oncogenic phenotype of HAPLN1 was reported to
be able to contribute to cellular hyperactivity and remodeling of
collagen matrices (19, 20). The exact role of HAPLN1 in RA and
its interaction with other matrix molecules under disease
conditions are still unclear. The objective of this study is,
therefore, to explore the potential role played by HAPLN1 in
RA-FLS-mediated disease pathogenesis.
2 RESULTS

2.1 Increased HAPLN1 Expression in the
Synovium and Plasma of RA Patients
The HAPLN1 expression in the synovium of RA (n=20) was
found by immunohistochemical assays to be significantly higher
than that of OA patients (n=17) (Figure 1A and Supplementary
Table S1 for participants’ details). Similarly, the HAPLN1 level
in the plasma of RA patients (n=61) was higher than that of OA
patients (n=20) and healthy control subjects (HC, n=12)
(Figure 1B and Supplementary Table S2 for participants’
details). These results agree with our earlier mRNA sequencing
analysis, which showed that the level of HAPLN1 expression in
RA-FLSs is higher than that in OA FLSs (Figure 1C) (9).

The AMP-activated protein kinase (AMPK) pathway
contributes to cell viability, metabolism, and inflammation
during the onset and progression of RA (21, 22). Treatment of
RA-FLSs with an AMPK activator, metformin, up-regulates
HAPLN1 expression (9). Therefore, changes in AMPK
expression could help elucidate the functions of HAPLN1. In
this study, the AMPK level in healthy people was found to be
significantly higher than OA and RA patients and had a
significant positive correlation with the HAPLN1 level in the
plasma of RA patients (n = 48; r = 0.693, p < 0.0001) (Figure 1C).
In addition, the plasma HAPLN1 level negatively correlated with
the course of the arthritis disease (n = 46, r = -0.311, p = 0.038).
HAPLN1 in RA patients having less than 3 years of disease
activity (n = 20) was higher than that in patients having disease
symptoms for more than 3 years (n = 41) (Figure 1D and
Supplementary Figure S1). A moderate positive correlation
between HAPLN1 and the rheumatoid factor was noted (n =
24, r = 0.431, p < 0.05) (Figure 1E). However, no correlation
between the HAPLN1 level and other indexes of disease activity
(such as ESR and CRP) was revealed by the data in this study
(Figures 1F, G). The elevated AMPK level was consistent with
our previous observations (9). It is plausible that HAPLN1
participates in AMPK-regulated metabolic pathways.

2.2 HAPLN1 Increased the Proliferation
But Inhibited the Mobility of RA-FLSs
To dissect the role of HAPLN1 in determining the viability of
RA-FLSs, three small interfering RNA (si-RNA HAPLN1)
molecules and an over-expression plasmid vector (HAPLN1OE)
were used to study the proliferation and migration ability of RA-
FLSs. All of the tested siRNA molecules in this study effectively
down-regulated the mRNA level of HAPLN1, while transfecting
June 2022 | Volume 13 | Article 888612

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. HAPLN1 Functioning in RA-FLSs
RA-FLSs with HAPLN1OE up-regulated the expression of
HAPLN1 (Supplementary Figure S2). Recombinant HAPLN1
(rHAPLN1) at different concentrations was also added to RA-
FLSs to study its functions.

Transfection with si-HAPLN1 did not affect the proliferation
of RA-FLSs (Figure 2A and Supplementary Figure S3), though
Frontiers in Immunology | www.frontiersin.org 3
a significant increase in the apoptotic ratio of RA-FLSs was
revealed by the results of our TUNEL assay (Figure 2B). The
wound healing assay and the transwell assay showed an increase
in the migration ability of RA-FLSs after transfection with si-
HAPLN1 (Figures 2C, D), and the effect was reversed after the
addition of rHAPLN1 (50 ng/ml) (Figure 2D). Conversely, after
A

B

C D E

F G

FIGURE 1 | HAPLN1 is up-regulated in RA patients and positively correlated with AMPK. (A) Increased HAPLN1 expression, quantified by the H score, in RA (n=20)
than OA (n=17) synovium (magnification of gross looking, 10×5; magnification of foci in the framed, 10×20). (B) Plasma HAPLN1 levels examined by ELISA were
significantly enhanced in RA (n=61) patients than OA (n=20) patients and HC (n=12), while AMPK levels were decreased in both OA and RA patients compared to
HC. Plasma HAPLN1 and AMPK levels were significantly positively correlated (r = 0.693, p < 0.0001). (C) Volcano plot showing higher expression of the HAPLN1
gene in FLSs from RA than OA patients (n=3 in each group). (D, E) Plasma HAPLN1 levels negatively correlated with the disease course (r = -0.311, p = 0.038) and
showed a moderately positive correlation with RF levels (r = 0.431, p = 0.038) of RA patients. (F, G) No significant correlation between the HAPLN1 level and ESR
and CRP. *p < 0.05; **P < 0.01; ***p < 0.001.
June 2022 | Volume 13 | Article 888612

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. HAPLN1 Functioning in RA-FLSs
transfection with HAPLN1OE, RA-FLSs showed enhanced
proliferation and a decline in the apoptotic ratio (Figures 3A,
B and Supplementary Figure S4). Results of the wound healing
assay showed a decrease in the level of migration exhibited by
HAPLN1OE-transfected RA-FLSs (Figure 3C), whereas
rHAPLN1 confirmed the effects of HAPLN1 on RA-FLSs
which showed a significant increase in the proliferation activity
(Figure 4A and Supplementary Figure S5) and a reduction in
apoptosis, especially during the early phase (Figures 4B, C). The
wound healing assay and the transwell assay demonstrated
that rHAPLN1 inhibited the migration ability of RA-FLSs
(Figures 4D, E). It is known that cell mobility is elevated in
cancer cells as well as in activated RA-FLSs (6). However, our
experiments with si-HAPLN1, HAPLN1OE, and rHAPLN1
demonstrated that HAPLN1 shows an inhibitory effect on
the mobility of RA-FLSs although it could activate RA-
FLS proliferation.
Frontiers in Immunology | www.frontiersin.org 4
2.3 Expression of HAPLN1 Affects the Cell
Cycle, Structure Molecules and Cytokines
Secretion of RA-FLSs
2.3.1 The mRNA Level of Ki-67 Was Up-Related
by HAPLN1
In cancer research, Ki-67 expression can indicate the effect of a
treatment on cell proliferation (23), and is proved to be able to
predict the activity of RA-FLSs (24). Transfection with si-
HAPLN1 decreased Ki-67 mRNA expression significantly,
while transfection with HAPLN1OE increased its expression in
RA-FLSs (Figures 5A, B). We also checked the expression of
Cyclin D1, which is an important regulator of cell cycle, with
many carcinomas being characterized by Cyclin D1
overexpression that induces uncontrolled cell proliferation
(25). Changes of Cyclin D1 are not consistent with the changes
observed in the MTT assay, CCK8 assay, and Ki-67 expression in
the current study. It was significantly reduced by HAPLN1OE
A

C

D

B

FIGURE 2 | Effects of si-HAPLN1 on RA-FLS activity. Transfection of siHAPLN1 in RA-FLSs did not significantly affect the (A) proliferation but significantly increased
(B) apoptosis (magnification: 10×10) and (C, D) migration ability of RA-FLSs. Wound healing (C, magnification: 10×5) and transwell assays (D, magnification: 10×5)
were used to measure the migration capacity of FLSs. Recombinant HAPLN1 (50 ng/ml) attenuated the increased migration ability induced by si-HAPLN1 in the
transwell assay. *p < 0.05; **p < 0.01; ****p < 0.0001. NC, negative control is control siRNA of si-HAPLN1.
June 2022 | Volume 13 | Article 888612
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transfection (Figures 5A, B, 6C, D). It seems Cyclin D1 could
not validate HAPLN1 promotes cell viability, but inhibits cell
mobility function could be explained as Cyclin D1 is reported to
target roles in cytoskeletal modelling, cell adhesion, and motility.
Cyclin D1 loss is associated with reduced cellular migration in
response to different stimuli (25).

2.3.2 Cell Structure Molecules Were Up-Regulated
by HAPLN1
ACAN is a well-documented chaperone of HAPLN1, playing a
significant role in regulating the ECM structure (26). mRNA of
ACAN was significantly down-regulated by si-HAPLN1 while
up-regulated by HAPLN1OE transfection. Other structure
molecules such as TGF-b, fibronectin, and collagen II were
also down-regulated by si-HAPLN1 treatment (Figures 5C,
D). These targets play key roles in ECM formation, wound
healing, and fibrosis in different pathological conditions. A
strengthened ECM architecture is a way to restrain cancer cell
progression (27). Thus, changes in these targets as led by
HAPLN1 validated the role of HAPLN1 in controlling cell
migration of RA-FLSs. Pearson correlation coefficient analysis
Frontiers in Immunology | www.frontiersin.org 5
was applied to analyze the relative mRNA levels from the
si-control group. A strong positive correlation (r = 0.66, 95%CI
[0.13, 0.90], p < 0.05) between TGF-b and HAPLN1 was
observed (Figure 5E). TGF-b signaling events are known to
control diverse processes and responses, such as cell
proliferation, differentiation, apoptosis, and migration. Besides
limited cell migration in pre-malignant cells (28), it cross-talks
with multiple inflammation pathways (29).

2.3.3 Inflammatory Cytokines Were Promoted by
HAPLN1
Previously we reported an increase in the expression of
HAPLN1 in RA-FLSs after stimulation of the AMPK pathway
(9). We further confirmed the inter-dependence of the positive
correlation between HAPLN1 and AMPK by using clinical RA
plasma samples as mentioned above (Figure 1B). The role of
AMPK as a regulator of metabolism and inflammation is well
known (30, 31). Therefore, we investigated how HAPLN1
affects RA-FLSs in the expression of AMPK-ɑ and related
cytokines, such as TNF-ɑ, IL-6, and MMPs, involved
in inflammation.
A

B

C

FIGURE 3 | Effects of HAPLN1 over-expression on RA-FLSs activity. Over-expression of HAPLN1 (HAPLN1OE) in RA-FLSs significantly increased the (A)
proliferation but reduced (B) apoptosis (magnification: 10×10) and (C) migration (magnification: 10×5) of RA-FLSs. *p < 0.05; **p < 0.01. NC, negative control is
control plasmid vector of HAPLN1OE.
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Transfection of si-HAPLN1 into RA-FLSs inhibited the
expression of mRNAs of AMPK-ɑ, TNF-ɑ, IL-6, and MMP1,
MMP3, and MMP9 (Figure 6A). Results of the automated WB
assay confirmed successful silencing of HAPLN1. The expression
of TNF-ɑ, MMP1, MMP3, and MMP9 was inhibited in a way
similar to the expression of the corresponding mRNAs
(Figure 6B). However, the expression of AMPK-ɑ and
pAMPK-ɑ at the protein level, unlike its mRNA expression,
was found to be up-regulated. HAPLN1OE transfection in RA-
FLSs up-regulated the expression of TNF-ɑ, IL-6, and MMP9,
while AMPK-ɑ was down-regulated (Figure 6C). Unlike the
expression of mRNA, the expression of AMPK-ɑ and pAMPK-ɑ
was also up-regulated when TNF-ɑ, IL-6, MMP1, and MMP3
showed a trend of up-regulation (Figure 6D).

To better understand the potential interactions between these
molecules, we collected multiple expression data of relative
mRNA levels from control groups of si-HAPLN1 (si-Control),
and applied the Pearson correlation coefficient analysis.
HAPLN1 levels showed a strong positive correlation with the
level of AMPK-ɑ (Figure 6E), which is in accordance with its
Frontiers in Immunology | www.frontiersin.org 6
plasma levels and also with our previous findings using
metformin treatment (9). AMPK-ɑ also positively correlated to
TGF-b and ACAN (Figures 6F, G). Importantly, HAPLN1 levels
had a positive correlation with the inflammatory cytokines such
as IL-6 (Figure 6H) and the modulators of the ECM structure,
including TGF-b and fibronectin (Figures 6I, J). Thus, HAPLN1
promotes the production of inflammatory cytokines, which
plausibly could provide a molecular basis for its contribution
to cell viability and mobility. In RA-FLSs, AMPK activation
results in up-regulation of HAPLN1 levels and vice versa. Based
on the effect of HAPLN1 on AMPK expression, along with the
possible regulation of the HAPLN1 expression through the
cAMP-PKA-(possibly, AMPK)-RUNX1/2 pathway in
granulosa cells (32), we proposed that a negative feedback loop
between HAPLN1 and AMPK expression exists.

2.4 Proteome and mRNA-Seq Analysis of
HAPLN1 Functions in RA-FLSs
As the current molecular interaction network of HAPLN1 is
barely barren, to get acquaintance with HAPLN1 functions in
A B

D

C

E

FIGURE 4 | Effects of rHAPLN1 on RA-FLSs activity. (A) Treatment of RA-FLSs with rHAPLN1 significantly enhanced the (A) proliferation but reduced (B, C)
apoptosis of RA-FLSs (magnification: 10×10), especially during the early phase and (D, E) migration. Wound healing (D) and transwell (E) assays were used to
evaluate the migration capacity of FLSs (magnification:10×5). ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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RA-FLSs from a more comprehensive view, proteomics and
transcriptome analyses were done with rHAPLN1 treated or si-
HAPLN1 transfected RA-FLSs to further investigate HAPLN1
functions in RA-FLSs.

2.4.1 Proteomics Analysis
We identified 443,973 matched spectra and 4184 quantifiable
proteins in RA-FLSs from NC, si-HAPLN1, and rHAPLN1
groups (Supplementary Table S5). Principal component
analysis (PCA) indicated a high level of aggregation between
duplicated samples, demonstrating the quantitative
reproducibility of experiments (Supplementary Figure S6).
Among the identified proteins, 14 were up-regulated and 47
were down-regulated after si-HAPLN1 transfection. Besides, 101
Frontiers in Immunology | www.frontiersin.org 7
proteins were up-regulated and 82 were down-regulated after
rHAPLN1 treatment as compared to NC (Figures 7A, B).
Compared to the control siRNA-treated RA-FLSs (NC group)
and as shown by KEGG enrichment analysis, differentially
enriched proteins (DEPs) in si-HAPLN1-treated RA-FLSs were
enriched in pathways including Staphylococcus aureus infection,
systemic lupus erythematous (SLE), cardiomyopathy, COVID-
19, and ribosome (Figure 7C). RA-FLSs treated with rHAPLN1
were enriched in pathways including protein digestion, S. aureus
infection, ECM-receptor interaction, RA, p53 signaling pathway,
cholesterol metabolism, PI3K-Akt signaling pathway, JAK-STAT
signaling pathway, and pathways for various cancers
(Figure 7D). More specifically, through clustering analysis, the
down-regulated DEPs of the si-HAPLN1 group were enriched in
A B

C

E

D

FIGURE 5 | The effects of si-HAPLN1 and HAPLN1OE on RA-FLS-derived cell-cycle and structure molecules. (A) si-HAPLN1 transfection decreased Ki-67 mRNA
expression significantly, (B) HAPLN1OE transfection increased Ki-67 but down-regulated Cyclin D1 expression in RA-FLSs. (C) Expression of mRNA of TGF-b,
ACAN, fibronectin, and collagen II were down-regulated by si-HAPLN1 treatment in RA-FLSs, while (D) ACAN was significantly up-regulated by HAPLN1OE

transfection. (E) Pearson correlation coefficient analysis showed relative mRNA levels from the si-control group, with a strong positive correlation (r = 0.66, 95%CI
[0.13, 0.90], p < 0.05) between TGF-b and HAPLN1. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant.
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rontiers in Immunology | www.frontiersin.org June 2022 | Volume 13 | Article 8886128

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


FIGURE 6 | The effects of si-HAPLN1 and HAPLN1OE on RA-FLS-derived cytokines. (A, B) si-HAPLN1 transfection to RA-FLSs inhibited TNF-ɑ, IL-6,
MMP1, MMP3, and MMP9 mRNA and protein expression; the mRNA level of AMPK-ɑ was reduced, but AMPK-ɑ and pAMPK-ɑ were up-regulated in the
protein level. Expression of Cyclin D1 seems unaffected by si-HAPLN1 transfection. (C, D) After over-expression of HAPLN1 in RA-FLSs, TNF-ɑ, IL-6, and
MMP9 mRNA and protein expressions were up-regulated while AMPK-ɑ was down-regulated at the mRNA level but AMPK-ɑ and pAMPK-ɑ were up-
regulated at the protein level. Cyclin D1 proved to be down-regulated in the protein level by HAPLN1OE transfection. (E) In control si-RNA-treated RA-FLSs
form multiple tests, (E–G) AMPK-ɑ mRNA positively correlated with HAPLN1, TGF-b, and ACAN. (H-J) HAPLN1 mRNA shows positive correlations with

fibronectin, TGF-b, and IL-6 expression. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant. si-Control, negative control management
of si-HAPLN1 transfection; ControlOE, negative control management of HAPLN1OE transfection.
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S. aureus infection, SLE, TNF signaling pathway, COVID-19,
and ribosome. Therefore, si-HAPLN1 treatment mostly results
in DEPs that participate in down-regulating proteins related to
inflammation. On the other hand, in the rHAPLN1-treated RA-
FLSs, the down-regulated DEPs involved are in cellular
senescence, drug metabolism, p53 signaling pathway,
glutathione metabolism, RA, and cytokine-cytokine receptor
interactions; the up-regulated DEPs involved are in
cytochrome P450, malaria, platelet activation, JAK-STAT
signaling pathway, PI3K-Akt signaling pathway, PPAR
signaling pathway, human papillomavirus infection, relaxin
signaling pathway, chemical carcinogenesis, microRNAs in
cancer, cholesterol metabolism, amoebiasis, focal adhesion, and
ECM-receptor interaction (Supplementary Figure S7). Based on
these results, it is clear that rHAPLN1 treatment mainly leads to
pro-inflammation, activation of metabolism, and carcinogenesis.
However, pathway enrichment analysis also indicated cell
adhesion reinforcement that confirms our transwell and
wound healing assays.

As an example, we took the TNF signaling pathway affected
by si-HAPLN1 transfection for description of our proteomics
results. Tumor necrosis factor receptor type 1-associated death
domain protein (TRADD) and mitogen activated protein kinases
(MKK3/6), known for their role in apoptosis and cell survival
were found to be down-regulated (Figure 7E). In rHAPLN1-
treated RA-FLSs, up-regulation of MMPs and down-regulation
of CyclinD1 were observed (Figure 7F). This is in accordance
with our results obtained with HAPLN1OE transfection in RA-
FLSs (Figures 5B, 6C, D). An up-regulated multifunctional
matrix glycoprotein thrombospondin-1 (TSP-1) together with
matrix metalloproteinases (MMPs) suggest an increased level of
angiogenesis, which is a classical pathology feature of pannus in
RA (33). Up-regulated expression of collagen within the ECM-
receptor interaction pathway (Supplementary Figure S7) is in
accordance with the reduced expression of collagen II gene after
transfection with si-HAPLN1 and with up-regulated expression
of ACAN after transfection with HAPLN1OE (Figures 5C, D).
Proteomics results indicate upregulation of the expression of
collagen, laminin, and thrombospondin (Supplementary Figure
S8), which are associated with cell migration (34, 35).

Notably, rHAPLN1 up-regulated DEPs within various
metabolism pathways. High demands for energy and
biosynthetic precursors are well known in the pathogenic
nature of RA (36). CYP1B1, glutathione S-alkyltransferase (EC:
2.5.1.18), cytochrome P450 (EC: 1.14.14.1), and aldehyde
dehydrogenase (EC: 1.2.1.5) were up-regulated in the
metabolism of xenobiotics via the cytochrome P450 pathway
Frontiers in Immunology | www.frontiersin.org 9
(Supplementary Figure S9). These four enzymes were reported
to participate in the development of various cancers (37–40).
Although these targets have not been well investigated in RA,
detection of a higher metabolic level, along with the up-regulated
expression of pro-inflammatory DEPs, suggest the effects of
rHAPLN1 on the viability of RA-FLSs.

2.4.2 mRNA Sequencing Analysis
mRNA sequencing analysis was done with rHAPLN1- or PBS-
treated RA-FLSs. Principal component analysis (PCA) showed a
high level of aggregation between duplicated samples, suggesting
the quantitative reproducibility of experiments (Supplementary
Figure S10). Among the 504 differentially expressed genes
(DEGs), 439 were up-regulated with the top 6 genes being
RP11-231C14.4 (an uncharacterized gene), ANKRD36,
NPIPB11, NPIPB4, BRCA2, and GOLGA6L4. At the same
time, 65 genes such as KRT81, PXMP2, JHDM1D-AS1, and
IL33 were down-regulated (Figures 8A, B). Two DEGs (up-
regulated LRP1 and down-regulated CRIP1) were in accordance
with the results found in our proteome analysis (Figure 8B).
Metascape pathway analysis of 439 up-regulated DEGs treated
by rHAPLN1 showed main enrichment of genes in the GTPase
cycle, cell cycle, and regulation of cell division (Figure 8C).
KEGG analysis showed enrichment in herpes simplex virus 1
infection, hypertrophic cardiomyopathy, and others
(Supplementary Figure S11). Moreover, GSEA analysis was
performed to compare rHAPLN1 and PBS groups. The
rHAPLN1 group was found to positively associate with the
pathways of extracellular matrix structural constituents, alpha
actin binding, metalloaminopeptidase activity, proteoglycan
binding, focal adhesion, regulation of protein exit from
endoplasmic reticulum, lipid translocation, regulation of
androgen receptor signaling pathway, retrograde axonal
transport, dendritic spine development, peptide cross linking,
and insulin-like growth factor receptor signaling pathway
(Supplementary Figure S12). Although only 2 overlapping
targets were identified in our proteomics study, these enriched
functional pathways were in accordance with proteomics
analysis and could potentially explain the effects of HAPLN1
on the proliferation, migration, and apoptosis of RA-FLSs.
3 DISCUSSION

HAPLN1, discovered 50 years ago, has a wide range of
physiological effects with an important contribution to
cartilage formation and homeostasis as well as to the
June 2022 | Volume 13 | Article 888612
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regulation of the development of the central nervous system (41).
Besides HAPLN1, the HAPLN family includes paralogs of
HAPLN2, HAPLN3, and HAPLN4, all of which related
pathways are Phospholipase-C Pathway and Integrin Pathway.
Annotations related to these genes include extracellular matrix
structural constituent and hyaluronic acid binding. They
constitute a HAPLN family (42, 43). HAPLN1 interacts with
the globular domains of hyaluronic acid and proteoglycans, such
as aggrecan, versican, and a-trypsin inhibitor in the ECM, to
form a stable ternary complex and contributes to the
compression resistance and shock absorption of the joints (44).
Frontiers in Immunology | www.frontiersin.org 11
During the process of chondrogenesis and differentiation of
human mesenchymal stem cells (hMSCs), HAPLN1 expression
reached its peak level between 6 and 12 days (45). Perinatal mice
with inactivated HAPLN1 developed lethal achondroplasia, with
their extremities and vertebral cartilage lacking proteoglycan
deposition and having a reduced number of hypertrophic
chondrocytes (46). In addition, HAPLN1 was shown to have
the properties of an oncogene contributing to an increased
susceptibility to lung cancer (47), aggressiveness of
hepatocellular carcinomas (48), and drug resistance to multiple
myeloma (49).
A

B

C

FIGURE 8 | Transcriptome analysis of rHAPLN1-treated RA-FLSs. (A) Among the 504 DEGs detected, 439 were up-regulated and 65 were down-regulated. (B)
Two DEGs detected (up-regulated LRP1 and down-regulated CRIP1) were in accordance with the proteomic studies. (C) Metascape analysis of DEGs
demonstrated an enrichment of various pathways including replication fork processing, GTPase cycle, cell cycle, and cell division.
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We have reported HAPLN1 as one of the most obviously up-
regulated DEGs in RA-FLSs and upon activation of AMPK by
metformin HAPLN1 secretion has increased in RA-FLSs (9).
Based on AMPK functions and the use of metformin in RA, we
hypothesized that an increase in the levels of HAPLN1 in RA-
FLSs could help protect the joints (9). In this study, we
demonstrated an increase in HAPLN1 expression in the
synovium and plasma samples from RA patients. Over-
expression of HAPLN1 with a plasmid vector or treatment
with rHAPLN1 increased the proliferation but decreased
apoptosis of RA-FLSs. Although si-HAPLN1 transfection did
not show any effect on proliferation, it induced apoptosis of RA-
FLSs significantly. So, HAPLN1 seems to be an oncogenic gene,
and it could activate the viability of RA-FLSs.

Apart from hyaluronic acid and proteoglycans, interactions
between HAPLN1 and other molecules have been investigated.
For example, TNF-ɑ-activated mitogen-activated kinase (MEK) in
chondrocytes regulates the expression of HAPLN1, and controls
the catabolism and anabolism of the extracellular matrix of
chondrocytes (50). In multiple myeloma cells, HAPLN1 can
activate the NF-ƙB pathway to acquire resistance to bortezomib
(49). In granulosa cells, HAPLN1 can potentially promote the
PKA-RUNX1/RUNX2 pathway (9, 32). In this study, upon
silencing HAPLN1, pro-inflammatory factors such as TNF-ɑ,
MMPs, and IL-6 as well as structure-related molecules such as
TGF-b, fibronectin, and ACAN were down-regulated. Conversely,
HAPLN1OE-treated RA-FLSs showed up-regulation of TNF-ɑ,
MMPs, IL-6, and ACAN expression. In untreated RA-FLSs, the
relative mRNA expression of HAPLN1 was positively associated
with that of TGF-b and IL-6. The Ki-67 has been widely used as a
proliferation marker for most human tumor cells (51). Its
expression was decreased after si-HAPLN1 transfection but
increased after HAPLN1OE treatment. Based on these findings
and the current knowledge, HAPLN1 is expected to be able to
promote pro-inflammatory secretory phenotypes and to
contribute to the regulation of structural molecules in cells.

AMPK and its related pathway have been broadly investigated
with participation in glucose metabolism and inflammation
reaction, generally in an inhibitory way (31), specifically,
inflammatory cytokines such as TNF-ɑ, IL-6, IL-17, NF-ƙB,
and MMPs are directly or indirectly inhibited (52, 53). Relative
mRNA expression of AMPK-ɑ and HAPLN1 in untreated RA-
FLSs showed a positive correlation, which is consistent with the
observation made on plasma samples from RA patients. Thus, in
this study, we intended to examine whether AMPK is affected by
HAPLN1 expression to clarify its effect on inflammation.
However, both si-HAPLN1- and HAPLN1OE-treated RA-FLSs
down-regulated AMPK-ɑ expression at the mRNA level, but not
the protein level, of pAMPK-ɑ. This suggests the presence of a
complex feedback circle between AMPK-ɑ and HAPLN1. AMPK
and its phosphorylation levels are recognized to be especially
vulnerable to variations in the metabolism status such as the
AMP/ATP ratio (54). Based on our omics study, we proposed
that HAPLN1 turns cells into a more hyperactive and
hypermetabolism status. So, after silencing HAPLN1, a lower
metabolic status of higher AMP/ATP ratio results in an increased
Frontiers in Immunology | www.frontiersin.org 12
level of pAMPK-ɑ. However, a higher metabolic status
accompanied by inflammation lowered the AMP/ATP ratio as
represented by up-regulated pAMPK-ɑ. Such a hypothesis needs
further experimental validation.

Furthermore, Cyclin D1 is involved in the regulation of cell
proliferation during the G1 phase of the cell cycle. Given the
frequent over-expression of Cyclin D1 in cancer cells, its
expression appears to be closely linked with carcinogenesis
(55). Cyclin D1 has a central role in mediating invasion and
metastasis of cancer cells by controlling Rho/ROCK signaling
and matrix deposition of thrombospondin-1 (56). We designed
to check this target to verify possible promotion of cell viability
by HAPLN1. In this study, however, the mRNA expression levels
of Cyclin D1 in RA-FLSs was significantly decreased by
HAPLN1OE treatment, which might possibly explain its
inhibitory ability on RA-FLS migration. There is a dilemma in
clarifying the role of HAPLN1 in RA-FLSs viability by functional
studies in the cancer research field because an increased level of
HAPLN1 seems to be associated with a higher degree of
aggressiveness, leading to stemness of various cancers (47, 48,
57) while achieving robust ECM restrictions on metastasis of
cancer cells (19, 20).

Proteomic and mRNA-seq results showed the function of
HAPLN1 in RA-FLSs from a holistic view. With highly
significant changes observed in the expression of DEPs and
DEGs, it is plausible to consider the involvement of HAPLN in
a complex network of signaling pathways. Proteomic analysis
suggested si-HAPLN1-transfected RA-FLSs were enriched in
pro-inflammatory pathways with down-regulated DEPs. It is
not strange that the mRNA level and the protein level seem to
have a low correlation, as the multi-step process of gene
expression involves transcription, translocation, and turnover
of mRNAs and proteins (58). Although only 2 targets overlapped
with proteomic and transcriptional studies with rHAPLN1-
treated RA-FLSs, the omics study reflected activation of
inflammation, proliferation, an increase in cell adhesion, and
strengthening of ECM functions. These findings were confirmed
by the molecular network consisting of MMPs, IL-6, Ki-67, TGF-
b, and cyclin D1 as shown by qPCR and Western blot analysis.
Genes such as ANKRD36 (59), BRCA2 (60), and GOLGA6L4
(61), which were most up-regulated upon rHAPLN1 treatment,
were all reported as oncogenic targets. In consistence with the
reported close relation between HAPLN1 and AMPK levels,
HAPLN1 seems to be involved in the metabolism of RA-FLSs.
Spontaneously resolving joint inflammation in RA was reported
to be dependent on the metabolic agility of FLS (62), and
increased levels of SUMOylation links metabolic and
aggressive phenotype of RA-FLSs (63). Therefore, altering
metabolic changes might be a key to developing joint-
protective strategies in RA-FLSs (64) and more research is
required to decipher the complex network of HAPLN1
functions contributing to the altered metabolic status of
RA-FLSs.

In conclusion, HAPLN1 accelerates proliferation and reduces
apoptosis of RA-FLSs to form a pathological pannus, mimicking
the aggressive feature of cancer cells. Based on physiological
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development and oncology studies, HAPLN1 seems to be an
oncogene but having an opposing feature on cell adhesion and
inhibition of migration. By combining biological experiments
and the observations made from proteomics and mRNA
sequencing analysis, our results suggest HAPLN1 as a
pathogenic factor in RA. Future in-depth studies, especially
those related to animal experiments, are mandatory for better
understanding of the role of HAPLN1 in RA.
4 MATERIAL AND METHODS

4.1 Patients’ Characteristics and Samples
Weused blood samples from 61 RA and 20OA patients and 12 age-
and gender-matched healthy controls (HC) formeasuringHAPLN1
levels by ELISA. The mean disease course of RA patients was 6.39
years (ranging from 0.2 to 30.0 years). Synovium samples were
collected by arthroscopic surgery done with 20 RA and 17 OA
patients and used for immunohistochemical (IHC) staining of
HAPLN1. The inclusion and exclusion criteria and general
information such as age, gender, disease activity, and disease
course reported earlier (9) are summarized in Supplementary
Tables S1, 2.

4.2 Enzyme Linked Immunosorbent
Assay (ELISA)
Blood samples of HC, OA, and RA patients were centrifuged
after standing at room temperature for 2 h, at 1500 g for 10 min
to collect the plasma. The HAPLN1 levels were detected by
ELISA (RayBiotech, US). Plasma AMPK levels in RA patients
were also evaluated by ELISA according to the manufacturer’s
protocol (Jianglaibio, China). The SuPerMax 3000FA absorbance
microplate reader (Flash Co. Ltd., China) was used to read the
optical density (OD) values at 450 nm and concentrations of
specific proteins were calculated based on the standard curve.

4.3 Immunohistochemical (IHC)
Staining for HAPLN1
Synovium samples collected from 20 RA and 17 OA patients for
IHC staining of HAPLN1 were prepared as reported earlier (9).
Rabbit monoclonal anti-HAPLN1 antibody (Abcam, US) was
added as the primary antibody (1:50) and incubated for 2 h at
37°C. Biotin-conjugated goat anti-rabbit antibodies (ZSGB-Bio,
China), streptavidin-peroxidase conjugate, and diaminobenzidine
were used as the detecting system. IHC-stained sections were semi-
quantified under a microscope. The staining intensity was counted
as none (0 points), weak positive (1+), moderate positive (2+), and
strong positive (3+). The percentage of positive cells was obtained to
calculate the H-Score. The range of H score for each slice was
between 0 and 300. The formula of the H-Score is as follows (65):

H   sore = %   at  weak   positveð Þ  �1

+ %   at  morderate   positveð Þ � 2

+ %   at   strong   positveð Þ  �3
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4.4 Isolation and Culture of RA-FLSs
Primary RA-FLSs were acquired from 3 untreated RA patients.
Isolation and culture of RA-FLSs were reported as before (9).
Briefly, FLSs were isolated by enzyme digestion and
subsequently cultured in Dulbecco’s modified essential
medium (DMEM) containing 10% fetal bovine serum (FBS,
Invitrogen) and antibiotics (penicillin and streptomycin) at 37°
C with 5% CO2. Cells cultured between passages 4 and 9 were
used in this study.

4.5 Small Interfering RNA (siRNA) HAPLN1
Preparation and Transfection
RA-FLSs at 60-70% confluency were transfected with siRNAs
(Ribobio Company, China) at 50 nM with Lipofectamine™ 3000
reagent (Invitrogen, US). The following siRNA sequences were
used: control siRNA (confidential sequence information) and 3
siRNAs of HAPLN1, si-1 (5’-AGGGTAGAGTGTTTCTGAA-
3’), si-2 (5’-CCTGGAAAATTCTCGGATA), and si-3 (5’-
ACCTCACTCTGGAAGATTA-3 ’) . The three siRNAs
effectively silenced HAPLN1 expression (Supplementary
Figure S2A), and si-1 was selected randomly and used in
subsequent studies. The negative control (NC) group denoted
control siRNA transfection of RA-FLSs in the experiment.

4.6HAPLN1 Over-Expression Vector
Preparation and Transfection
For HAPLN1OE RA-FLSs experiments, HAPLN1 over-
expression plasmid and its control were constructed and
packaged by Ubigene Biosciences (Guangzhou, China). The
stbl3 strain plasmid cytomegalovirus vector-infected cells were
cultured in LB medium (QDRS Biotec, China) with 100 g/ml of
ampicillin under 37°C, 225 rpm for 24 h. The HAPLN1OE

plasmid vector and its negative control (NC) were then
isolated with the Genopure Plasmid Maxi Kit (Roche, US).
RA-FLS at 60-70% confluency was transfected with
HAPLN1OE vector or its negative control with Lipofectamine™

3000 reagent (Invitrogen). The effects of HAPLN1OE plasmid
vector are shown in Supplementary Figure S2B.

4.7 MTT Assay
MTT assay was used to ascertain FLSs viability transfected with
si-HAPLN1, HAPLN1OE, or their corresponding NC, or treated
with rHAPLN1 (recombinant human HAPLN1 protein, Abcam,
US) at different concentrations (0, 25, and 50 ng/ml). FLSs
samples (si-HAPLN1 vs. its negative control, HAPLN1OE vs.
its negative control, or treated with different concentrations of
rHAPLN1) digested using 0.25% pancreatin were transferred to
96-well plates with 3-5 × 103 cells/well. At different time points
(24, 48, and 72 h), the viability of the cells was measured using
the MTT assay kit (Abcam).

4.8 CCK-8 Assay
Cell viability after transfection with si-HAPLN1, HAPLN1OE, or
their respective controls, or treated with different concentrations
of rHAPLN1, was determined using the Cell Counting Kit-8
(CCK-8, Molecular Technology, Japan) assay.
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4.9 TUNEL Assay
RA-FLSs transfected with si-HAPLN1, HAPLN1OE, or their
corresponding controls, or treated with rHAPLN1 (0 or 50 ng/
ml), were digested and transferred to 6-well plates with 2-3 × 105

cells/well, cultured for 48 h, and stained by the One Step TUNEL
Apoptosis Assay Kit (Beyotime, China). The apoptosis rate was
calculated under a fluorescence microscope (Leica, Germany)
with the excitation wavelength at 550 nm (Cy3) and the emission
wavelength at 570 nm (red fluorescence).

4.10 Flow Cytometry for FLSs Apoptosis
FLSs apoptosis treated with rHAPLN1 was measured using the
Annexin V-FITC/PI Cell Apoptosis Detection Kit (Vazyme,
China) by flow cytometry. After treatment of FLSs with
rHAPLN1 (0 or 50 ng/ml) for 48 h in 6-well plates, the cells
were collected (3×105/well), washed twice with PBS, re-
suspended in 500 μl 1 × binding buffer, mixed with Annexin-
V-fluorescein isothiocyanate (FITC, 5 μl) and propidium iodide
(PI, 5 μl), and analyzed using a flow cytometer (BD
FACSCantoTM II, US). The scatter diagram was distributed as
follows: Q3, healthy cells (FITC-/PI-); Q2, apoptotic cells at an
advanced stage (FITC+/PI+); and Q4, apoptotic cells at an early
stage (FITC+/PI-). The apoptosis rate was calculated as a ratio of
apoptotic cells in P2 (Q4 + Q2).

4.11 Wound Healing Assay
Wound healing assay was conducted to evaluate the migration
capacity of FLSs transfected either with si-HAPLN1,
HAPLN1OE, or their corresponding controls, or treated with
different concentrations (0, 25, and 50 ng/ml) of rHAPLN1. FLS
samples (si-HAPLN1 vs. its negative control, HAPLN1OE vs. its
negative control, or treated with different concentrations of
rHAPLN1) were transferred to 6-well plates with 3 × 105 cells/
well and cultured with serum free-RPMI 1640 medium. At
different time points, the migrating ability of the cells was
measured by using the wound healing assay as previously
reported (9).

4.12 Transwell Assay
Transwell assay was performed to evaluate the migration
capacity of FLSs transfected with si-HAPLN1, HAPLN1OE, or
their respective controls, or treated with rHAPLN1. FLSs in each
set of experiments were re-suspended after culturing for 24 h.
Transwell assay was conducted as previously described (9).

4.13 Quantitative Real-Time Polymerase
Chain Reaction (qPCR)
Total RNA from FLSs transfected with si-HAPLN1, HAPLN1OE,
or their respective controls, or treated with rHAPLN1, was
prepared using TRIzol® Reagent (Thermo Scientific, US) and
quantified using Qubit (Thermofisher, US). RNA was reverse
transcribed into cDNA using PrimeScript™ RT Master Mix
(Takara, Japan). The reaction mixture contained 5 ml of 2 ×
TB Green Premix Ex Taq II (Takara, Japan), 3 ml of nuclease-
free water, 1 ml of cDNA, 0.4 ml of each gene-specific primer,
and 0.2 l of ROX reference dye. The qRT-PCR analysis was
performed using the Applied Biosystems ViiA™ 7 Real-Time
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PCR System (Thermofisher, US). Each value represented an
average from three independent biological replicates. GAPDH
gene expression was used for data standardization. The fold
change was calculated using the 2-DDCt method. Primers of
GAPDH, AMPK-ɑ, TNF-ɑ, IL-6, TGF-b, ACAN, fibronectin,
collagen II, MMP1, MMP3, MMP9, Cyclin-D1, and Ki-67 are
given in Supplementary Table S3.

4.14 Automated Western Blot Analysis
Total proteins from FLSs transfected with si-HAPLN1, HAPLN1OE,
or their respective controls for 48 h were extracted with Cell Lysis
Buffer (Cell Signaling, US). Their concentration was measured using
the BCA Protein Assay Kit (Merck, US). Relative changes in
HAPLN1, pAMPK-a, IL-6, TNF-a, MMP1, MMP3, and MMP9
protein levels were determined. Expression of b-tubulin was selected
as an internal reference. Capillary electrophoresis and Western blot
analysis were carried out using reagents provided in the kit in
accordance to the instructions provided by the user manual
(ProteinSimple WES, US) as previously reported (9). Rabbit anti-
HAPLN1 antibody (Abcam, US), rabbit anti-TNF-a, AMPK-a,
pAMPK-a, MMP-1, MMP-3, IL-6, Cyclin D1, and b-tubulin
specific mAbs (Cell Signaling, US) were used (1:100). Goat anti-
rabbit secondary antibodies were provided by the ProteinSimple
WES kit and applied as instructed. Data were analyzed using an in-
built Compass software SW 4.0. The truncated and full-length target
protein intensities (area under the curve) were normalized to that of
the tubulin peak. In most of the figures, electropherograms were
represented as pseudo-blots, generated using Compass software.

4.15 Statistical Analysis
Statistical analysis was performed using GraphPad Prism 8.0
software. All the data were given as mean ± SD. Differences
between two groups were evaluated for statistical significance
using Student’s t-test. One-way ANOVA with Tukey’s multiple
comparisons test was used to evaluate the differences among three
or more groups. Correlations were evaluated using Liner regression
and correlation test. p < 0.05 was considered statistically significant.

4.16 Proteomics Analysis
Label-free proteomics study was applied to FLSs transfected with si-
HAPLN1 or treated with rHAPLN1 (50 ng/ml) and their controls
for 48 h (management of each group is given in Supplementary
Table S4) by PTMBiolabs, Inc. (Hangzhou, China). Each
concentration was tested with 3 biological replicates. Cell samples
were processed as reported earlier (66). LC−MS/MS proteomics
analysis was performed on an EASY-nLC 1000 ultra-performance
liquid chromatography (UPLC) system, followed by MS/MS using
Q Exactive Plus (ThermoFisher Scientific, US) coupled online to the
UPLC system. The MS/MS data were retrieved by the Maxquant
search engine (v1.6.6.0). A human database was searched (Swiss-
Prot). The decoy database anti-library was used to reduce the false
positive rate (FDR). The FDR was adjusted to < 1%, and the
minimum score for modified peptides was set > 40. Proteins with a
fold-change ≥1.50 or ≤0.67 between si-HAPLN1, rHAPLN1, and
their controls were considered as expression significant. Based on
the protein sequence alignment method, the protein domain
functions were defined by InterProScan (http://www.ebi.ac.uk/
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interpro/). Functional annotation enrichment of DEPs was
performed by KEGG analysis. The enrichment significance was
identified as p < 0.05 in the Fisher’s exact test and q < 0.05 in the
Benjamini-Hochberg procedure.

4.17 High-Throughput mRNA
Sequencing Analysis
High-throughput RNA sequencing was performed using FLSs after
treatment with rHAPLN1 (0 and 50 ng/ml) for 48 h. Each
concentration was tested three times. RNA-seq analysis was
performed by Seqhealth Technology Co., Ltd (Wuhan, China).
Total RNA (2 g) was used for stranded RNA sequencing library
preparation using KCTM Stranded mRNA Library Prep Kit for
Illumina® (Seqhealth Co., Ltd. China). PCR products
corresponding to 200-500 bps were enriched, quantified, and
sequenced with Novaseq 6000 sequencer (Illumina), PE150
model. Raw sequencing data were first filtered by Trimmomatic
(v. 0.36). Low-quality reads were discarded. The reads contaminated
with adaptor sequences were trimmed. Clean data were mapped to
the human reference genome from UCSC (https://genome.ucsc.
edu/) using STRA software (v. 2.5.3a) with default parameters.
Reads mapped to the exon regions of each gene were counted by
feature Counts (Subread-1.5.1; Bioconductor) and then RPKMs
were calculated. DEGs between groups were identified using the
edgeR package (v. 3.12.1) in R studio software (version 3.6). A p-
value cut-off of 0.05 and fold-change cut-off of 2.0 were used to
judge the statistical significance of gene expression differences. The
volcano plot was drawn with the ggplot2 package in R studio.
Heatmaps of pathway enrichment analysis of DEGs were generated
using Metascape (http://metascape.org) and a P-value less than 0.05
was statistically significant. KEGG enrichment analysis for DEGs
was performed using KOBAS software (v. 2.1.1) with a p-value cut-
off of 0.05. To compare transcriptome characteristics of rHAPLN1
with PBS groups, GSEA software (version 4.0.0) was used.
Annotated pathway files (c5.go.bp.v7.4.symbols.gmt) were
downloaded in the MSigDB database (http://www.gsea-msigdb.
org/gsea/msigdb/collections.jsp). Pathways with a P-value less
than 0.05 and false discovery rate (FDR) less than 0.2 were
significantly enriched.
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