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Abstract: In this study, we applied semantic segmentation using a fully convolutional deep learning
network to identify characteristics of the Breast Imaging Reporting and Data System (BI-RADS)
lexicon from breast ultrasound images to facilitate clinical malignancy tumor classification. Among
378 images (204 benign and 174 malignant images) from 189 patients (102 benign breast tumor
patients and 87 malignant patients), we identified seven malignant characteristics related to the
BI-RADS lexicon in breast ultrasound. The mean accuracy and mean IU of the semantic segmentation
were 32.82% and 28.88, respectively. The weighted intersection over union was 85.35%, and the
area under the curve was 89.47%, showing better performance than similar semantic segmentation
networks, SegNet and U-Net, in the same dataset. Our results suggest that the utilization of a deep
learning network in combination with the BI-RADS lexicon can be an important supplemental tool
when using ultrasound to diagnose breast malignancy.

Keywords: breast cancer; deep convolutional network; image classification; semantic segmentation;
ultrasonic imaging

1. Introduction

Breast ultrasound (US) imaging is an important and common examination for the
clinical diagnosis of breast cancer. It is a non-radiation imaging method, well tolerated
by patients that can be easily integrated into interventional procedures [1]. However, the
accuracy of breast US diagnoses is limited and dependent upon the experience and technical
ability of the operator. Differences between operators, especially divergent skill, knowledge,
and understanding of various breast US techniques, can lead to observer variations in
diagnosis. A reliable computer-aided diagnosis (CAD) program can assist radiologists with
image interpretation and diagnosis by providing a second objective opinion [2].

Deep learning has undergone rapid development with various and deeper network ar-
chitecture and currently plays an important role in medical imaging analysis and computer-
aid diagnosis. The classification of US images usually relies on a physician’s subjective
evaluation. Deep learning generates a standardized analysis with objective and consistent
results, and it can discover significant, hidden, provide a powerful reference in the clinic,
and decrease observer bias.
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Previous related studies used image segmentation [3,4] or lesion texture [5,6] to gen-
erate a pattern or model for malignant classification. In addition, several studies incorpo-
rated established significant features of the whole image into a deep learning network for
malignant or benign tumor classification [7–11]. While all these previous studies had a clas-
sification accuracy of over 85% and showed good preliminary performance, providing only
the benign and/or malignant classification of an image is insufficient for clinical practice. It
is also important to determine whether the imaging findings match the characteristics of
standardized terminology in the Breast Imaging Reporting and Data System (BI-RADS) [12],
as well as the location or region of each imaging finding.

The BI-RADS provides standardized terms (a lexicon) to describe breast mass features
and assessments in radiology and effectively distinguishes between benign and malignant
masses [13]. For a long time, the determination of these characteristics relied on the visual
work conducted by the radiologist, and thus, the accuracy of the results was highly de-
pendent on the physician’s experience and subjective judgment. A large amount of visual
work also adds an additional burden on a busy medical center. Consequently, the recent
development of semantic segmentation [14] may provide an important solution to this issue.
Semantic segmentation can now classify each pixel of the image, divide the object, and
indicate the location according to each target or feature to clarify the meaning of the whole
image. Therefore, semantic segmentation is the basis of image understanding [15], making
the digital image meaningful and simplifying its analysis. Recently, several semantic seg-
mentation algorithms have been proposed, including an image-processing-based method
and deep convolutional neural networks [14]. The combination of semantic segmentation
and the BI-RADS lexicon can be used as the basis for the semantic segmentation analysis
of breast US images to identify malignant or benign image characteristics that aid in the
establishment of a patient’s clinical diagnosis.

This study aimed to combine semantic segmentation and deep learning to detect
malignant-related image features from breast USs. The prediction result was visualized to
help physicians distinguish malignancy on breast US and improve the quality of diagnosis
in clinical practice. We applied a semantic segmentation network to detect malignant
features based on the BI-RADS malignant lexicon definition in breast US images by utilizing
a fully convolutional network.

2. Materials and Methods
2.1. Data Acquisition

This retrospective, cross-sectional study was approved by the Institutional Review
Board (IRB) of Changhua Christian Hospital, Changhua, Taiwan (No. 181235). The require-
ment for informed consent was waived by the ethics committee because of the retrospective
nature of the study. All experimental methods were supervised by the IRB and conducted
in accordance with the relevant guidelines and the Declaration of Helsinki.

The patients’ ages ranged from 35 to 75 years, and the benign or malignant classifi-
cations were pathologically proven (either by fine needle cytology, core-needle biopsy, or
open biopsy). The full treatment, histology, and radiology records of all enrolled patients
were also collected. Breast US images were acquired via the GE Voluson 700 system (GE
Healthcare, Zipf, Austria). For each participant, at least two different scan plane angles
were obtained. Each acquired breast US image showed the full screen of the scan plane.
Each image had a resolution of 960 × 720 pixels in the RGB mode.

Malignant or benign cetology was classified according to the radiology and pathology
report of each participant. All solid masses identified in US images were described by
standardized terms, categorized according to the American College of Radiology (ACR)
BI-RADS fifth edition category criteria [16,17], and verified by surgeons with over ten years
of experience. The flowchart of the data process, analysis, and performance estimation is
shown in Figure 1.
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Figure 1. Study flowchart.

2.2. Definition of Semantics and Lexicons

The semantic definition was based on the BI-RADS lexicon of malignant characteristics
in US, with a focus on the high-frequency lexicon present in radiology reports, which
belongs to BI-RADS categories 4, 5, and 6. After the analysis, seven lexicons were selected
from the following: shadowing, echogenic halo, taller-than-wide, non-parallel, circum-
scribed or indistinct tumor margin, angular margins, micro-lobulation, hypoechogenicity,
and duct extension.

2.3. Data Pre-Processing and Argumentation

Non-related marks, such as the manufacturer mark, direction indicator, and text field,
were cropped from the original image in pre-processing to prevent incorrect training. The
final processed image used as input material was cropped to 560 × 560 pixels. The images
did not include any pre-selected tumor region or label.

The region of each malignant lexicon was manually sketched to correspond to the
input US image and saved as the ground truth image. The source of malignant lexicons
in each US image was based on the radiology report, and the correctness of the ground
truth region and location was confirmed by an experienced radiologist. Figure 2 presents
an example of a source US image and ground truth image from a patient with malignant
breast cancer. The regions with corresponding BI-RADS lexicons were sketched in different
colors according to the predefined color map.

Due to the smaller dataset and increased segmentation performance during network
training, we also applied image argumentation to the dataset before training, comprising
random zooming (from 0.8× to 1.2×), rotation (−90 to 90 degrees), cropping, flipping
(vertical and horizontal), and elastic distortion. After the image argumentation, the image
dataset was increased to 3136 images. Then, 10-fold cross-validation was applied to the
network training. All the required related programs in ground truth marking, image
encoding, pre-processing, and argumentation was implemented in MATLAB 2019b update
five with Image Processing Toolbox (The Math Works, Natick, MA, USA).
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Figure 2. An example of an ultrasound image and ground truth image with corresponding Breast
Imaging Reporting and Data System (BI-RADS) lexicon from a patient with malignant breast cancer.
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2.4. Semantic Segmentation Networks

The deep network utilized for the semantic segmentation in this study was a fully
convolutional network (FCN) [18]. The architecture of FCN uses layers of VGG-16 [19] for
convolutionalizing classification, with 32× upsampled prediction (FCN-32s). The image
was reduced to a thirty second of the source after five pooling, and output upsampling was
performed in the deconvolutional layer (conv 7) for end-to-end learning by backpropaga-
tion. The benefit of using an FCN for semantic segmentation is that it combines layers of the
feature hierarchy and refines the spatial precision of the output, enabling the combination
of coarse high-layer information with fine low-layer information by learning [18]. The
network architecture is presented in Figure 3. All the required FCN architecture and re-
lated programs were implemented in MATLAB 2019b update five with the Deep Learning
Toolbox (The Math Works, Natick, MA, USA).
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2.5. Performance Estimation

The semantic segmentation performance was estimated according to the ground truth
image dataset. The metrics used for the estimation included the global accuracy, mean
accuracy, mean, frequency of the weighted intersection over union (IU), and mean boundary
F1 score (BF score) [18,20]. These metrics were computed by utilizing related functions
within the Computer Vision Toolbox and the Deep Learning Toolbox of MATLAB. The
following equations were utilized, with nij as the number of pixels of class I predicted to
belong to class j, when there are nclass different classes:

Global accuracy:

(Number of true classified pixel)/(Total number of pixel) = TP + TN/TP + TN + FP + FN (1)

Mean accuracy:
TP/TP + FN (2)

Mean IU:
Intersection/Union = 1/nclass ∑I TP/TP + FP + FN (3)

Mean BF score:

(2 × Precision × (1 − Recall))/(Precision + (1 − Recall)) = 2TP/((TP + FN) + (TP + FP)) (4)

where Precision = TP/TP + FP; Recall = TP/TP + FN; TP = True Positive; TN = True
Negative; FP = False Positive; and FN = False Negative.

We also compared the diagnostic performance of the semantic segment networks
and the ground truth by plotting the receiver operating characteristics (ROC). The criteria
for correction were based on the frequency weighted IU. If the overlap region in the
ground truth pixel region was >75% in each BI-RADS lexicon, the segmentation result was
considered “correct,” while those with an overlap < 75% were considered “incorrect.”

2.6. Computation Environment

All computations were performed on an ASUS ProArt Studiobook Pro 15 laptop with
an Intel Core i7-9750H processor (2.6 GHz hexa-core with up to 4.5 GHz Turbo Boost and
12 MB cache), 32 GB DDR4 ECC RAM, and NVIDIA Quadro RTX 5000 MAX Q graphic card
with a 16 GB video RAM (Asus, Taipei, Taiwan). The NVIDIA Compute Unified Device
Architecture (CUDA), version 10.2, and the NVIDIA CUDA Deep Neural Network library
(CuDNN), version 10.2 enabled the accelerated computation environment of the graphics
processing unit (GPU) (NVIDIA, San Jose, CA, USA).

3. Results
3.1. Characteristics of Image Set

In this study, after the exclusion criteria were applied to all the participants, the image
dataset contained 378 images (204 benign and 174 malignant images) from 189 patients
(102 patients with a benign breast tumor and 87 with a malignant one). In benign cases, the
most common tissue types of solid nodes were fibroadenomas (28/102, 27.45%), fibrocystic
changes (26/102, 25.49%), and fibroepithelial lesions (27/102, 26.47%). The incidence of
lobular carcinoma in situ (LCIS) was 3.92% (4/102). In the case of malignant tissue types,
the incidence of ductal carcinoma in situ (DCIS) was 20.82% (18/87); the most common of
which was invasive ductal carcinoma (IDC) (69/87, 79.18%). Table 1 shows the detailed
characteristics of the image dataset and patients. Table 2 shows the image amount, number
of pixels, and total number of pixels in each lexicon. The most common malignant lexicons
were angular margin and taller-than-wide.
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Table 1. Patient and image characteristics.

Characteristics Benign (n = 102) Malignant (n = 87)

Age of patients (y) 45.17 (43.28–47.75) 55.63 (53.25–57.84)
BI-RADS category

3 21 (20.59%) 3 (3.01%)
4A 73 (71.57%) 31 (35.62%)
4B 5 (4.90%) 17 (12.60%)
4C 2 (1.96%) 10 (11.78%)
5 1 (0.98%) 26 (29.04%)

Malignant tissues
DCIS - 18 (20.82%)
IDC - 69 (79.18%)

Benign tumors
LCIS 4 (3.92%) -

Fibroadenoma 28 (27.45%) -
Fibrocystic change 26 (25.49%) -

Adenosis 3 (2.94%) -
Fibroepithelial lesion 27 (26.47%) -

Other 14 (13.73%) -
BI-RADS: Breast Imaging Reporting and Data System; US: Ultrasound; DCIS: Ductal carcinoma in situ; LCIS:
Lobular carcinoma in situ; IDC: Invasive ductal carcinoma.

Table 2. Selected lexicons in this study and the image/pixel count of the dataset.

Name Pixel Count Image Pixel Count Image Count

Shadowing 184,157 1,814,400 14
Taller Than Wide 912,091 6,739,200 52
Microlobulation 7593 2,203,200 17

Hypo Echogenicity 153,534 4,406,400 34
Duct Extension 116,809 2,851,200 22

Angular Margins 3,706,365 47,433,600 366
Background 43,908,251 48,988,800 378

Pixel Count: Number of pixels in each lexicon. Image Pixel Count: The total number of pixels in each lexicon in
all images. Image Count: Total number of images in each lexicon.

3.2. Result

The output of the semantic segmentation was also visualized by using a customized
color map, which clearly displays the selected seven malignant features to help physicians
judge the malignant tumor and corresponding BI-RADS category. Figure 4 presents the
original US image and the semantic segmentation visualization result. Each lexicon has a
different color filled in the detected region, according to the specific color map. The global
accuracy of the FCN was 91.49%, the mean accuracy was 32.82%, and the weighted IU was
85.35%. The mean BF score was 61.02. Table 3 presents the performance of the segmentation
networks evaluated in this study. The AUC of correct recognized BI-RADS lexicons was
89.47%. The sensitivity was 88.64%, and the specificity was 91.76% (p < 1 × 10−5). The PPV
and NPV were 89.1% and 87.8%, respectively. The ROC curve and the AUC are shown
in Figure 5.
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3.3. Comparisons to Other Semantic Segmentation Networks

Two recent semantic segmentation networks, SegNet [21] and U-Net [22], were also
utilized to compare their performance to that of the FCN-32s used in this study. Figure 4
shows the segmentation network outputs of SegNet (based on VGG 16 and VGG19 en-
coder), U-Net (when depth = 4), and FCN-32s. Figure 6 illustrates the comparisons of the
segmentation networks in a specific case (malignant patient #28). Overall, the FCN-32s
showed good semantic segmentation performance and better detection of specific lexicons,
such as angular margins and taller-than-wide, than SegNet or U-Net. Especially, it usually
conserved complete and clear margins for each BI-RADS lexicon after image segmentation.
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Figure 6. Comparison of segmentation network results in a specific patient with malignancy. (a) input
ultrasound image and its ground truth. The input US image contains three BI-RADS lexicons: angular
margin (in red), hypo-echogenicity (in green), and taller than wide (in yellow); (b) Segmentation by
FCN-32s. All three characteristics of the BI-RADS lexicons were conserved. There is some deviation in
the size of the region in each lexicon, and most of the segmentation was correct. (c) Segmentation by
SegNet (based on VGG-19). Although the angular margin and taller-than-wide characteristics were
recognized, there is no clear margin in each region of BI-RADS lexicon. Apart from the taller-than-
wide region being broken, some of that region was also recognized as duct extension (in blue dots),
which was not in the original input image. (d) Segmentation by U-Net (depth = 4). This network
failed in this test.
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Figure 7 presents the normalized confusion matrices of all semantic segmentation net-
works in this study in order to illustrate the proportion of correct results in each recognized
lexicon. The segmentation result utilizing SegNet with the VGG16 encoder only recognized
angular margin and shadowing and showed low correctness (9.1% and 1.5%). Comparing
the output to the ground truth result revealed that the hypoechogenicity region was cov-
ered and mixed by other lexicons, and most of the duct extension region was recognized
as angular margins. Only some pixels belonging to duct extension and taller-than-wide,
which were near the tumor margin, were correctly recognized. The segmentation result
using SegNet with the VGG19 encoder showed higher accuracy in recognizing the an-
gular margin. Most of the taller-than-wide and angular margin regions were incorrectly
recognized as duct extension. This network presented good performance in feature segmen-
tation (weighted IU: 79.54%, mean BF score: 80.77%); however, because the background
comprised the largest region in each image, the normalized confusion matrix of the U-Net
classified most of the feature pixels as background. This is an incorrect finding.

Diagnostics 2021, 11, x FOR PEER REVIEW 9 of 12 
 

 

Figure 7 presents the normalized confusion matrices of all semantic segmentation 
networks in this study in order to illustrate the proportion of correct results in each rec-
ognized lexicon. The segmentation result utilizing SegNet with the VGG16 encoder only 
recognized angular margin and shadowing and showed low correctness (9.1% and 1.5%). 
Comparing the output to the ground truth result revealed that the hypoechogenicity re-
gion was covered and mixed by other lexicons, and most of the duct extension region was 
recognized as angular margins. Only some pixels belonging to duct extension and taller-
than-wide, which were near the tumor margin, were correctly recognized. The segmenta-
tion result using SegNet with the VGG19 encoder showed higher accuracy in recognizing 
the angular margin. Most of the taller-than-wide and angular margin regions were incor-
rectly recognized as duct extension. This network presented good performance in feature 
segmentation (weighted IU: 79.54%, mean BF score: 80.77%); however, because the back-
ground comprised the largest region in each image, the normalized confusion matrix of 
the U-Net classified most of the feature pixels as background. This is an incorrect finding. 

  
(a) (b) 

  
(c) (d) 

Figure 7. Normalized Confusion Matrix of the classification performance based on selected BI-
RADS lexicons in SegNet, U-Net, and FCN-32s. The proportion of correctly recognized in each lex-
icon among the three networks (in percentage). (a) classification performance of SegNet with the 
VGG16 encoder; (b) classification performance of SegNet with the VGG16 encoder; (c) classification 
performance of U-Net; (d) classification performance of the FCN. 

  

Figure 7. Normalized Confusion Matrix of the classification performance based on selected BI-RADS
lexicons in SegNet, U-Net, and FCN-32s. The proportion of correctly recognized in each lexicon among
the three networks (in percentage). (a) classification performance of SegNet with the VGG16 encoder;
(b) classification performance of SegNet with the VGG16 encoder; (c) classification performance of
U-Net; (d) classification performance of the FCN.



Diagnostics 2022, 12, 66 10 of 12

4. Discussion

In this study, we focused on the ability of semantic segmentation, combining deep
network and the BI-RADS lexicon, to facilitate multi-target segmentation of US images by
comparing the similarity of this prediction result to that of the radiology report drafted
by experienced physicians. We also sought to provide a visualization of the detected
malignant features by region for preliminary diagnostic reference. This visualization is
clinically impactful, particularly for physicians and radiologists, because it can show all
detected US image features that are synonymous with the BI-RADS malignant lexicon at a
glance; this considerably decreases the effort of visually reading the image. In comparison,
traditional image segmentation usually partitions, clusters, and locates objects on images
by using segmentation methods (such as color, texture, and boundary smoothness) and
does not tag the region or fragment that belongs to the same or related cluster, thus
lacking in-depth meaning for these segmentation regions. Furthermore, when malignant
characteristics are detected and found to be synonymous with specific BI-RADS lexicons,
traditional image segmentation cannot segment more than one feature from a single image.

Our preliminary result showed that semantic segmentation could segment multiple
malignant image features from one image, and these malignant features were synonymous
with specific BI-RADS terms. The global accuracy, weighted IU, and AUC of the FCN-32s
were over 85%, showing an acceptable performance, which was better than that of SegNet
and U-Net after the estimations. The mean accuracy and mean IU of the FCN-32s in
this study was slightly less than the average level found in a related study [23] (32.82%
vs. about 40% and 28.88 vs. approximately 35, respectively) due to an imbalance in the
image count and pixel count in each lexicon. The most frequently cited characteristic was
angular margin (366/378, 96.82%), and the least frequent were shadowing (14/378, 3.7%)
and microlobulation (17/378, 4.5%). In this situation, using the mean accuracy and mean
IU as performance metrics led to inaccurate estimates; the use of the weighted IU was
more appropriate.

In cases with a malignant breast mass, it is common to have both malignant and
benign image features in the same report [12]. Therefore, classifying the malignant or
benign tumor in the US image merely according to the detected BI-RADS malignant lexicon
is inappropriate; the classification must be confirmed by pathology. The image dataset in
this study included both benign and malignant tumors in similar proportions; thus, our
results suggest that this segmentation procedure is suitable for both benign and malignant
tumor images and meets the requirements for daily clinical use.

The main limitation of this study was its small image dataset and the partial utilization
and recognition of BI-RADS lexicons. Each image may have multiple malignant lexicon
characteristics that need to be tagged and sketched related to their region and location,
which increased the training dataset preparation and limited the size of the image dataset.
In addition, only the seven BI-RADS characteristics most related to malignant tumors were
selected. It is important to extend the number of detectable characteristics. The similarity
score or rating to the ground truth after segmentation was also not provided in this study.
At present, the weighted IU and mean BF score reached acceptable levels in this study, and
the application of a small amount of data to FCN32s did not have much impact on the
result analysis. However, the application to a larger dataset would result in more accuracy.
These defects should be addressed in future work based on this study.

5. Conclusions

In contrast to traditional image segmentation, semantic segmentation of medical im-
ages is a more advanced and complicated task. The inherent noise and speckle of US
imaging create indistinct margins around the malignant feature and increase the difficulty
of segmentation. Therefore, it remains challenging to obtain meaningful diagnostic infor-
mation from semantic segmentation of US imaging. In this study, the combination of deep
learning and a semantic segmentation network with a pre-defined BI-RADS malignant-
related lexicon to analyze US images was used to extract specific features from US im-
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ages that were synonymous with the BI-RADS malignant terminology. The application
of this network could help physicians make a fast and accurate diagnosis of malignant
breast tumors.
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