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Background: Children with cystic fibrosis (CF) are expected to have suboptimal

serum vitamin D status and altered gut microbiota. The altered gut microbiota is

hypothesized to have a pro-inflammatory effect that further complicates the existing

respiratory inflammation. Emerging evidence suggests an association between vitamin

D and gut microbiota. The aim of this study was to assess the relationships between

25-hydroxyvitamin D [25(OH)D] status, pulmonary function, and fecal bacteria in children

with CF.

Methods: In this cross-sectional study, a total of 35 children with CF (8.7 ± 2.83 years)

and 24 controls without CF (9 ± 2.7 years) were included in this study. Serum 25(OH)D

status was measured using the Elecsys vitamin D total II assay. In the CF group, gut

microbiota composition was assessed using real-time PCR analysis. Pulmonary function

tests (PFTs) were measured using spirometry. Comparisons between the CF and non-

CF controls were conducted using the independent sample t-test. In the CF group,

one-way analysis of variance (ANOVA) was used to assess differences in PFTs and gut

microbiota composition across the three vitamin D subgroups. The correlations between

25(OH)D status and PFTs, or gut microbiota composition, and PFTs with gut microbiota

composition were analyzed using the Pearson’s correlation coefficient test.

Results: Children with CF had significantly lower serum 25(OH)D levels compared with

children without CF (44.3 ± 22.4 vs. 59 ± 25.5, respectively, P = 0.026). Children with

CF with optimal serum 25(OH)D level had significantly higher levels of Bacteroidetes,

Firmicutes, and total bacteria (P = 0.007, P = 0.007, and P = 0.022, respectively). The

level of Firmicutes was found to be significantly higher in mild forced expiratory volume

in 1 s (FEV1) compared with moderate FEV1 (P = 0.032), whereas the level of the other

bacteria species was comparable across FEV1 severity groups.

Conclusion: Our findings may encourage studies that target and modify gut microbiota

to potentially achieve better outcomes in terms of respiratory function in CF.
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INTRODUCTION

Cystic fibrosis (CF) is an autosomal recessive disorder caused
by a mutation in CF transmembrane conductance regulator
(CFTR) gene (1). There are several manifestations of CF,
including chronic lung inflammation and repeated infections,
and gastrointestinal abnormalities such as exocrine pancreatic
insufficiency and fat malabsorption that leads to malnutrition.
These characteristics of the disease impose gastrointestinal
microbiota alteration and vitamin D deficiency or insufficiency
that is often observed in individuals with CF (2). Vitamin
D deficiency or insufficiency is common in patients with
CF due to pancreatic insufficiency, fat malabsorption, low
vitamin D binding protein level, corticosteroid medication use,
and inadequate exposure to sunlight (3, 4). In addition to
maintaining skeletal strength and bone mineralization, vitamin
D has the ability to decrease colonization of the airways through
stimulating antimicrobial peptides LL-37 that promote bronchial
cell reaction to Pseudomonas aeruginosa, a pathogen related to
CF (5). Furthermore, vitamin D was found to be an inhibitor
of airway pro-inflammatory cytokines indicated by a significant
reduction in interleukin 17A and interleukin 23 levels after
vitamin D supplementation (6). It has also been observed that
polymorphisms in vitamin D binding protein correlate with
25(OH)D levels and decreased pulmonary function measured by
forced expiratory volume in 1 s (FEV1) in patients with CF (7).

Individuals with CF are expected to have gastrointestinal
microbiota alteration due to changes in gastrointestinal mucus,
pH, fat malabsorption, and antibiotic use (8). Moreover, the
severity of CFTR mutation was found to be correlated with
gut microbial imbalance, namely, an increase in pathogenic
bacteria, such as Escherichia coli (E. coli), and a reduction in
Bifidobacteria (9). The E. coli species produces pro-inflammatory
mediators that initiate a low-grade inflammation environment,
which may trigger systematic inflammation and eventually
chronic lung inflammatory disease (8). Furthermore, a study
showed a disease-specific pattern of gut microbiota alteration
in CF, regardless of patients’ age, antibiotic use, or pancreatic
function (10). In fact, the intestine of patients with CF
produces suboptimal bicarbonate levels, causing a lower pH
level and thicker mucus and resulting in intestinal transit
interruption (11). Therefore, the lower secretion of chloride
and bicarbonate and higher uptake of water intestinal lumen
causes dehydration, increases the lumen content acidity, and
eventually compromises nutrient absorption (2). Individuals with
CF manifest an impairment in mucus production and transport,
creating a suitable environment for small intestine bacterial
overgrowth. This was also related to a reduced diversity in
commensal gut microbiota. As a result, the formerly mentioned
factors act collectively in the progression of chronic low-grade

Abbreviations: 25(OH)D, 25-hydroxyvitamin D; ANOVA, analysis of variance;

BMI, bodymass index; CDC, Center for Disease Control; CF, cystic fibrosis; CFTR,

CF transmembrane conductance regulator; FEV1, forced expiratory volume in 1 s;

FFQ, food frequency questionnaire; FVC, forced vital capacity; KFSH&RC, King

Faisal Specialist Hospital and Research Center; PFT, pulmonary function tests;

RAC, Research Advisory Committee.

inflammation and impaired immunity in the gut of individuals
with CF (2). In fact, a study conducted on infants with CF
has linked the alteration of the gut microbial community in
CF to pulmonary exacerbation during the first year of life
(12). Furthermore, a longitudinal study on 13 children with
CF revealed a significant correlation between gut inhibiting
bacteria and respiratory symptoms rather than respiratory
inhabiting bacteria, namely; Bacteroides and Bifidobacterium
(13). Another longitudinal study conducted on 7 CF neonates
has demonstrated a matched variation and richness of several
bacterial taxa inhabiting the gut and respiratory tract (14).
Several bacterial species that were elevated in the gut were
also found to be elevated in the respiratory tract. Interestingly,
the gut microbiome colonization was found to precede that
of the respiratory tract; for instance, the gut colonization of
Enterococcus was followed by a cluster formation of these
potentially pathogenic bacteria in the respiratory tract (14). The
suggested pathways for the gut-lung axis include endothelium
signal absorption by epithelial cells from local to distal sites,
mesenteric lymphatic system, and local and long-reaching
immune reactions (15, 16). Intestinal epithelial cells are directly
stimulated by gut microbiota, which regulates immune cell
release. Inflammation is linked to bacterial translocation, which
involves the migration of microbes or their metabolites from
the gastrointestinal system to the circulation across the mucosal
barrier (17).

Recently, emerging evidence suggests an association between
vitamin D and the composition of gut microbiota (18). A
cross-sectional study has reported a negative correlation of
vitamin D status with Coprococcus and Bifidobacteria in a
healthy population (r = −0.22 and r = −0.27, P < 0.005,
respectively). In addition, the study had shown the subgroup
with higher dietary vitaminD intake to have a significantly higher
abundance of Prevotella and lower abundance of Haemophilus
andVeillonella compared with the lower dietary vitamin D intake
subgroups (19). In CF, supplementation of vitamin D3 (50,000
IU per week) for 3 months among 23 adults with CF resulted in
a significant increase in Lactococcus and a decrease in Veillonella
and Erysipelotrichaceae when compared with placebo (20). The
pathways in which vitamin D modulates the gut microbiota
composition include reducing intestinal inflammation,
decreasing gastrointestinal permeability, increasing intestinal
barrier function, and stimulating antimicrobial peptides (18).

Therefore, due to the low number of studies investigating
the association between vitamin D and gut microbiota in CF
(20, 21), there is a need for more studies that compare vitamin
D level in children with CF and children without CF and
then examine its association with gut residents and pulmonary
function outcomes. Therefore, this study aimed to assess 25-
hydroxyvitamin D [25(OH)D] levels in patients with CF and
controls without CF, then measure the fecal abundance of five
of the most relevant bacteria species in patients with CF, and
investigate their association with 25(OH)D status. In addition,
relationships between 25(OH)D status and pulmonary function
and fecal bacteria and pulmonary function were examined in the
children with CF.
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MATERIALS AND METHODS

Participant Recruitment and Ethics
Statement
In this cross-sectional study, children with CF who were
stable with no acute pulmonary exacerbation, gastrointestinal
symptoms, or antibiotic use for at least 2 weeks were recruited
from the Cystic Fibrosis Clinic at King Faisal Specialist Hospital
and Research Center (KFSH&RC), Riyadh, Saudi Arabia, during
their regular clinical visits between July 2019 and December
2019. Moreover, children without CF were recruited from a
pediatric clinic and classified as the non-CF control group.
Parents were contacted before their appointments by their nurse
coordinator to inform them about the study. Patients were
screened by their pediatrician for inclusion and exclusion criteria.
Anthropometrical measurements were performed by a nurse to
assess for growth andmalnutrition, and then pulmonary function
testing was performed by a respiratory therapist. Blood samples
routinely collected were used to assess serum 25(OH)D levels.
Parents were then interviewed by the dietician to estimate their
dietary intake of vitamin D. The protocol was approved by
the institutional review board of KFSH&RC in the Office of
Research Affairs at the Research Advisory Committee (RAC)
with the project number RAC# 2191068. Written informed
consent was obtained from all parents or caregivers of involved
study children. All clinical investigations were performed in
accordance with the Declaration of Helsinki. The inclusion
criteria were as follows: (1) CF diagnosis based on clinical
symptoms, high sweat chloride testing (>60 mmol/L), and
CFTR mutational analysis, (2) stable condition (assessed by the
pediatrician), and (3) age >5 years. The exclusion criteria were
as follows: (1) antibiotic use within 3 weeks prior to fecal sample
collection and (2) intellectual disability that affects the ability to
perform pulmonary function test (PFT) accurately.

Anthropometric Measurements
Anthropometric measurements including weight, height, and
bodymass index (BMI) were obtained from study subjects during
their clinical visits by a registered nurse. BMI z-score and BMI
percentile were calculated using Center for Disease Control
(CDC) growth charts. The CDC cutoffs for BMI-for-age were
used as follows: <5th percentile is considered underweight, 5th

to <85th percentile is healthy weight, 85th to <95th percentile is
overweight, and >95th percentile is obese (22).

Total 25(OH)D Status
The measurement of total serum 25(OH)D levels was conducted
at the laboratory of KFSH&RC using the Elecsys vitamin D total
II assay on Cobas 801 immunoassay auto-analyzer system (Roche
Diagnostics GmbA, Mannheim, Germany). The cutoff point for
vitamin D deficiency and insufficiency was obtained from the
Institute of Medicine where a 25(OH)D level of <30 nmol/L
is considered vitamin D deficiency, a level between 30 and 50
nmol/L is considered vitamin D insufficiency, and the optimal
vitamin D level was set at >50 nmol/L (23).

Dietary Vitamin D Intake
The assessment of dietary vitamin D intake among study subjects
was conducted through a validated food frequency questionnaire
(FFQ) specific for calcium and vitamin D obtained from a
previous study conducted on Saudi children (24). The amounts
of vitamin D in each food item included in the questionnaire
were adapted from the U.S. Department of Agriculture food
composition database (25).

Pulmonary Function Tests
Pulmonary function tests, including FEV1, forced vital capacity
(FVC), FEV1/FVC ratio, and forced expiratory flow at 25 and
75% of the pulmonary volume (FEF25−75%), were performed
using spirometry. All PFTs were expressed as percentages of
predicted values. The cutoff points for the severity of airflow
obstruction based on the percentage of the predicted value of
FEV1 were as follows: FEV1% predicted >80% was considered
as mild lung disease, while FEV1% predicted between 50% and
80%was moderate lung disease, and FEV1% predicted<50%was
considered as severe lung disease (26).

Fecal Microbiota Analysis
Collection and Storage
A freshly voided stool sample from each participant in the CF
group was collected by their parents or caregivers in sterilized
sample containers and kept at 4◦C for a maximum of 3 h. Later,
two aliquots weighing 250mg were obtained from each fecal
sample and then stored at−80◦C for DNA extraction.

DNA Extraction
DNA extraction was performed on a single aliquot for each
sample using the commercially available kit (QIAamp DNA stool
mini kit; Qiagen, Hilden, Germany) following the manufacturer’s
instructions. The concentration and purity of extracted DNA
were measured using the Nanodrop 2000 Spectrophotometer
(Thermo Fisher Scientific, MA, USA) at 260 nm and 260/280
ratio, respectively. Extracted DNA samples were adjusted to a
concentration of 10 ng/µl and stored at −20◦C until they are
analyzed for bacterial quantification by real-time PCR.

Standard Curve
Positive controls were used to construct a standard curve for
total and target bacteria. Bacterial strains used as positive controls
are shown in Table 1. Genomic DNA for each bacterial strain
was extracted from pure cultures using the QIAamp DNA mini
kit (Qiagen, Hilden, Germany) following the manufacturer’s
instructions. To generate the standard curves, we used ten-fold
serial dilutions of genomic DNA extracted from pure cultures
with known concentrations ranging from 1 × 108 to 1 × 102

colony-forming units per milliliter (CFU/ml) of each reference
bacterium. We performed real-time PCR reactions and plotted
the CT values against the log concentration of the reference
bacterium copy number to create a linear regression.

Real-Time PCR
PCR primers were selected to determine the abundance of
the gut microbiota strains of interest (Table 1). Real-time PCR
was performed in a 50 µl reaction run in triplicate. Each
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TABLE 1 | The primers and positive control used in this study.

Primer Sequence Target Positive control References

Bact934F GGARCATGTGGTTTATTCGATGAT Bacteroidetes B. fragilis (27)

Bact1060R AGCTGACGACAACCATGCAG

Eco1457F CATTGACGTTACCCGCAGAAGAAGC Enterobacteriaceae E. coli (28)

Eco1652R CTCTACGAGACTCAAGCTTGC

F-bifido CGCGTCYGGTGTGAAAG Bifidobacterium spp. B. longum (29)

R-bifido CCCCACATCCAGCATCCA

Firm934F GGAGYATGTGGTTTAATTCGAAGCA Firmicutes C. perfringens (27)

Firm1060R AGCTGACGACAACCATGCAC

Lacto-F AGCAGTAGGGAATCTTCCA Lactobacillus spp. L. rhamnosus (30)

Lacto-R CACCGCTACACATGGAG

UnivF TCCTACGGGAGGCAGCAGT Total L. rhamnosus (30)

UnivR GGACTACCAGGGTATCTATCCTGTT

reaction consists of 25 µl QuantiTect SYBR Green PCR Master
Mix (Qiagen, Hilden, Germany), 7.5 µl of each forward and
reverse primer, and 10 µl of DNA. Amplification was performed
using Rotor-Gene Q (Qiagen, Hilden, Germany) starting with
denaturation at 95◦C for 15min, followed by 40 cycles of
denaturation at 94◦C for 15 s, annealing for 30 s, and extension
at 72◦C for 40 s. The annealing temperature was 61.5◦C for E.
coli, 59◦C for Bifidobacteria, 60.44◦C for Firmicutes, and 60◦C
for Bacteroidetes, Lactobacillus, and total bacteria. The genome
copy number of each reaction was calculated using the standard
curves. Additionally, to calculate the total genome copy number
per gram of wet stool, we used the equation (QM×C×DV)/(S×
V) adapted from Metzler-Zebeli et al. (31) where QM is the copy
number quantitative mean, C is the sample DNA concentration,
DV is the dilution volume of extracted DNA, S is the amount of
DNA used in the reaction, and V is the initial sample weight that
was used for DNA extraction (31).

Statistical Analysis
All data analyses were performed using Statistical Package
for Social Science Statistics IBM SPSS for Macintosh, version
25.0 (IBM Corp., Armonk, N.Y., USA). Descriptive data
are expressed as mean and standard deviation. Comparisons
between the CF and non-CF control were conducted using
the independent sample t-test. In the CF group, one-way
analysis of variance (ANOVA) was used to assess differences
in PFTs and gut microbiota composition across the three
vitamin D subgroups (i.e., deficiency, insufficiency, and optimal).
The correlations between 25(OH)D status and PFTs, or
gut microbiota composition, and PFTs with gut microbiota
composition were analyzed using the Pearson’s correlation
coefficient (two-tailed) test. A P-value < 0.05 was considered
significant in all tests.

RESULTS

In this cross-sectional study, a total of 35 children (16 males;
19 females, mean age, 8.7 ± 2.83 years) with CF and 24 non-
CF control (14 males; 10 females, mean age, 9 ± 2.7 years) were

included. The general characteristics of participants are shown in
Table 2. The CF group had significantly lower BMI and BMI z-
score compared with the non-CF group (P = 0.002, P = 0.016,
respectively). In addition, there was a significant difference in
regional distribution between the groups, with the majority of the
CF children (54%) living in the Eastern region of Saudi Arabia (P
= 0.001) (Table 2).

Vitamin D in Serum and Dietary Intake
The total serum 25(OH)D level of CF children was significantly
lower compared with non-CF children (independent sample t-
test, P = 0.026, Table 2). There was no significant difference
in age, sex, and BMI across the vitamin D subgroups in both
children groups. The median estimated dietary intake of vitamin
D and calcium for the CF group was 60% and 69.8% of the
Recommended Dietary Allowance, respectively (Table 2).

Pulmonary Function Tests
The PFTs were not different among the vitamin D subgroups in
children with CF. Similarly, there was no significant correlation
between PFT and vitamin D serum level. However, there was a
significant positive correlation between BMI z-score and each
one of the PFTs: FEV1, FVC, and FEF 25−75% (r = 0.515, P =

0.002; r= 0.472, P= 0.005; and r= 0.358, P= 0.041, respectively,
data not shown).

Gut Microbiota
The bacterial copy number in feces for target and total bacteria
is shown in Figure 1. Data are shown as the log10 of the
number of genome copies/g of a fecal sample. Children with
CF with optimal serum vitamin D had significantly higher levels
of Bacteroidetes, Firmicutes, and total bacteria (P = 0.007, P =

0.007, and P = 0.022, respectively, Figure 2). Correspondingly,
Bacteroidetes, Firmicutes, and total bacteria were found to
be positively correlated with serum 25(OH)D level (Pearson’s
correlation, r = 0.385 P = 0.027; r = 0.461, P = 0.007; and
r = 0.410, P = 0.018, respectively, Figure 3). However, there
was no difference in Bifidobacteria, Lactobacillus spp., E. coli,
and Firmicutes/Bacteroidetes ratio across vitamin D groups in
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TABLE 2 | Study participant characteristics.

Variable CF Non-CF P-value

N = 35 N = 24

Age, years, mean (SD) 8.7 (2.83) 9 (2.7) 0.601

Sex (male/female) 16/19 14/10 0.341

Region, n (%) 0.001

Central 7 (20) 15 (63)

East 19 (54) 2 (8)

West 1 (3) 1 (4)

North 5 (14) 2 (8)

South 3 (9) 4 (17)

Height, cm, mean (SD) 124 (15.57) 123 (18.3) 0.805

Weight, kg, mean (SD) 22.9 (7.11) 27 (11.1) 0.107

BMI, kg/m2, mean (SD) 14.6 (1.4) 17.3 (3.8) 0.002

BMI z-score, mean (SD) −1.3 (1.4) −0.23 (1.8) 0.016

BMI-for-age, n (%) 0.148

Underweight 13 (38) 6 (25)

Normal 20 (59) 14 (58)

Overweight 1 (3) 4 (17)

Serum 25(OH)D (nmol/L), mean (SD) 44.3 (22.4) 59 (25.5) 0.026

Serum 25(OH)D status (n/%) 0.083

Deficiency 8 (24.2) 1 (4)

Insufficiency 14 (42.4) 10 (42)

Optimal 11 (33.3) 13 (54)

Vitamin D (supplements) (IU/day), mean (SD) 2,912 (1,083) – –

Vitamin D dietary intake (FFQ) (IU/day), mean (SD) 365 (141) – –

Vitamin D total intake (IU/day), mean (SD) 3,090 (1,288) – –

Pulmonary function testing

Fev1 (%), mean (SD) 71 (27) – –

FVC (%), mean (SD) 72 (27) – –

FEV1/FVC (%), mean (SD) 97 (13) – –

FEF 25−75 (%), mean (SD) 74 (35) – –

The independent sample t-test was used to determine a significant difference in

continuous variables between the CF and non-CF groups. Pearson chi-square test was

used to determine a significant difference in the categorical variables between the CF and

non-CF groups.

25(OH)D, 25-hydroxyvitamin D; SD, standard deviation; CD, cystic fibrosis.

children with CF (P > 0.05). Yet, there was a significant negative
correlation between the serum 25(OH)D status and the ratio of
E. coli to total bacteria (rs =−0.382, P = 0.028).

Fecal bacterial strains were compared across the subgroups
divided according to the severity of the pulmonary malfunction
using one-way ANOVA. The Firmicutes level was significantly
higher in mild FEV1 compared with the moderate FEV1 group
(P = 0.032, Figure 4), whereas Bacteroidetes, Lactobacillus, E.
coli, Bifidobacteria, and total bacteria levels did not differ
across groups.

DISCUSSION

This study was conducted to investigate vitamin D
hypovitaminosis and its association with PFTs and gut
microbiota in children with CF. Our study showed a significantly

FIGURE 1 | Number of genome copies per 1 g of fecal sample (wet weight) for

Bacteroidetes, Firmicutes, Bifidobacteria, Lactobacillus, E. coli, and total

bacteria in children with CF. Data are presented as mean and standard

deviation (SD).

lower serum 25(OH)D level in children with CF than in children
without CF, and this is in accordance with previous observations
suggesting a lower serum vitamin D level in children with CF
(32). Reasons for the development of suboptimal vitamin D
status in children with CF were attributed to the nature of CF
disease that results in pancreatic insufficiency, reduced vitamin D
binding protein levels, and fat malabsorption, therefore, vitamin
D malabsorption (3, 4). Moreover, the clinical management of
CF often necessitates the use of corticosteroids that may increase
the expression of vitamin D catabolizing enzyme CYP24, in
addition to some antibiotics that cause photosensitivity and lead
to lower exposure to sunlight (3, 4). The mean BMI-for-age for
children with CF in our sample was between the 5th and 15th

percentile, with 40% of the sample being at <5th percentile,
which indicates that they either are nutritionally at risk or
have a nutritional failure (33). Children with CF are known
to have lower than normal body weight due to energy loss
that is caused by maldigestion and malabsorption, increased
energy expenditure, and decreased energy intake, resulting from
anorexia and gastrointestinal symptoms (34). In fact, our study
has shown significantly lower BMI and BMI z-score in children
with CF compared with children without CF.

Previous studies had shown a significant positive association
between vitamin D status and PFTs (35–37); however, this
study was unable to demonstrate a significant association
between 25(OH)D and PFTs. A possible explanation might be
the fact that the majority of our sample (69%) had mild to
moderate airflow obstruction with no pulmonary exacerbations.
In fact, few previous studies were unable to demonstrate any
significant association between vitamin D status and PFTs;
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FIGURE 2 | Difference in fecal bacteria strains among deficiency, insufficiency, and optimal serum vitamin D in children with CF using ANOVA. (A) Bacteroidetes. (B)

Firmicutes. (C) Total bacteria in children with CF. Values are shown as mean and SD of log-transformed genome copies/g of fecal sample. *P < 0.05; **P < 0.005.
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FIGURE 3 | Correlation between fecal bacteria strains and serum 25-hydroxyvitamin D level (nmol/L) in children with CF. (A) Bacteroidetes, (B) Firmicutes, (C) Total

bacteria. r denotes Pearson’s correlation coefficient.
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FIGURE 4 | The difference of Firmicutes among mild, moderate, and severe airway obstruction using ANOVA. Values are shown as mean and SD of log-transformed

genome copies/g of fecal sample. * P < 0.05.

rather, a significant association with pulmonary exacerbation was
demonstrated (38, 39).

It was hypothesized that gut microbiota composition is
positively correlated with serum vitamin D status. In this
study, gut microbiota composition was found to be significantly
different across serum vitamin D subgroups. Particularly, the
levels of Bacteroidetes, Firmicutes, and total bacteria were
significantly higher in the optimal vitamin D group. These results
are consistent with those obtained from Kanhere et al. (20), who
found that the level of Bacteroidia, a bacterial class belonging
to Bacteroidetes, was higher in adults with optimal vitamin
D. Another important finding in this study was the negative
correlation between vitamin D status and E. coli. A significant
association was found between suboptimal vitamin D levels and
a higher abundance of Gammaproteobacteria, a class of bacteria
that includes E. coli (40). This link between vitamin D status
and microbial colonization can be explained by the significant
role vitamin D plays in modulating the immune system in the
intestine (41). The absence of the anticipated association between
beneficial species such as Bifidobacteria and Lactobacillus spp.
and vitamin D level in this study is perhaps related to the
redundant effect of vitamin D at its optimal level to modify the
existing dysbiosis related to the pro-inflammatory environment
in children with CF. In fact, this may highlight the need to
increase the currently prescribed regimen for vitamin D in
childrenwith CF to reach visible changes in gut dysbiosis. Clinical
studies that assess the effect of vitamin D supplementation on gut
dysbiosis in children with CF are warranted.

With respect to the association between gastrointestinal
bacterial species and PFTs, our study showed higher levels of

Firmicutes in children with mild airflow obstruction compared
with those with moderate obstruction. Similarly, a previous
study showed a significantly higher level of Firmicutes in
children with CF with mild lung disease than those with
moderate lung disease (42). This can be explained by the
role Firmicutes play in producing short-chain fatty acids
(SCFAs), particularly butyrate, which has been shown to
downregulate pro-inflammatory factors, such as IL-6 and
IL-12 (43). SCFAs produced by Bacteroides, Bifidobacterium,
Fecalibacterium, and Enterobacteria are also known for
promoting the release of anti-inflammatory cytokines (IL-
10 and IL-21) and the inhibition of lipopolysaccharide
(LPS)-induced pro-inflammatory cytokines (44, 45). As
a result, SCFA plays a major role in the modulation
of intestinal regulatory T cells which are essential in
which they maintain the host immunological homeostasis
(44). In CF, the increase in pro-inflammatory factors,
attributed to CFTR deficiency in the epithelial cells of
the airways, has been linked to the exacerbation of lung
function (46, 47).

We acknowledge that our study has certain limitations.
The major limitation of this study is the absence of gut
microbiota composition assessment of children without CF,
due to lack of access to their samples. Furthermore, since the
study excluded unstable children with CF, it was not possible
to evaluate the effect of vitamin D status and gut microbiota
composition on pulmonary exacerbations. Finally, this study
was cross-sectional in nature, which neglects the potential
prospective impact. Despite these limitations, this study has some
strengths as it is a nutrition-inclusive study that considered
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nutritional status factors such as BMI and nutritional intake,
while investigating the associations among vitamin D status,
PFTs, and gut microbiota composition in children with CF. To
the best of our knowledge, this is the first study to assess gut
microbiota composition in children with CF in Saudi Arabia.
With only a few exceptions, blood and stool samples were
collected on the same day as spirometry was performed. In
addition, the use of antibiotics was eliminated for at least 3
weeks prior to data collection to minimize its influence on gut
microbiota composition.

CONCLUSION

The most significant finding to emerge from this study is
the difference in serum 25(OH)D levels between the CF and
non-CF groups. Another important finding is the significant
difference in gut microbiota composition in relation to vitamin
D status and PFTs in children with CF. This study identified
two phyla (Firmicutes and Bacteroidetes) to be significantly
associated with optimal serum vitamin D levels and one species
that has a negative correlation with serum vitamin D, which
is E. coli. Moreover, this study has provided a deeper insight
into the relationship between gut microbiota and pulmonary
outcome as it demonstrated a positive correlation of PFTs with
Firmicutes and the ratio of Firmicutes to Bacteroidetes. Our
findings strengthen the idea of modifying gut microbiota to
achieve better outcomes in CF in terms of pulmonary function.
Future studies need to be conducted to investigate the benefit
of probiotics use as a part of clinical management for CF and
measuring its impact on clinical outcomes, such as pulmonary
function and pulmonary exacerbations, and vitamin D status.
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