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Abstract: This paper presents a new algorithm that allows a team of robots to cooperatively

search for a set of moving targets. An estimation of the areasof the environment that are

more likely to hold a target agent is obtained using a grid-based Bayesian filter. The robot

sensor readings and the maximum speed of the moving targets are used in order to update

the grid. This representation is used in a search algorithm that commands the robots to those

areas that are more likely to present target agents. This algorithm splits the environment in a

tree of connected regions using dynamic programming. This tree is used in order to decide

the destination for each robot in a coordinated manner. The algorithm has been successfully

tested in known and unknown environments showing the validity of the approach.

Keywords: dynamic agent search; grid-based Bayesian filtering; search algorithm;

multi-robot systems

1. Introduction

This paper investigates the search problem in which a team ofagents (the searchers) collectively try

to find another set of moving agents (dynamic targets). The interest in this particular problem stems from

the fact that, in the last years, a great number of applications have emerged in which it is necessary to

deploy search tasks in unstructured environments. For example, search and rescue tasks, surveillance and

other military tasks. The deployment of mobile robots in these situations is advantageous, since it avoids

the presence of humans in dangerous places or in environments difficult to reach. In addition, mobile
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robots can take advantage from the use of sensors specially designed for the detection of objectives, such

as motion detectors, infra-red cameras or laser range finders.

The dynamic agents search problem is related to the pursuit and evasion problem [1,2]. The pursuit

and evasion problem describes a two teams game in which the agents in the Pursuer Team try to find the

agents of the Evader Team. Since the agents of the Evader Teamare in motion, the problem is not reduced

to a simple exploration problem as it would be if they were static. In this case, the pursuers should make

a fast coverage of the environment trying to find all the evaders. However, since the evaders may enter

an area previously covered by the pursuers, the pursuers maycover completely the environment without

finding all the evaders. As a consequence, a simple exploration algorithm [3] is not enough to perform

this task. Consequently, most of the pursuit and evasion techniques try to sweep the environment with

the team in such an optimal way that there is no possible escape for the evaders. That is, provided that

there are enough pursuers, an optimal path can be found for each pursuer in order to cover all the search

area without letting any opportunities for the evaders to escape. This kind of algorithms fail in the case

there are not enough pursuers for a given scenario. In this sense, when not enough searchers are provided

more general approaches are necessary.

We focus in this paper on the dynamic agents search problem, which is the particular case of the

pursuit and evasion problem in which the evaders are not intelligent and their movements do not try

to avoid the pursuers. This particular case of searching a moving agent that is not trying to escape is

quite common in robotics applications. For instance, a robot with human-robot interaction capabilities

may need to find a human in its proximities in order to interactwith and get some information [4].

Other application scenario is the case of searching for malfunctioning robots that may be moving around

without control.

The proposed problem will be approached in a general way, assuming there are not enough robots to

perform a full optimal search of the target area. In this sense, the robots choose to explore first those

areas where it is more likely to find the moving targets. Next,the main hypotheses that are considered

in this approach are detailed. Firstly, it is assumed that the searchers know the top speed of the dynamic

agents, so the movement of these moving targets can be delimited. In the majority of the applications,

it can always be assumed that a maximum speed for the dynamic agents can be determined. Secondly,

it is assumed that the searchers are equipped with an appropriate sensory system that is able to detect

each one of the targets within a range. Nowadays, the use of omnidirectional vision systems allows to

assume this premise. In addition, the team of searchers consists of a set of mobile agents that maintains

a communication channel around all the environment. Besides, the problem of the localization and

reconnaissance is obviated.

Consequently, provided that the searchers know the top speed of the targets, the movements of the

targets can be completely delimited in a probabilistic way.Therefore, from this information and from

their own trajectories and sensor readings, the Search Teamcan make an estimation of the areas of the

environment that are more likely to hold a target. In order tointegrate all this information a grid-based

Bayesian filter (GBBF) is used. Then, a navigation algorithmselects the areas according to the GBBF

where targets are more likely to be present as destinations for the searchers. In order to avoid that all the

searchers go to the same place, some coordination mechanisms are applied in the destination selection.
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The algorithm presented here has been tested in simulation in two different cases. First, we consider

that the search team knows precisely the environment, however the whole environment needs to be

explored in search of a set of moving targets. Second, we consider that the environment is completely

unknown. In this case, a map of the environment is built as thesearch team covers the different areas of

the environment. The map being built is used in order to improve the search of the dynamic agents.

The rest of the paper is organized as follows. First, in the next section we present some work in close

relation with this paper. Second, the grid-based Bayesian filter used to estimate the best target areas

is explained in Section3. Next, the coordinated goal selection for each agent of the Search Team is

developed in Section4. Then the experiments carried out to test the approach are exposed in Section5.

Finally, Section6 explains the conclusions and open research lines.

2. Related Work

In mobile robotics, exploration is considered as the problem of traversing all the areas of a particular

unknown environment [3]. Normally, exploration algorithms are used jointly with aSimultaneous

Localization and Mapping (SLAM) algorithm in order to create a map of the environment during the

exploration process [5]. Classical exploration techniques direct the robots to examine every place in

the environment in an efficient manner, thus reducing the total time needed to cover a determined area.

For instance, some algorithms command the robots to the nearest frontier [6]. In these techniques, the

environment is represented in a discrete bi-dimensional grid, where each cell is considered as occupied,

free or unknown (unexplored). Frontier cells are unknown cells that lie next to a free cell. The application

of this family of algorithms to search problems is direct [7].

When the main objective is to incrementally build a map of theenvironment, exploration strategies

allow to select the vantage points that should be reached by the robots. In these activities, it is of capital

importance to design a good exploration strategy in order tobuild the most precise map in the shortest

time. Most of the exploration algorithms presented to date consider the evaluation of an utility function

in order to select the best trajectory for the robot [8]. Some authors have extended these ideas to the

case of multi-robot exploration. Commonly, the utility function used in exploration is a measure of the

information gain of visiting a place in the environment and the cost of reaching it. The cost is in relation

with the distance between the robot and the possible destination, whereas the utility is estimated in

dissimilar manners. For example, in [9] utility is considered as the visible area behind a frontier. In [10],

the destinations chosen by other robots are taken into account in the computation of the utility function.

Thus, when a robot is commanded to a point in the environment,the utility of this area is reduced for

the rest of the robots, in an effort to coordinate them and increase the exploration speed. A market-based

mechanism where the robots compete and optimize their routes by negotiating their destinations as a

function of the cost and the expected utility was suggested in [11]. Some other approaches focus on the

structure of the environment. For example, the doors found in the environment can be recognised and

represented inside a topological map. In [12], this information is considered in order to assign utility

values to different unexplored areas for each robot.

This kind of search and exploration algorithms has been applied to search and rescue tasks. In these

situations, we typically wish to search and localize a series of targets or victims inside the search area,
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being the number of objectives to localize a priori unknown.The approaches in this field normally have

to deal with the problem of accessing and manoeuvring in these environments [13], thus in search and

rescue applications researchers are generally more concerned with the development of algorithms that

allow the robot to manoeuvre in completely unstructured andchallenging environments. In consequence,

the processing of sensor information is of paramount importance in order to find the free navigable space

and obstacles. In addition, the localization of the targetsinside this environments may be extremely

complicated [14]. There are different variations in the search and rescue problems used for the detection

of a set of static targets. In these cases, and since there exists no prior knowledge about the position

of the targets, the search and exploration problem can be stated as the maximization of the number

of detected targets in a fixed amount of time, or equally, the maximization of the explored area. For

example, an approach based on a Multi Criteria Decision Making algorithm that allows to define the

exploration strategies deployed by a set of robots in a search and rescue problem is presented in [15].

Other exploration strategies try not only to maximize the explored areas, but to find and communicate

the position of the victims. Thus, in [16], the exploration scheme is based on a utility function computed

with several criteria that consider the distance, the expected information gain and the probability of a

successful communication from the candidate destination.

Another applications that requires the development of search and exploration algorithms is the pursuit

and evasion problem, in which a set of agents try to chase and localize a number of intruders [17]. The

main difference with respect to the before mentioned problems is that, in this case, the targets try to run

away from the searching robot. Thus, in these situations, the objective of the evader is to stay out of the

reach of the pursuer, whereas the main task of the pursuer is to localize and capture the evader. In many

cases, the position of the targets and the searchers is assumed to be known at each time, thus leading to

an optimization problem [18]. For instance, in [1], an environment in which both the evaders and the

pursuers have knowledge over the position of their opponents is considered.

In other cases the position of the evaders is unknown. For instance, in [2] the objective is to localize

a set of moving targets by making use of a prediction scheme. Since the movement of the evader is

unknown by the pursuer, the robots have to make predictions based upon the history of movements

performed by the evader. In this sense, an intelligent search method in which a subset of the pursuers

(the blockers) is positioned at some strategic points in theenvironment with the purpose to avoid the free

movement of the evaders was presented in [19]. A novel visibility-based pursuit and evasion problem

where a searching team needs to coordinate to find the evadersin a bi-dimensional environment was

addressed in [20].

A particular application of the pursuit and evasion problemwith unknown evaders positions consists

in the surveillance and supervision of buildings, industrial estates and other restricted areas [21]. In this

kind of task it is crucial to explore periodically the environment in order to verify the non-existence of

intruders. For instance, some authors have used a subdivision the environment as a set of polygonal

regions [22] .

Little attention have been paid to the intermediate problemin which the target agents are in motion

but they do not try to deliberately escape. As we said, this could be the case of robots with human-

robot interaction capabilities seeking for humans in orderto interact with, or the case of looking for

malfunctioning robots moving around. Pursuit and evasion techniques could be applied to these cases.
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However, when the environment is complex a great number of robots may be necessary in order to

perform an optimal search. Consequently, a new technique specifically designed for this case has been

developed and it is exposed in this paper.

3. Grid-Based Bayesian Filter

The Search Team needs to track the positions that are more likely to hold a target. This is done by

means of a GBBF. The search areaC is divided using a grid. The total number of cells inC will be

denoted byT . Each cellc of the grid has a probabilityP (ck) of holding a target in the time stepk. This

probability will be evaluated for a single target. Since themultiple targets case would have the same

probability to that of the single target case multiplied by aconstant, it does not affect the planning. In

this sense the algorithm works independently of the number of targets. Next, the initialization of the map

and the prediction and update of the probabilities in the subsequent steps are detailed.

3.1. Initialization

In the beginning, it is assumed that all cells have the same probability of holding a target agent:

P (c0) = 1/T, ∀c ∈ C (1)

This initial probabilityP (c0) needs to be modified in time. On the one hand, since the targetsare

in motion, there exists a possibility for the dynamic targets to enter an area previously visited by the

searchers. In this sense, the probability of each cell needsto be propagated to its neighbours periodically

as a function of the speed of the targets and the resolution ofthe grid. This change in the probability

will be evaluated in the prediction stage. On the other hand,the actions of the searchers with their

observations modify the probabilities in the grid too. Thischange in the probability is a consequence of

the reduction of the area where the targets can be found and itwill be covered in the update stage. The

observations consist of the different subsets of cellsZ0:k = {Z0, Z1, ...Zk}, with Zi ∈ C, that have been

found to be clear at each time step. In the following, in orderto denote that the cells are clear according

to the observation, the terminologyZ will be used. In this sense,P (Z) expresses the probability that

no targets are found in the subset of cellsZ, that is,P (Z) =
∏

z∈Z P (z = False). The prediction and

update stages are described below.

3.2. Prediction Stage

The prediction stage consists in the propagation of the probability of each cell in the grid to its

neighbours according to the resolution and the target top speed. For instance, a maximum linear speed

of 0.3 m/s and a resolution of0.1 m can be used with a3 Hz probability prediction frequency. Since

no other information about the movement of the targets is known by the searchers apart from their top

speed, in order to model the motion of the targets it is assumed that they can stay in their current cell or

move to one of the contiguous cells (when they are not occupied) with the same probability. The next

equation models the result of the prediction stage:



Sensors2012, 12 8820

P (ck|Z0:k−1) =
∑

n∈Nc

P (ck|nk−1, Z0:k−1)P (nk−1|Z0:k−1) (2)

whereNc is the3 × 3 subset of cells centred onc. The termP (nk−1|Z0:k−1) is the prior, and the term

P (ck|nk−1, Z0:k−1) models the probability of moving from one of the cells inNc to c. As the robots

move, another grid is created with occupancy information obtained with range finder sensors in the

robots [23]. The information from the occupancy grid is used to obtain the transition probabilities. As

we said, it is assumed that a moving target can stay in their current cell or move to any of the contiguous

cells when they are not occupied with the same probability.

3.3. Update Stage

For each time stepk, each searcher sweeps a new area with its sensors. The subsetof cellsZk will

denote the total area swept by all the Search Team adding all the individual areas. Furthermore, if the map

is previously unknown and the searchers are simultaneouslybuilding it, it is likely that with the addition

of new obstacles to the grid map some area appears to be closedand therefore inaccessible. ThereforeZk

includes three kinds of cells: obstacles detected, non-accessible cells detected, and non-occupied cells.

Since the sensing of these areas reduces the area where the targets can be found, the probability to find a

target in the other zones increases. This growth can be updated in the grid applying Bayes’ rule:

P (ck|Z0:k) =
P (Zk|ck, Z0:k−1)P (ck|Z0:k−1)

P (Zk|Z0:k−1)
(3)

where, P (Zk|ck, Z0:k−1) = 1, ∀ck /∈ Zk and P (Zk|ck, Z0:k−1) = 0, ∀ck ∈ Zk. Furthermore,

P (Zk|Z0:k−1) can be expressed in terms of its complementaryP (Zk|Z0:k−1) = 1 − P (Zk|Z0:k−1).

Therefore, we have that

P (ck|Z0:k) =

{

P (ck|Z0:k−1)

1−
∑

z∈Z P (zk|Z0:k−1)
, ∀ck /∈ Zk

0, ∀ck ∈ Zk

(4)

where all terms can be found from the prediction stage.

To summarize the creation of the target probability grid, Equation (1) is used to initialize the map,

Equation (2) is used for each time stepk in order to propagate the probabilities according to feasible

movements of the targets and Equation (4) is employed in order to update the map with the new

information acquired by the searchers respectively.

In order to clarify how the target probability mapper tracksthe most likely areas to hold a target,

Figure1 has been included. This figure shows the evolution in time of the target probability map created

by the GBBF for a search scenario with only one searcher. In the figure, the probability of each cell

has been normalized with the maximum value for each time step. In this way, dark areas correspond to

low probability, whereas light zones correspond to high probability. The red circles indicate the range of

the sensor and the blue lines show the trajectory of the robot. This example assumes that the robot has

initially a map of the environment. Therefore, all the obstacles are included in the first update observation

Z0 and they appear always in black. In step 1 (Figure1(a)), all cells have the same probability of holding

targets except the non-accessible zones and the area initially covered by the sensors of the searcher.
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As the searcher moves in seek of the targets, more areas are obscured (Figure1(b) and1(c)). However,

since the targets are in motion, the propagation stage inserts some probability for the targets to be in areas

previously covered by the searcher. This effect can be clearly seen in the central areas of the Figure1(d)

and1(e). In the end (Figure1(f)), the searcher completes the exploration of all the environment. Despite

the fact that all the areas have been covered, it can be seen how specially those areas that have not been

covered for a long time appear to be the most probable areas tohold a target now.

Figure 1. Evolution of the target probability map. The grey level indicates the normalized

probability of each cell, corresponding the dark zones to low probability and the light zones

to high probability. The red circles indicate the range of the sensor and the blue lines show

the trajectory of the robot.

(a) (b) (c)

(d) (e) (f)

4. Search Algorithm

As it has been seen, Section3 describes how the target probability map is built. This map jointly

with an occupancy grid map is used to decide the movements of the searchers in order to find the targets.

Whereas the construction of the maps is made in a centralizedway by all the searchers, the navigation

planning is distributed. In this subsection, the process that each searcher follows in order to decide

the next goal for its navigation is explained. Once the goal has been determined, a simple low level

navigation function is used to give appropriate control actions to reach the goal.

Firstly, a tree decomposition of the environment using dynamic programming similar to the exposed

in [24] is applied. In this treeT 〈nodes, edges〉, each nodeNi(ti, ci, ρi, Ri, γi) of type ti represents a

positionci in the environment, the total cost to arrive to that nodeρi, a region of cells associatedRi, and

the number of searchersγi in that regionRi. There are three types of nodes: the root node (tr), gateway

nodes (tg) and frontier nodes (tf ). EdgesEl,m(dl,m, Nl, Nm) represent the straight line path connecting

the respective nodesNl andNm requiring to travel a distancedl,m. Next, it is explained how to create

this tree.
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Initially, the root nodeN0(t0, c0, ρ0, R0, γ0) of the tree corresponds to a node of type roott0 = tr with

the current positionc0 of the agent, a cost requiredρ0 = 0 and a regionR0 that is the subset of visible

cellsS0 in the range of the sensor with a number of searchers inside that subsetγ0. The subsetR0 = S0

is also used to initialize a processed cells maskM = R0. As it is shown in [24], gateway cells can be

defined as the cells in the boundary of the visible areaS0 that are contiguous to free cells not belonging

to S0. These cells can be grouped to obtain chains of contiguous gateways cells. A new nodeNb of type

gatewaytb = tg and an edgeE0,b is added for each chainb of gateway cells found. The positionscb for

the new nodes are situated in the cells in the middle of each chain. All these new nodes are also added

to a list of unprocessed nodes. If the map was not known a priori, it might also be frontier cells in the

regionR0. Frontier cells are defined as free cells contiguous to unknown cells. In the same way, they

are grouped in chains, and a new node of type frontiertf with its corresponding edge is added to the tree

and to the list of unprocessed nodes for each chain of frontier cells.

Figure 2. Tree segmentation of the environment.

(a) (b)

(c) (d)

Figure2 shows the tree creation process for one searcher in a known environment. In Figure2(a),

it can be seen how the root node and the first level nodes (represented by squares) have been added

to the tree, one per each chain of gateways cells found. The processed zone has been emphasized in

the example. Next, the nodeNi from the list of unprocessed nodes that requires to travel the shortest

distanceρi is selected to expand the tree and subtracted from the list, beingρi the sum of all the costs

dl,m from the root nodeN0 to theNi node. The regionRi associated to the nodeNi is established in

different ways in function of the type of node. For a gateway node,Ri is the subsetSi of expected

visible cells from the positionci excluding the cells in the mask and only those cells that are free. That

is,Ri = Si ∩M∁ ∩ F , beingF the subset of free cells. Next, the non-connected cells are also removed.

For a frontier node,Ri is the subset of expected visible cellsSi but only those cells that are unknown.

That is,Ri = Si ∩ U , beingU the subset of unknown cells. In the case of a gateway type node, new

gateway cells and frontier cells can be identified in the regionSi. However, in order to expand the tree

over the environment not including branches that return to processed zones, the gateway cells are filtered
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with the maskM , and gateways not connected through the associated regionRi are also removed. The

corresponding new nodes and edges are added to the tree and tothe unprocessed list and the mask is

updatedM = M ∪ Ri. Figure2(b) shows how the tree have been expanded. As it can be seen in

Figure2(c), the process continues with the lower cost node in the list. And it is repeated until all the

nodes have been processed (Figure2(d)).

Once each searcher has built its own tree, it has to be evaluated in order to be able to decide the next

goals. In this sense, the objective of this evaluation of thetree is deciding a destination and a sequence

of nodes to be used as way points for the next movements to reach the destination.

Firstly, since each node has a costρi and some utility regarding the probability of finding a target

in its associated regionP (Ri), a profit functionB(Ni) can be established to measure the importance of

visiting each nodeNi:

B(Ni) =
P (Ri)

ρi
(5)

where theP (Ri) =
∑

c∈Ri
P (c) is the sum of the probabilities of the cells in that regionRi. Using

these profit values, a simple choice for one robot would be selecting the node of maximum profit as

destination and the intermediate nodes as way points. However, since each searcher is part of a team, it

has to consider positions of the other members of the team in order to cooperate. Furthermore, it has to

consider also the profit of the intermediate nodes.

In this sense, the next recursive functionV (Ni) gives each nodeNi a value that takes into account

its profit and the one from the best child node when this profit is higher than its own profit. In this case

of finding a child node with higher profit, this node is marked as the next in the path for that branch

in order to rebuild later a full path. It could be considered the best child node always. However, since

the estimation of the probabilities and the position of the other agents changes often, it is better not to

do too long term planning. Thus, the algorithms stops considering child nodes if they do not provide a

significant profit. Besides, the function penalizes the nodes where other searchersγi are present in the

area associated to the node:

V (Ni) =

{

B(Ni)+maxj V (Nj)

(1+γi)2
if maxj V (Nj) > B(Ni)

B(Ni)
(1+γi)2

else
(6)

beingj the subset of nodes for which there exists an edgeEi,j connecting nodeNi with nodeNj and

beingi < j, or in other words, eachNj is a direct child node ofNi.

However, this equation does not take into account the possible presence of other searchers in the

current area of the root node. Thus, in order to consider thisissue, some changes have to be made in

order to correct the first level node values. In this sense, the nodes that are far away from the other

searchers in that area and close to the current agent increase their values as follows:

V ′(Nb) =
V (Nb)

dγ0(c0, cb)

γ0
∏

r=0

d(cr0, cb) (7)

where the functiond(x, y) measures the distance between cellsx andy, cr0 is the position of the agentr,

andb denotes the subset of first level nodes, that is, there existsand edgeE0,b connecting the root node

N0 with Nb.
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Finally, the next goalG is decided as the positioncb of the first level nodeNb that maximizes the

corrected values:

G = argmax
cb

V ′(Nb) (8)

Since the best next child nodes has been saved during the evaluation process, a full set of way points

can be obtained beginning inG until the last node of the path marked in this branch. A simplenavigation

function follows each one of these way points. When the final planned node is reached the searcher plans

again building a new tree from its new position.

5. Experiments and Results

5.1. Dynamic Targets

The targets of the search could consist in a vast range of agents of distinct types. For instance, they

could be a group of humans, animals, or a team of mobile robots. As we said, we are interested in

modelling applications as, for instance, robots with human-robot interaction capabilities that are looking

for humans in their proximities in order to interact with, orthe case of seeking for malfunctioning robots

that can be moving around without control. In this sense, forsimulation purposes, it can be assumed that

a target is some kind of abstract dynamic agent that makes movements to random destinations.

Consequently, in the simulations, for each target agent it has been assumed that it perfectly knows the

environment and its localization in the map. In addition, the movement of the targets is limited in speed,

and inside an environment of delimited dimensions.

Therefore, the movement of the targets has been implementedas follows. Each agent that acts as

a dynamic target knows a discrete representation of the environment that describes the position of the

obstacles in a grid. With this representation of the environment, they are able to select a random cell as

destination. The A* algorithm [25] is used to plan a path to reach that cell. The target agent follows that

path until it reaches its destination. Then, it selects a newrandom destination cell and the same process

is repeated. The target only stops moving when it is detectedby a searcher. When all the targets have

been detected by the searchers the search is considered to beconcluded.

5.2. Search Team

The team of searchers consists of a set of mobile agents that are able to sweep the environment

detecting targets. Nowadays, there are mobile robots that include sensors such as laser range finders or

omnidirectional cameras that allow them to sense the environment within a range around them. From

laser scans and/or from omnidirectional images, there exists classifiers that are able to identify different

kind of objects. For these reasons, it is assumed that each searcher is able to detect mobile targets within

a determined area around it.

Regarding the knowledge of the environment, two cases have been studied in this paper:
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• The searchers have full knowledge of the map of the environment: This case represents the

situation in which the team of searchers needs to find and detect a group of mobile agents inside a

known environment, as for instance inside a previously mapped building.

• The searchers have not a priori knowledge of the environmentand build cooperatively a map of it:

This case tries to model the hypothetical situation in whichthe searchers have to find a group of

dynamic agents in a completely unknown environment.

As in the case of the dynamic targets, in both cases the map consists in a discrete representation of

the environment that describes the position of the obstacles in a grid. When the map is not a priori

known, cells can be also labelled as unknown besides free or occupied. A ray tracing function with

the information of the laser scans clears or marks the cells accordingly using a reflection probability

model [26]. Furthermore, the localization of the searchers is assumed to be known. There exists several

techniques to provide localization for a team of mobile robots, as for instance, a GPS device in outdoor

environments, Monte Carlo localization [27], when the map is known, or Simultaneous Localization and

Mapping (SLAM) algorithms [28] to build the map and localize the robots concurrently. Since this is

not the focus of this paper, the localization is assumed to beknown and its error is considered to be not

significant. In this way, the localization and the map (partial or complete) is shared by all the searchers.

However, in contrast to other authors [1], the position of the targets remains unknown to them.

As it was explained in Section3, a map that stores the probability of finding a target in each cell

of the grid is built by the GBBF. This map can be understood as ageneralization of an occupancy grid

map where each cell stores the probability of being occupiedby a target. This map is constructed in a

centralized way and is also shared by all the searchers. Then, using the information from this map, the

searchers apply the search algorithm exposed in Section4 in order to find a route to the areas where it is

more likely to find a target.

5.3. Simulator Description

The method proposed in this paper has been tested in a simulation software developed for this purpose.

Figure 3 shows the two scenarios included in this simulator that wereused during the tests. Both

scenarios have fixed dimensions of38× 26 m. All the maps are built with a resolution of0.1m.

Figure 3. Simulation scenarios. The searchers are shown as filled squares and the dynamic

targets as empty squares. (a) Scenario 1; (b) Scenario 2.

(a) (b)
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The simulated agents, both searchers and dynamic targets, move with a linear speed limited to0.3m/s

and the angular speed limited to0.25 rad/s. The sensors of the pursuers have an omnidirectional range

of 6 m. The experiments were carried out using a simulation time with a fixed time period of0.33 s,

which means that independently of the time needed for the calculations we assume that the elapsed time

between data acquisition and the new commands given to the agents in order to go to next waypoint

according to the planning is fixed.

The GBBF has a complexityO(T ) with the number of cellsT . Therefore, the algorithm is mainly

limited with the size of the area to explore. The complexity of the search planning algorithm is dependent

of the number of nodesN found in the process of creation of the tree. This depends on the structure of

the environment. In this sense, it is necessary to process each node in order to find its associated region

Ri. Furthermore, for each node added to the tree, it is requiredto find the node with the minimum cost

in the remaining unprocessed nodes list in order to continuebuilding the tree. This list can be maximum

N − 1 in size. Thus, the complexity isO(N(R + N − 1)), beingR the maximum number of cells for

a node according to the sensor maximum range. Typically,R is fixed and much bigger thanN making

the complexity almost linear with number of nodesN . However, the planning does not take place all the

time, only when the last planning has finished. Consequently, the computation of the search tree is not

critical and the main bottleneck is the size of the map. The size of the scenarios chosen for simulation

allows a fast update in real time.

The experiments were performed for each scenario varying the number of searchers and targets in

a range of 1–4 for searchers and 1–10 for targets. Each experiment was performed 25 times randomly

changing the initial positions of the agents. All the results presented hereafter are the average of all these

simulations.

Next, we analyse the results in terms of search time for knownand unknown environments.

5.4. Experiments in Known Environments

Figure4 shows the results of the experiments performed in known environments for the two proposed

scenarios. It is shown the mean and standard deviation of theexperiments carried out for a range of 1–4

in the number of searchers and 1–10 in the number of targets. In this case, it is assumed that the searchers

know the occupancy map of the scenario where the search is going to be carried out from the beginning

of the search. Thus, they do not need to create an occupancy map. When there is only one searcher, the

search time grows almost linearly when the number of targetsis low. When the number of targets is high

the total time remains almost constant. That can be observedin both scenarios. This is because only one

searcher has to explore an extensive environment.

As the number of searchers grows, the search time decreases for a given number of targets. Since

the size of the map is constant, it is reasonable to assume that, as the number of searchers increases, the

search time is reduced. The search time is inversely proportional to the number of robots approximately.

The most complex scenarios with more loops, like Scenario 2,require a higher search time. This is

observed for all the performed tests and it is due to the higher number of escape ways. In this case, the

variability in the required time for a single robot is greater than in Scenario 1.
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Figure 4. Results of experiments with a known map.
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From a given number of searchers (approximately 3 or more forthe environments in the simulations)

and for a given number of targets (about 6 in Scenario 1 and 8 inScenario 2), as the number of targets

grows, the search time does not grow significantly. This can be justified because the environment is

covered in few steps. Thus all the targets are found quickly and independently of their number.

The standard deviation of the experiments that were carriedout is high despite the fact of having

performed 25 tests in every case. This is mainly observed in the case of one pursuer. This is a

consequence of the initial positions being established randomly and also the paths of the targets being

random.

5.5. Experiments in Unknown Environments

Figure5 shows the results of the experiments performed in unknown environments. The two graphs

show the mean and standard deviation of the experiments carried out for a range of 1–4 in the number

of searchers and 1–10 in the number of targets in scenario 1 and 2 respectively. In these experiments,
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the searchers do not have a previous knowledge of the environment so they need to build a map of the

environment while they are searching for targets.

Figure 5. Results of experiments with an unknown map.
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The results are quite similar to the case of known maps. As thenumber of searchers grows, the search

time decreases for a given number of targets. In this sense, the search time is approximately inversely

proportional to the number of robots.

However, a considerable increase in the search time is observed for all combinations. The main cause

of this delay is that the pursuers have no a priori knowledge of the environment. Thus the destination

selection is not the best, since the pursuers do not have enough information about the environment.

There are fewer differences between both scenarios since there is no information available at the

beginning in both cases.
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6. Conclusions and Future Work

In this paper a new search and exploration algorithm that allows a team of robots to cooperatively

look for a set of moving targets inside a delimited environment has been presented. An estimation of the

areas of the environment that are more likely to hold a targethas been obtained. The only assumption

that we make about the movement of the targets is a random walkmodel and a top speed. In this sense,

a technique to create a map of the probability for a cell to hold a target has been explained using a

grid-based Bayesian Filter. Besides, a navigation algorithm has been designed in order to command the

robots to the more likely areas to find a target including somemulti-agent coordination mechanisms.

The algorithm has been successfully tested in known and unknown environments. In this sense, the

algorithm has been demonstrated to work with or without previous knowledge of the environment and

with no other information of the movement of the dynamic targets apart from their top speed. The results

in unknown environments have been found to be reasonably efficient.

As future work, the use of this algorithm in real applications will be considered. Furthermore, the

most complex case in which the target tries to deliberately avoid the searcher will be studied. In this

sense, a subdivision of the environment using a cyclic graphinstead of a tree can be useful to coordinate

the pursuers in order to find cooperative strategies to locate all the evaders. Unsupervised learning

incorporating semantic mapping information will be also studied in order to enhance the search.
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