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Cell therapy has emerged as a potential therapeutic strategy in regenerative disease. Among different cell types, mesenchymal
stem/stromal cells have been wildly studied in vitro, in vivo in animal models and even used in clinical trials. However, while
clinical applications continue to increase markedly, the understanding of their physiological properties and interactions raises
many questions and drives the necessity of more caution and supervised strategy in their use.

1. Introduction

Since the discovery of pluripotent embryonic stem cells
(ESCs) derived from the inner cell mass of blastocysts of
embryos, stem cells have been defined by two principal
characteristics: self-renewal and ability to differentiate in
various cell types. The interest in stem cell use for clinical
therapy and regeneration has been growing due to their
ability to differentiate into various functional cell types.
Among stem cells, two classes can be distinguished: pluripo-
tent stem cells such as embryonic stem cells and induced
pluripotent stem cells (IPSCs) [1] and multipotent stem
cells with more restricted differentiation capacities, often
referred to as adult stem cells. The source of ESCs and the
methods used to generate IPSCs [2] together with the risk
of teratoma formation [3] raise ethical and safety issues
for the clinical use of ESCs and IPSCs [4]. Among adult
stem cells, mesenchymal stem/stromal cells (MSCs) are the
main seed cells used in regenerative medicine and are an
expanding area of research, over the past decade, due to their
unique biological properties. These properties cover a large
spectrum ranging from immune modulation, local signaling
to differentiation abilities. It has been demonstrated in vitro
that MSCs can differentiate into osteoblast, chondrocyte,

adipocyte, andhepatocytes/cardiomyocytes-like cells. But the
use of these cells in numerous preclinical trials raisesmultiple
questions/dilemmas that we will try to address in this review.

(i) Are these cells sufficiently defined and are they true
stem cells?

(ii) Should MSCs isolated from different tissues be con-
sidered as equivalent?

(iii) What are their major characteristics?

(iv) Can we use them in clinical trials and if so what
should be the context?

2. How Do We Define Mesenchymal
Stem Cells?

2.1. Mesenchymal Stem Cells: Is It Appropriate? Nonhemato-
poietic cells in the bone marrow were first isolated by
Friedenstein et al. in 1968 [5] and defined as spindle-shaped,
fibroblast-like multipotent cells capable of colony-forming
unit-fibroblast (CFU-F). The studies in the following decade
better defined these cells andmainly focused on their abilities
to sustain hematopoiesis [6–8]. Pittenger et al. demonstrated
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their in vitro capacity to differentiate into various meso-
dermal cell types defining them as mesenchymal stem cells
[9]. The bone marrow MSCs represent approximately 0,001
to 0,01% of bone marrow nucleated cells. Therefore, due to
the low number of cells and the invasive method required
to isolate them, alternative sources of MSCs have been
investigated. Cells with similar proprieties have been isolated
from a broad range of tissues like skin [10, 11], peripheral
blood [12], umbilical cord blood [13], muscle [14], adipose
tissue [15], placenta [16, 17], dental pulp [18] or liver [19],
and others. The differences in isolation protocols and tissues
of origin lead to numerous definitions and use of various
terms to refer to these cells such as mesenchymal stem cells,
mesenchymal progenitor cells, or mesenchymal stromal cells.
The confusion in the definition and proprieties of isolated
cells prompted the International Society for CellularTherapy
(ISCT) to establish a standard definition of MSCs in 2006
[20]. To qualify as MSCs a cell must have the following
characteristics:

(1) plastic adherence;
(2) possess a trilineage differentiation capacity into adi-

pogenic, chondrogenic, and osteogenic cells;
(3) present a surface expression of CD105 (endoglin,

END), CD73 (ecto-5󸀠-nucleotidase), and CD90
(Thy1) and the absence of the hematopoietic markers
CD45, CD34, CD14 or CD11b, CD79alpha or CD19,
and HLA-DR.

This definitionwas broadly accepted by the scientific commu-
nity and allowed more reproducibility between publications.
We can underline that these cells were labeled mesenchymal
“stromal” cells rather than “stem” cells. At present, MSCs are
usually defined as positive for the following markers CD73,
CD90, CD105, CD166, CD44, and CD29 and negative for
CD14, CD34, CD31, andCD45 [21].Theprincipal challenge in
the definition remains the absence of a single specific marker.

2.2. Mesenchymal Stem Cells: Stromal Cells or Fibroblast?
MSC isolation from various sources hinders a precise charac-
terization. In the attempt to better characterize MSCs, most
studies have focused on isolation and characterization of
surface markers that would define MSCs. The MSCs marker
is comprehensively reviewed by Mafi et al. [22]. For example,
STRO-1 has been documented as a potential MSCs marker
[23] of true multipotent cells. However it appears that while
Stro-1 is a robust marker for isolation of such MSCs from
tissue like bone marrow, it is not expressed in adipose tissue
derivedMSCs [22, 24]. Furthermore, in vitro culture ofMSCs
induces modification and alteration of surface marker and
capacities [22].

It is now broadly accepted that MSCs cultures represent
a mix of various cells with various degrees of stemness.
Indeed, the “stemness” of MSCs has been previously docu-
mented by Lee et al. and Muraglia et al. [25, 26] showing,
through limiting dilution, that only some clones displayed
multilineage differentiation potential and self-renewal. The
rest of the so-calledMSCs displayed only limited proliferation
potential or partial differentiation ability. The multiclonality

of cultured MSCs and their potential modifications is an
important factor to consider. Results obtained with MSCs
isolated from tissue should be cautiously discussed as few
authors actually confirmed rigorously the stemness of the
isolated cells.

Another issue is the potential contamination with fibrob-
lasts. The similar shape and the fact that the two cell types
share common surface markers are cofounding factors. In
a comprehensive review Hematti highlighted that ex vivo
culture-expanded MSCs and fibroblasts are indistinguish-
able by morphology, cell-surface markers, differentiation
potential, and immunologic properties [27]. These findings
increase the uncertainty of the identity of MSCs. Other than
being a semantic debate, this highlights the importance of
using the MSCs terminology cautiously. It may be safer, even
if not optimal, to refer in most cases to these cell populations
as mesenchymal “stromal” cells, as per ISCT definition.

3. How Different Are MSCs from
Different Tissues?

As mentioned previously, MSCs have been isolated from
a broad range of tissues. Following ISCT definition, the
necessity to differentiate them into the three main lineages
is now a standard for publication. Though, despite the
ability to direct differentiation into those different lineages
multiple reports demonstrate that their ability to differentiate
depends on the tissue origin. For example, we demonstrated
that MSCs isolated from bone marrow display around 400
genes differently expressed (at least 2 fold difference) when
compared to MSCs isolated from fetal membranes. Their
capacity to differentiate (even in the 3 lineages defined by
ISCT) is consequently affected by this transcriptional vari-
ability [17]. Similarly, numerous publications documented
the variable characteristics, differentiation capacities, and
therapeutic effects of MSCs isolated from different tissues
[28–35]. To explain such differences observed between cells
displaying similar phenotype and abilities, multiple theories
have been proposed. First, the tissue of origin can induce
tissue-specific epigenetic modifications. Indeed, it is easily
understandable that in its native organ contexture, an MSC
is more likely to differentiate into a certain cell type. This
might be pre-determined via chromatin modeling, histone
acetylation, methylation, and phosphorylation. The genes
involved in the differentiation into a particular cell type can
therefore be activated immediately, while forcing this cell into
a different cell type requires chromatin remodeling. MSCs
isolated from fetal tissues (cord blood, placenta, amniotic
membrane, etc. . .) might be an exception. In this case,
the early developmental stage still without tissue-specific
epigenetic modification can lead to higher plasticity [32, 34,
36–39].

The studies showing that MSCs from different organs
have different properties prompt caution when comparing
different preclinical and clinical trials usingMSCs. One could
advocate for the necessity to develop a panel of standard
tests to be used systematically for MSCs characterization
in the therapeutic context. Indeed the scientific community
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needs clear standard protocols that will allow increasing
reproducibility and ability to compare different studies. This
will allow us to meet, in the next decade, the stringent
requirements of regulatory authorities.

4. What Are the Optimal Uses of MSCs?

4.1. Immunosuppressive Proprieties. One of the most inter-
esting proprieties of MSCs is their immune-modulatory
capacity [40–44]. This immune-modulation effect has been
extensively studied and reviewed, but certain aspects remain
yet to be elucidate [45–49]. As a quick overview, inhibition
of TNF-alpha, interferon-gamma, IL-10 and IDO, and nitric
oxide production has been proposed to explain the sup-
pression of T-cell proliferation by MSCs [45, 50]. Similarly,
inhibition of B-cell proliferation and differentiation might be
caused via similar mechanisms [51]. Besides the inhibition of
B cells and T cells, activation by MSCs of Foxp3+ regulatory
T cells was recently proposed [52]. Reduction of IL-1, CD40,
and TNF-alpha together with production of prostaglandin E2
(PGE2) was proposed to explain reduction of monocyte and
dendritic cell maturation [53]. Finally, NK cells proliferation
and cytotoxicity have been demonstrated as inhibited in vitro
by MSCs via PEG2 [54].

MSCs have other roles in the immune/inflammatory
context. Indeed MSCs were proven to be chemo-attracted
to sites of inflammation and to release proinflammatory
cytokines [55]. The presence of functional toll-like receptors
(TLRs), in particular TLR3 and TLR4 at the surface of MSCs,
has been previously well documented. Those TLRs allow the
recruitment of MSCs at the site of inflamed and damaged
tissues. The TLRs also induce activation of proinflammatory
signals and prevent the suppression of T-cell proliferation
[56]. This mechanism was proposed to be Notch ligand
mediated [56–58].

This bipolarity in MSCs action leads Waterman et al.
[58] to propose a paradigm where, in analogy with mono-
cyte/macrophage M1 and M2, MSCs can act as MSC1
type (proinflammatory) orMSC2 type (immunosuppressive).
Though, the identification of the factors influencing the bal-
ance between those two functions is still yet to be determined.

Overall, the complex multiple mechanisms surrounding
the immune-modulation effect of MSCs remain unclear in
many aspects and are still being investigated.Themultiplicity
of interacting immune cells type and the multitude of mech-
anisms involved necessitate in vivo analysis of the involved
mechanisms. Though, the discrepancy between animal and
human immune system together with their MSCs differences
renders a direct animal/human comparison as difficult.

4.2. Clinical Applications: Diverse Range of Trials for a Broad
Range of Proprieties. MSCs have been tested in a wide
range of organ traumas or diseases such as liver failure,
hematopoietic stem cells (HSCs) implantation, bone trauma,
spinal injury, brain trauma, Crohn’s disease lesions, immune
disease, kidney injury, articular cartilage, and cardiac regen-
eration [35, 59–65].

The rationale of all these trials was based on different
properties of MSCs. Nevertheless, all those different charac-
teristics of MSCs are complementary, and the improvements
observed are most often the result of these cumulative effects.
The various reported effects of MSCs are represented in
Figure 1.

4.2.1. Clinical Use of Their Immune-Modulatory Effect. The
immune-modulatory effect remains the most intriguing
aspect of MSCs biology. This propriety has been widely
studied and reviewed [45].This led to numerous clinical trials
for treatment of immune diseases. The main example is for
treatment of graft versus host disease (GVHD). Use of MSCs
gave promising results in phase 1 and 2 of clinical trials [66–
68]. Indeed, Le Blanc et al. first transplanted haploidentical
MSCs in a child with severe treatment-resistant grade IV.
They also documented striking clinical response with a
patient 1 year after treatment. Subsequently, Ringdén et al. in
2006 treated eight patients, with steroid-refractory GVHD,
with MSCs. Acute GVHD resolved completely in six of eight
patients. Complete cure was seen in gut (6 patients), liver
(1 patient), and skin (1 patient). Their survival rate was
significantly better than control patients [68]. Kebriaei et al.
recently reported that out of the 31 patients treated, 94%
showed an initial response to MSCs and 77% had a complete
response.

However,mixed results cameout froma larger scale phase
III clinical trial including 192 acute GVHD patients [45]. In
this study, even if no differences were found with the placebo,
an improvement in gastrointestinal and liver outcome of
these patients was observed. Nevertheless, the dose and fre-
quency of administration in those GVHD patients were not
homogeneous and might have impaired conclusive results.

Similarly, promising results were also obtained in pre-
clinical and clinical phase I trials for Crohn’s disease [59].
Duijvestein et al. indicated that autologous bone marrow-
derived MSCs improve the clinical condition and showed a
significant decrease in Crohn’s disease activity index, 6 weeks
after-treatment in 3 of 10 Crohn’s disease patients [59].

In experimental autoimmune encephalomyelitis MSCs
injection was reported to improve both condition and his-
tological severity of the disease in multiple trials [69–71].
In multiple sclerosis, disability scale score improvement was
observed in 5 patients and stabilization in 1 patient out of 10
included in the trial [72].

The immune-modulatory role of MSCs appears to be of
primordial importance in their ability to prevent allograft
rejection and was therefore tested in various cell-based ther-
apies. Indeed, their use as immune-modulatory adjuvant to
other cell therapies has been broadly tested in various animal
models of degenerative diseases [61, 63, 64, 73–75]. Trials
for cord blood hematopoietic stem cell engraftment in mice
showed that CD45+ cells detected 3 weeks after transplan-
tation were significantly higher in mice cotransplanted with
humanMSCs.At late time points evaluation (6weeks) human
cells engraftment was higher in the group where MSCs were
cotransplanted. Similarly, islets cotransplantation with MSCs
in mice demonstrated a significantly lower average blood
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Figure 1: MSCs can enhance tissue regeneration via multiple mechanisms.

glucose concentration by 3 weeks. By week 6, 71% of the
cotransplanted group was cured compared with 16% of the
islet-alone group. All this work precluded the successful use
of MSCs for cotransplantation assays with HSCs in clinical
trials to prevent graft rejection [76–78]. For instance, in
the first report, Muller et al. showed that a nine-year-old
boy transfused with 2 × 106 cells/kg of MSC from the same
HSCs donor. The patient remained alive and well three years
later. Another fourteen-year-old girl received three doses of
0.4 × 10

6 cells/kg before the second HSCs transplant which
engrafted properly, and she was disease-free two years later.

4.2.2. Regenerative Potential in the Clinical Setting. Themain
idea in the clinical use of MSCs remains the potential use of
these cells in a regenerative context. Since MSCs were first
isolated from bone marrow and their capacity to differentiate
into osteoblasts is long known, MSCs turned naturally into
a promising candidate in bone defect or trauma repair. Pro-
tocols for in vitro culture and differentiation into osteoblast
have been perfected. Large bone area defects are usually
repaired by scar tissue and often lead to complications such
as nonunion. Different clinical trials showed that injection of
MSCs alone is not sufficient [62, 79]. But a combination with
scaffold demonstrated better outcomes in animal models and
human preclinical trials [80–83]. For instance, four patients

with large bone diaphysis defects were transplanted with
ceramic scaffolds seeded with autologous bonemarrowMSC.
Complete fusion between the implant and the host bone was
observed 7 months after surgery. All patients demonstrated
a good integration of the implants in long-term followup.
This study clearly established the advantage of a combined
scaffold-cellular therapy as bone engineering approach. Proof
of concept was also given when large portion of bones were to
be replaced. In a clinical trial, three patients with loss of 4.0–
7.0 cm bone segment were transplanted with MSC-seeded
scaffolds. Abundant callus formation and good integration
at the interfaces with the host bones were reported using
radiography [81, 83].

The source of MSCs used played a critical role. In fact,
it was demonstrated that MSCs isolated from bone marrow
displayed greater capacity towards osteodifferentiation com-
pared toMSCs isolated from adipose tissue [84, 85]. Similarly,
we recently published that MSCs isolated from placenta
better responded to osteoactivin (a potential adjuvant for
bone reparation) stimulation for osteoblast differentiation
than bone marrow derived MSCs [17]. In order to increase
osteodifferentiation of injected MSCs, various promising
components such as osteoactivin are tested and should be
brought to preclinical and clinical trials [17, 86].

The other well-characterized ability ofMSCs that demon-
strates clinical potential is their ability to differentiate into
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chondrocytes. MSCs are used as cellular treatment of car-
tilage defects [87, 88]. Preclinical and clinical trials mainly
focused on treatment of osteoarthritis with MSCs alone or
in combination with scaffolds or other additives [89–97] and
demonstrated significant results, with in vivo chondrocyte
differentiation of MSCs, motion improvement, pain relief,
and promotion of cartilage repair after intra-articular injec-
tion [98].

Similarly, in liver failure, in vitro culture medium sup-
plemented with growth factors is able to induce trans-
differentiation of MSCs into functional hepatic cells pro-
ducing albumin and urea with an ability to store glycogen
[60, 99]. Clinical trial using MSCs for the treatment of
fulminant hepatic failure, end-stage liver disease, cirrhosis,
and inheritedmetabolic disorders also demonstrated encour-
aging results with restoration of hepatic function [100–103]
and should be brought to larger scale trials.

In vitro and animal studies demonstrated that under
an appropriate environment and/or stimulus, MSCs could
differentiate into polynucleated myotubes, consistent with a
myocyte lineage [104–108]. Animal models showed implan-
tation and differentiation of MSCs in normal or post-
myocardial infracted hearts. Successful engraftment was
demonstrated by observing the MSCs implantation into
scarred myocardium, as well as their expression of 𝛼-actin,
tropomyosin, troponin T, myosin heavy chain, connexin-
43, GATA-4, and Nkx2.5 [109–111]. Various procedures of
administration of MSCs have been tested: intravenous, intra-
coronary, catheter-based intramyocardial, or direct intramy-
ocardial injection. Based on those results, a broad range of
clinical trials were performed for acute myocardial infarc-
tion, ischemic cardiomyopathy, or chronic ischemic left
ventricular dysfunction [112–115] with marked improvement
of cardiac function and patients’ outcome. For instance, a
randomized double-blind placebo controlled dose escalation
study of MSCs administration after acute myocardial infarc-
tion in 53 patients demonstrated first the safety of MSCs
injection and preliminary efficacy data [114] with reduced
ventricular arrhythmias (𝑃 = 0.025) and improved pul-
monary function (𝑃 = 0.003) in patients receiving MSCs. In
a subset analysis, patients with an anterior acute myocardial
infarct had improved ventricular function (ejection fraction)
compared with the placebo cohort. It seems that more than
a direct transdifferentiation into cardiomyocytes, the benefit
observed in those studies relied on other MSCs properties.

4.2.3. MSCs Paracrine Effects. It is now accepted that a
major indirect effect of MSCs after implantation is related to
their so-called paracrine effect. Through a broad spectrum
of cytokines and growth factors, MSCs were proposed to
drive tissue recovery via stimulation of endogenous stem
cells, apoptosis impairment, stimulation of neovasculariza-
tion, and extracellular matrix modification, together with
reduction of fibrosis and scar tissue formation [116–118].

Bone marrow derived MSCs have been described as
important actors in HSCs niche in bone marrow [119, 120].
MSCs have been tested as adjuvant to HSCs engraftment.

It is clearly established that cotransplantation of HSCs with
MSCs decreases the risk of rejection and increases the long-
term repopulation.More than direct interactionwith injected
HSCs, it is proposed that the large spectrum of released
molecules is responsible for acute engraftment [61].

We previously discussed that restoration of hepatic func-
tion is achieved following MSCs injection; however, the
rate of long-term implantation of the cells is low [121, 122].
Following these results, recent studies demonstrated that
MSC-conditioned medium or MSC-derived molecules also
demonstrated important positive results comparable to direct
MSCs transplantation [102, 123].

Similarly to liver studies, it was demonstrated that MSCs
conditioned media could improve cell survival and prognos-
tic when injected into an infracted heart [124]. Additionally,
more than direct implantation and differentiation of MSCs,
the paracrine effect of MSCs has been postulated to con-
tribute to improve endogenous cell survival, cardiogenesis
stimulation of inner progenitor, and neovasculogenesis of
infracted regions [65, 117, 124–126]. The scaring process
of infracted tissue is tuned down after MSCs injection,
most probably due to their capacity of extracellular matrix
modification.

5. Limitations and Caution in
Clinical Use of MSCs

Despite all the promising results published and reporting
improvement following MSCs injection in various models,
numerous area of uncertainty remains. First of all, data on
long-term efficacy are still missing in many contexts. Mostly
short-term followup has been published to date, and even
long-term rodent studies are by nature limited.

In vitro culture of MSCs previous to all clinical trials
engenders different risks. In vitro culture can modify cell
characteristics. There is always a risk of viral, bacterial,
or primal infections [127, 128]. Thus the requirement to
develop standard procedures within highly regulated GMP
laboratories.

Another poorly documented risk with MSCs injection is
the migratory potential of MSCs. MSCs have been shown
to display significant migration following stimulation with
numerous factors such IL8, VEGF, and IGF [129]. For
example, a study in rabbits showed that MSCs injected in
the articulation could be later found in digestive tractus and
thymus [130]. This ectopic implantation of MSCs has been
shown to result in bone formation in rodent studies [131, 132].
Finally the inability to control the differentiation potential
might lead to complications such as bone differentiation
within ectopic tissue such as the heart in preclinical models
[133].

Finally,many reports show a fundamental role ofMSCs in
tumor malignant transformation and progression [134, 135].
It was recently established that, even if limited, long-term
culture of MSCs leads to chromosomal aberrations [136, 137]
leading to the risk of injection of cells with carcinogenic
potential [138].
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6. Discussion

In summary, the past 5 to 10 years have been remarkably
active for MSC studies. Even if MSCs are revealed to be a
strong tool with various convenient properties and promising
potential, additional initiatives should be undertaken to fur-
ther accelerate the process of enhancing our understanding
of MSC biology in vivo. Additionally, appropriately designed
clinical trials with multicentric randomized trials should
be achieved to clarify results and allow comparison of the
various trials leaded. Unlike in animal models, followup
of engraftment and MSCs persistence remains complex in
human clinical trials and remains the point of focus of mul-
tiple technological developments. Creation of trial database
with long-term followupwould help inmonitoring secondary
deleterious effect of MSCs administration to patients.

Even if MSCs injection demonstrated encouraging im-
provement of patient’s conditions, where classical treatment
fails, monitoring long-term clinical outcome is of primary
importance. Finally, acute understanding ofmolecularmech-
anism and factors involved in MSCs injection benefice may
lead to a safer replacement of MSCs by controlled molecular
therapy with similar outcomes.
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