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Abstract: Migraine is the sixth most prevalent disease in the world and a substantial number of
experiments have been conducted to analyze potential differences between the migraine brain and
the healthy brain. Results from these investigations point to the possibility that development and
aggravation of migraine may include grey matter plasticity. Nogo-type signaling is a potent plasticity
regulating system in the CNS and consists of ligands, receptors, co-receptors and modulators with a
dynamic age- and activity-related expression in cortical and subcortical regions. Here we investigated
a potential link between migraine and five key Nogo-type signaling genes: RTN4, OMGP, MAG,
RTN4R and LINGO1, by screening 15 single nucleotide polymorphisms (SNPs) within these genes. In
a large Swedish migraine cohort (749 migraine patients and 4032 controls), using a logistic regression
with sex as covariate, we found that there was no such association. In addition, a haplotype analysis
was performed which revealed three haplotype blocks. These blocks had no significant association
with migraine. However, to robustly conclude that Nogo-type genotypes signaling do not influence
the prevalence of migraine, further studies are encouraged.
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1. Introduction

Migraine is the sixth most prevalent disease in the world [1]. While primarily associated with a
burdening, often pulsating headache, migraine is frequently accompanied by other symptoms of altered
sensory function. These symptoms vary in type, frequency and intensity between individuals. Common
ones are nausea, vomiting, cutaneous allodynia, photophobia, phonophobia and osmophobia [2,3].
About one third of all migraine patients also experience the phenomenon of aura. Migraine with aura
indicates transient neurological symptoms prior to the headache, often visual and/or a sensation of
numbing and weakness in various parts of the body [4,5]. The migraine aura appears to be the result
of cortical spreading depression which, in turn, has been associated with increased inflammation and
subsequent activation of trigeminal afferents known to cause pain [6]. Migraine can be episodic (EM)
with <15 attack days per month or chronic (CM) with ≥15 attack days per month [7] and patients
may change from EM to CM and vice versa [8]. The lifetime prevalence of migraine is around 13%
in Sweden [9]. Chronic migraine is reported throughout populations with a prevalence of 2% [10].
The disease affects women two to three times more often than men, and episodes in women tend to
correlate to hormonal levels peaking around menstruation [11,12]. In addition to a reduced quality of
life [13], individuals with migraine have an increased risk of depression [14,15], with CM patients [16]
and patients with aura [17] running a higher risk than EM patients. This comorbidity is hypothesized
to be caused by a shared genetic profile [18,19]. Despite intense worldwide efforts in recent decades,
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the underlying mechanisms causing migraine are still not fully understood, even though genome-wide
association studies (GWAS) have substantially increased our knowledge of the genetic background
of this complex, polygenic and multifactorial disease. The most recent GWAS, including 375,000
individuals, associated migraine to a variety of genetic loci, pointing primarily to a vascular cause but
also suggesting a role for disturbances of metal ion homeostasis [20].

A substantial number of experiments have been conducted to analyze potential differences between
the migraine brain and the healthy brain. Brain activity and morphology have been scrutinized with
different techniques, such as electrophysiology, electroencephalography, magnetoencephalography,
magnetic resonance imaging (MRI) and positron emission tomography [21–27]. Results from these
investigations have identified differences between control and migraine brains with regard to resting
state activity and structure of gray and white matter. Differences have been detected in the frontal
lobes, corpus callosum, the limbic system, cerebellum, the brainstem and nociceptive regions, although
findings are not consistent across studies [22,24,25,27–36]. In addition to regional differences, cortical
thickness has been reported to differ between migraine patients and controls, and even correlate to
attack frequency [37]. However, as only few longitudinal studies have been published, it remains
to conclusively establish whether alteration of cortical thickness is a response to repeated migraine
attacks or a predisposing condition. Furthermore, it is not known whether these structural changes
may normalize with adequate treatment or spontaneous remission. The results from published
investigations nevertheless indicate that disease duration and attack frequency appear to correlate
with degrees of altered structures, sensitization of excitability and with altered biochemical properties.
Indeed, migraine has even been proposed to possibly be a progressive brain disease [26,32,35].

The central nervous system relies on a balanced level of plasticity to adequately wire and
rewire neuronal connections. Nogo type signaling [38] is known as a potent negative regulator
of structural synaptic plasticity in the CNS [39–42]. It consists of ligands, receptors, co-receptors
and modulators with a dynamic age- and activity-related expression in cortical and subcortical
regions [43,44]. Nogo-type signaling is executed primarily via Nogo receptor 1 (NgR1) through which
the ligands Nogo-A, oligodendrocyte-myelin glycoprotein (OMGP) and myelin associated glycoprotein
(MAG) can signal [45–49]. As NgR1 is a glycophosphatidylinositol (GPI) linked receptor; the signal
transmission occurs with the assistance of co-receptors TROY or P75 and LINGO1 or AMIGO3 [50–53].
Activation of NgR1 initiates an intracellular cascade through the RhoA/ROCK pathway, leading to the
depolymerization of cytoskeletal actin and the collapse of axon growth cones (Figure 1) [41,48,54].
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In epilepsy, initial seizure episodes tend to lower the threshold for additional attacks through
kindling, a mechanism by which strongly activated brain pathways are thought to undergo structural
synaptic plasticity. In support of this, animal modeling of electroconvulsive conditions have been
shown to cause transient down regulation of NgR1 [55]. It has been suggested that migraine and
affective illness may share the development of kindling with epilepsy [56]. Here, we ask if brain
plasticity regulating genes involved in Nogo-type signaling are altered in migraine.

2. Material and Methods

Genetic information obtained from the Swedish Twin Registry was analyzed for this report,
and the material has been described elsewhere [57]. All studies were performed in accordance with
the Declaration of Helsinki, and procedures were carried out with written consent and adequate
understanding of the test subjects. To conduct the following experiments, approval from the human
subject’s ethical review board of Stockholm (reference number 2007/644-31) was received.

The material consisted of 9897 Swedish individuals, of which 910 were classified to suffer from
migraine, according to the International Classification of Headache Disorders 2nd edition ICHD-II [58].
This edition was extant at the time of the data collection and not reconciled with any changes
in the newest edition (ICHD-3) affecting our study [7]. Classification was based on self-assessed
questionnaires. We removed 1443 individuals from which information about migraine was not
available. One twin per twin-couple was used for the association analyses. If one twin was diagnosed
with migraine, this twin was kept for analysis, if both twins had migraine, one twin was randomly
selected. In total, this caused removal of 4781 subjects. The cohort was checked for cryptic relatedness
which removed 63 subjects, and for incorrectly assigned sex, which removed 36 subjects.

Genotyping was done on the Illumina HumanOmniExpress 12 v1.1 chip at the SNP&SEQ
Technology Platform, Uppsala University. Quality control (QC) of the material included missing
genotype rate per person <0.1, missing genotype rate per single nucleotide polymorphism (SNP) <0.1,
minor allele frequency (MAF) <0.01 and Hardy–Weinberg equilibrium (1 × 10−6 for controls and 1
× 10−10 for cases) [59]. QC did not lead to the removal of any subjects. We found a 3.6-fold higher
migraine frequency in women compared to men in our material (Table 1). This uneven, but expected,
gender distribution in disease prevalence led us to use logistic regression with sex as a covariate for
analysis. This controls for the risk of under- or overestimation of differences due to gender. We also
performed a haplotype association test. Pairwise comparisons of markers were ignored for markers
located >500 kbp apart.

Table 1. Distribution of individuals for analysis.

Controls Cases Total Migraine Frequency

Men (%) 2138 (53.0) 162 (21.6) 2300 7.0%
Women (%) 1894 (47.0) 587 (78.4) 2481 23.7%

Total 4032 749 4781 15.7%

The three Nogo receptor ligand genes RTN4 (Nogo-A), OMGP, and MAG, the key Nogo receptor
gene RTN4R (NgR1), and the co-receptor LINGO1 were chosen for genetic analysis. To identify SNPs
associated with these genes, we used the National Institute of Environmental Health Sciences software
“LD TAG SNP Selection” selecting for SNPs in the central European population (CEU) [60] to match our
Swedish migraine cohort. If the identified SNPs were not represented on the Illumina HumanOmni
Express 12 v1.1 chip, we chose matching SNPs in high linkage disequilibrium (LD) (r2: 0.96–1), in
order to test for indirect association. This was done for 12 SNPs via the Ensembl software (Table 2). For
nine of the TAG SNPs, replacement SNPs were not available, therefore, they were excluded from the
study (Table S1). The remaining TAG SNPs and replacement SNPs were tested for high LD to exclude
SNP-pairs with r2 > 0.2 [61]. This step led to the rejection of 17 additional SNPs, leaving 15 SNPs for
further analysis.
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Table 2. Nogo-type signaling single nucleotide polymorphism (SNP) selection for association analysis.

Chr Gene Symbol TAG SNPs of Interest Replacement SNP After Exclusion of SNPs in LD with r2 > 0.2

2 RTN4 rs6545465 rs17046589 rs17046589

2 RTN4 rs7562292 rs6545466 -

2 RTN4 rs10084445 rs6715980 rs6715980

2 RTN4 rs7584386 rs7584354 -

2 RTN4 rs2580765 - rs2580765

2 RTN4 rs17046594 rs17046570 -

2 RTN4 rs3198123 - -

2 RTN4 rs2580769 - -

2 RTN4 rs2588517 - -

2 RTN4 rs2588519 - -

2 RTN4 rs2864052 - -

2 RTN4 rs10496037 - rs10496037

2 RTN4 rs2920898 - -

15 LINGO1 rs907395 rs907396 rs907396

15 LINGO1 rs8024724 rs8023571 rs8023571

15 LINGO1 rs3743481 - -

15 LINGO1 rs7162113 - -

15 LINGO1 rs3144 - rs3144

15 LINGO1 rs1877298 rs8028788 rs8028788

17 OMG rs11080149 - rs11080149

19 MAG rs12461927 rs720308 -

19 MAG rs12185485 rs3746248 -

19 MAG rs10414549 - -

19 MAG rs9304870 - rs9304870

19 MAG rs6510476 - rs6510476

19 MAG rs2301600 - rs2301600

19 MAG rs10411883 rs11669734 -

22 RTN4R rs854971 rs701427 rs701427

22 RTN4R rs1567871 - rs1567871

22 RTN4R rs855050 - rs855050

22 RTN4R rs1807466 - -

22 RTN4R rs887765 - -

Table of 32 SNPs associated with five Nogo-type signaling genes and their replacement SNPs if original SNPs were
not available on the Illumina OmniExpress chip. SNPs in LD with r2 > 0.2 were excluded. SNPs in the rightmost
column were used for further association analysis with migraine in the Swedish twin cohort. Chr = Chromosome,
SNP = Single Nucleotide Polymorphism, LD = Linkage Disequilibrium.

Genetic analyses were made with PLINK versions 1.07 and 1.9 [62,63]. Power calculations
were made online with help of the Genetic Association Study Power Calculator [64] with MAF
reference-values from National Center for Biotechnology Information [65], choosing the Northern
Sweden population (Table 3). Haplotype analysis was made with the Haploview software from the
Broad institute [66]. For graphical and further statistical analysis, we used R and RStudio version
1.1.456 [67,68].
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Table 3. Fifteen SNPs associated with Nogo-type signaling investigated for association to migraine in a
Swedish cohort.

Gene SNP Function Minor
Allele

MAF
NCBI

MAF
Cases

MAF
Controls OR (95% CI) P-Value Corrected

P-Value

RTN4 rs2580765 Intron C 0.46 0.46 0.43 1.09 (0.97–1.22) 0.14 1

RTN4 rs6715980 Intron A 0.06 0.07 0.07 1.04 (0.83–1.29) 0.76 1

RTN4 rs17046589 Intron G 0.22 0.18 0.18 1.003 (0.87–1.16) 0.96 1

RTN4 rs10496037 Intron T 0.11 0.12 0.11 1.08 (0.91–1.29) 0.36 1

LINGO1 rs3144 3’ UTR region C 0.40 0.37 0.37 0.97 (0.86–1.09) 0.56 1

LINGO1 rs907396 Intron G 0.40 0.40 0.38 1.1 (0.98–1.24) 0.11 1

LINGO1 rs8023571 Intron T 0.12 0.12 0.12 1.02 (0.86–1.22) 0.79 1

LINGO1 rs8028788 Intron C 0.04 0.05 0.04 1.17 (0.91–1.52) 0.23 1

OMGP rs11080149 Coding T 0.14 0.17 0.15 1.08 (0.92–1.25) 0.35 1

MAG rs6510476 Intron G 0.16 0.18 0.18 1.01 (0.87–1.17) 0.92 1

MAG rs2301600 Coding T 0.24 0.25 0.23 1.07 (0.94–1.22) 0.33 1

MAG rs9304870 Intron G 0.33 0.38 0.38 1.03 (0.91–1.15) 0.66 1

RTN4R rs701427 Intron A 0.31 0.32 0.34 0.93 (0.83–1.05) 0.26 1

RTN4R rs1567871 Intron T 0.26 0.25 0.25 1.0 (0.88–1.14) 1.00 1

RTN4R rs855050 Intron G 0.49 0.51 0.50 1.04 (0.93–1.17) 0.47 1

Chr = Chromosome, SNP = Single Nucleotide Polymorphism, 3’ UTR = three prime untranslated region, MAF
= Minor Allele Frequency, OR = Odds Ratio, CI = confidence interval, P-values = α 0.05, Corrected P-value =
Bonferroni correction based on α/15 (nr of SNPs).

3. Results

Nogo-type signaling involves a broad number of receptors, ligands, co-receptors and modulators.
To increase the power of our study, we chose to analyze five key genes: RTN4, RTN4R, LINGO1,
OMGP, and MAG. After QC (see methods), our cohort consisted of 4781 individuals, 749 cases and
4032 controls, and we selected 15 SNPs in, or in proximity to, these genes for the association analysis
(Table 3). When we used the association analysis in the form of a logistic regression analysis with sex
as a covariate due to the expected 3.6 times higher prevalence of migraine among females in our cohort,
we did not reveal an association between any of these 15 SNPs and migraine.

As haplotypes are considered more valuable to predict genetic correlations with disease outcome
than single SNPs alone [69], we also performed a haplotype analysis. The analysis revealed three
haplotype blocks (Table 4). These blocks had no significant association with migraine.

Table 4. Identified haplotypes in three genes associated to Nogo-type signaling were not associated
to migraine.

Block Haplotype Frequency Case-Control
Frequencies P-Value

LINGO1 rs907396 rs8023571 CC 0.41 0.43/0.41 0.17
AC 0.34 0.32/0.34 0.21
CT 0.25 0.25/0.25 0.83

MAG rs6510476 rs2301600 AC 0.59 0.58/0.59 0.23
AT 0.23 0.25/0.23 0.18
GC 0.18 0.18/0.18 0.96

RTN4R rs701427 rs1567871 TC 0.50 0.49/0.50 0.26
GC 0.38 0.39/0.38 0.26
TT 0.12 0.12/0.12 0.89

To estimate what effect-size we would need to be able to reach a power of 80% or 95%, we
performed power calculations based on the MAF of each SNP in our population (Figure 2). The two
levels of power were selected with the rationale that this was a study of collected data from a very
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specific population. Hence, a replication study where each replicate would decrease the risk of missing
an actual effect is hard to obtain. This is based on the commonly chosen power of 80% which would
declare 1/5 of the SNPs having a significant association as non-significant.
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4. Discussion

Migraine carries dire consequences for the suffering patients, including socio-economic misfortune.
In the United States alone, the societal direct and indirect costs were estimated to be $36 billion
in 2016 [70]. Progress in the understanding of migraine pathophysiology is central to discover
better therapies.

It has repeatedly been demonstrated how the migraine brain differs morphologically from the
healthy brain in several brain regions. Moreover, these alterations appear to progress over time and
with attack frequency [25,28,31–35]. However, there may well be alterations at the level of structural
synaptic plasticity that cannot be detected in vivo in humans with available methods. Here, we
investigated a potential association between a key plasticity-regulating system in the CNS—Nogo-type
signaling—and migraine.

Microstructural alterations associated with Nogo-type signaling cannot be investigated with MRI
and related methods, since voxel sizes trespass the size of dendrites and dendritic spines [32,71]. Since
satisfying animal models of migraine are lacking, we chose a genetic approach to investigate Nogo-type
signaling in migraine. We looked at the frequency of 15 SNPs from five genes primarily associated with
Nogo-type signaling; the ligands RTN4, OMGP and MAG, the key receptor RTN4R, and the co-receptor
LINGO1. The most recent GWAS of migraine identified 38 suspected loci [20], none of them a part of
Nogo-type signaling. However, as GWAS handles huge numbers of genetic targets, it not only suffers
risk of detecting false-positive associations, its need for profound correction for multiple testing may
result in loss of smaller effects.

We analyzed SNPs related to Nogo-type signaling in a cohort of the Swedish Twin Registry,
consisting of 749 migraine cases and 4032 controls where the migraine frequency was 3.6 times higher
among women. When analyzing the association of the Nogo SNPs with sex as covariate, we found no
significant association of any of the selected genes to migraine. Our findings decrease the likelihood of
altered Nogo signaling being a risk factor for migraine but does not exclude this possibility.

Migraine patients differ regarding age of onset, occurrence of aura, frequency of attacks,
attack-causing stimuli, and attack intensity. Furthermore, different patients respond to different
medications. For some patients, over the counter painkillers can abort an attack while for other patients,
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extensive polypharmacological treatments may not be sufficient. These differences in response to
medication presumably reflect different genetic profiles [72]. A limiting aspect of the current study is
that information about these variations among the migraine patients was lacking.

ICHD defines chronic migraine as having fifteen or more attack days per month. However, already
in patients with episodic migraine, suffering from three attack days (and more, but less than 15) per
month have been shown to be associated with structural differences [32]. The fact that structural
changes are noticeable at a five times lower frequency than the criteria of the chronic state increases the
incentive for a more aggressive therapy to alleviate symptoms by reducing attack frequency early on,
also in episodic migraine patients.

Our results should also be viewed in light of the power analysis which revealed that with our
sample size, we would need odds ratios extending the ORs acquired in this report, and the ORs in the
last migraine GWAS [20]. Our ORs were 0.97–1.17 and the SNPs positively associated with migraine
in the migraine GWAS had ORs ranges of 0.88–1.11. Our power calculation pointed out that for 80%
power, our SNPs would need ORs between 1.27 and 1.74 and for 95% power, ORs of 1.34–1.97. Thus,
this study defines a theoretical upper level of how strongly these SNPs could influence the prevalence
of migraine. When more studies emerge, this initial estimated effect can be improved, and a more
exact effect/non-effect can be established.

5. Conclusions

Nogo-type signaling comprises a potent negative regulator system for structural synaptic plasticity.
We investigated a potential link between Nogo-type signaling and migraine based on the frequency of
15 SNPs associated with five genes involved in Nogo-type signaling in 4781 individuals, of which 749
had migraine, in a Swedish cohort. We did not detect an association of any of the 15 SNPs with migraine.
Our findings suggest that altered Nogo-type signaling does not strongly affect the pathophysiology
of migraine.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3425/10/1/5/s1, Table
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