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Abstract: In this study, gliclazide-loaded cubosomal particles were prepared for improving the
oral bioavailability and antidiabetic activity of gliclazide. Four formulations of gliclazide-loaded
cubosomal nanoparticles dispersions were prepared by the emulsification method using four different
concentrations of glyceryl monooleate (GMO) and poloxamer 407 (P407) as the stabilizer. The
prepared formulations were in vitro and in vivo evaluated. In vitro, the prepared gliclazide-loaded
cubosomal dispersions exhibited disaggregated regular poly-angular particles with a nanometer-
sized particle range from 220.60 ± 1.39 to 234.00 ± 2.90 nm and entrapped 73.84 ± 3.03 to 88.81 ± 0.94
of gliclazide. In vitro gliclazide release from cubosomal nanoparticles revealed an initially higher
drug release during the first 2 h in acidic pH medium; subsequently, a comparatively higher drug
release in alkaline medium relative to gliclazide suspension was observed. An in vivo absorption
study in rats revealed a two-fold increase in the bioavailability of gliclazide cubosomal formulation
relative to plain gliclazide suspension. Moreover, the study of in vivo hypoglycemic activity indicated
that a higher percentage reduction in glucose level was observed after the administration of gliclazide
cubosomal nanoparticles to rats. In conclusion, gliclazide-loaded cubosomal nanoparticles could be a
promising delivery system for improving the oral absorption and antidiabetic activity of gliclazide.

Keywords: gliclazide; BCS class II drug; cubosomes; bioavailability; antidiabetic activity

1. Introduction

Gliclazide, a second-generation sulfonylurea, is an effective oral hypoglycemic drug
adopted to treat non-insulin-dependent diabetes mellitus. Gliclazide is a Biopharmaceutical
Classification System (BCS) class II drug [1] with poor dissolution rate [2,3]. Due to its
low and pH-dependent solubility [4,5], gliclazide has an irregular and slow absorption
rate which can result in large intra- and inter-individual changes in absorption following
oral administration [6,7]. Gliclazide is commercially available as conventional fast release
or modified release tablets with a variable daily dose ranged from 40 to 80 mg in two
divided doses.

Several formulation techniques have been adapted to improve the bioavailability and
therapeutic effectiveness of gliclazide such as the preparation of solid dispersion [8,9], in-
clusion complex with β-cyclodextrin [10], nanocrystals [11], liquid–solid systems [12], solid
lipid nanoparticles [13], and self-micro-emulsifying delivery system [14]. The previously
mentioned approaches rely on increasing the solubility of gliclazide as a mechanism for
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bioavailability improvement. In the present study, we are aiming to utilize the potential
of cubosomal nanoparticles as a drug delivery system to enhance the oral bioavailability
of gliclazide.

Cubosomes, nanostructured particles of bicontinuous cubic liquid crystalline phase,
are formulated easily by a hydrating mixture of glyceryl-monooleate and poloxamer
407. The cubic phase produces colloidal and thermodynamically stable particulate dis-
persions [15,16]. Cubosomes have many benefits, such as high drug encapsulating and
loading ability of hydrophilic and hydrophobic active pharmaceutical ingredients (APIs),
simple preparation techniques, lipids biodegradability, and both sustained and targeted
release of drugs [15–18].

Cubosomes have been suggested as a promising delivery system for orally adminis-
tered drugs. In certain cases, cubosomes have been investigated as a drug delivery system
for poorly water-soluble drugs to increase oral bioavailability [19]. Previously, cubosomal
nanoparticles have been used as a drug delivery system for enhancing the bioavailability
of simvastatin as a BCS class II drug [20] and cyclosporine A as a model of BCS IV drug of
poor water solubility and poor permeability [21]. Moreover, cubosomal nanoparticles have
been recently utilized as a delivery system for the intraperitoneal administration of antidia-
betic drug repaglinide [22]. In this study, gliclazide-loaded cubosomal nanoparticles were
used as a delivery system for improving the oral bioavailability and antidiabetic activity of
gliclazide. In a trial to achieve this objective, gliclazide-loaded cubosomal nanoparticles
were fabricated, in vitro and in vivo assessed to evaluate their impact on bioavailability
and therapeutic activity of gliclazide.

2. Results and Discussion
2.1. Particle Size, Polydispersity Index, and Zeta Potential

The mean values of particle size, PDI, and zeta potential of the prepared cubosomes
are presented in Table 1. All dispersions showed a narrow monomodal particle size
distribution (Figure 1). The obtained mean particle sizes of cubosomal nanoparticles
ranged from 220.60 ± 1.39 to 234.00 ± 2.90 nm. There were no significant differences
between particle sizes of all formulas; however, a slight increase in the particles size
was associated with increasing GMO concentration from 1.25 to 7.50% w/w. The PDI
values were in the range between 0.098 ± 0.017 and 0.172 ± 0.002, indicating acceptable
homogeneity of all dispersions. The zeta potential values for all cubosomal formulas were
in the range of −19.40 ± 0.80 to −25.30 ± 0.22 mV, indicating a high degree of stability
with lower tendency for particles aggregation [23].

Table 1. GMO content, particle size, PDI, zeta potential, and EE % of gliclazide-loaded cubosomal nanoparticles.

EE % Zeta Potential mV PDI Particle Size (nm) GMO % w/w Formula

73.84 ± 3.03 −19.40 ± 0.80 0.172 ± 0.002 220.60 ± 1.39 1.25 F1
80.68 ± 1.85 −21.80 ± 0.50 0.142 ± 0.035 225.30 ± 2.40 2.50 F2
88.81 ± 0.94 −24.20 ± 0.91 0.155 ± 0.012 226.50 ± 1.50 5.00 F3
87.42 ± 1.28 −25.30 ± 0.22 0.098 ± 0.017 234.00 ± 2.90 7.50 F4

- Standard deviation was calculated (n = 3).
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Figure 1. Particle size distribution of gliclazide-loaded nanoparticles.

2.2. Entrapment Efficiency

The obtained values of EE % ranged between 73.84 ± 3.03 and 88.81 ± 0.94 (Table 1)
from the total gliclazide content (90–95%). The high EE % of gliclazide in all formulae
may be attributed to its highly lipophilic nature. The results revealed a direct correlation
between EE % of gliclazide and GMO concentration up to 5%. However, increasing GMO
concentration to 7.50% (F4), the EE % did not show any significant change compared to F3.

2.3. Differential Scanning Calorimetry (DSC)

DSC thermograms of plain gliclazide, gliclazide-loaded cubosomal nanoparticles,
blank cubosomal nanoparticles, P407, and GMO are presented in Figure 2. Gliclazide
powder presented a thermogram with a sharp endothermic peak of 171.82 ◦C indicating
its crystalline nature [24] and P407 showed an endothermic melting peak at 55 ◦C [25].
However, this peak had been completely vanished in the DSC thermogram of cubosomal
nanoparticles, indicating that gliclazide was incorporated into cubosomes either in a non-
crystalline state or converted to molecular state.
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2.4. Morphology of Gliclazide-Loaded Cubosomes

The atomic force microscope AFM image (Figure 3) of gliclazide-cubosomal nanopar-
ticles (F3) showed that the nanoparticles are disaggregated regular poly-angular particles
with approximately 52.55 nm of height. In addition, the cubosomal nanoparticles were of
nano-size range, which agreed with the measured particles size values.
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Figure 3. AFM photomicrograph of gliclazide-loaded nanoparticles (F3).

2.5. In Vitro Gliclazide Release

The release profiles of gliclazide-loaded cubosomal nanoparticles are presented in
Figure 4. The four formulations show biphasic drug release profiles extended over a period
of 12 h. Where during the first two hours, a relatively low initial percentage of gliclazide
(9.75 ± 0.98 to 13.62 ± 1.89%) was released from cubosomal formulations. Meanwhile,
aqueous gliclazide suspension released a significantly lower percentage compared to
cubosomal nanoparticles (p < 0.05). The relatively low release of the drug indicates that
the major fraction of gliclazide is entrapped within the bilayer of cubosomal particles and
only a small fraction of drug is adsorbed on surface of cubosomal nanoparticles [26,27].
Another reason for the lower drug release is the acidic pH of release medium that might
counteract the dissolution of gliclazide. This was previously explained based on the
ampholytic nature and pH-dependent solubility of gliclazide, where a minimum solubility
was recorded in the acidic pH [28,29]. However, when the pH of the medium was changed
to 6.8, a significant rise (p < 0.05) in the percentage drug released was observed in case of
cubosomal nanoparticles in comparison with gliclazide suspension. This may be attributed
to nanosized particles of gliclazide-loaded cubosomal nanoparticles [27].
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formulations (F1–F4) and aqueous gliclazide suspension.

2.6. Bioavailability Study

Gliclazide-loaded cubosomal nanoparticles (F3) was selected for in vivo absorption
study and antidiabetics activity due to its EE % and reasonable particle size.
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The rate and extent of drug absorption in terms of Cmax, Tmax, and AUC were utilized
to evaluate the bioavailability of gliclazide-loaded cubosomal nanoparticles compared to
gliclazide aqueous suspension. Figure 5 shows the mean plasma concentration time profiles
of gliclazide after administration of a single oral dose (10 mg/kg) of either gliclazide-loaded
cubosomal nanoparticles or gliclazide suspension. In Table 2, the mean values of bioavail-
ability parameters (Cmax, Tmax, and AUC0-24) are presented. The statistical analysis of the
obtained values revealed significantly (p < 0.05) higher values of the maximum plasma
concentration and AUC0-24 of gliclazide-loaded cubosomes compared to gliclazide aqueous
suspension. However, the higher Cmax value of gliclazide-loaded cubosomal nanoparticles
was accompanied by a significant (p < 0.05) reduction in Tmax to 2 h compared to 4 h in
case of the gliclazide suspension. This result might be due to the higher percentage of
drug released from cubosomal nanoparticles during the first 2 h relative to gliclazide sus-
pension. The mean relative bioavailability of the gliclazide cubosomal nanoparticles was
200.50% ± 10.55. However, a higher bioavailability of gliclazide was previously reported
when formulated as solid lipid nanoparticles [13]. The higher bioavailability could be
attributed to the structural similarity between the lipid bilayer of cubosomes and cell mem-
brane [30,31], which may facilitate the uptake of cubosomes by endothelial membranes [32].
Moreover, the formation of secondary nanostructures loaded with the drug due to the
digestion of GMO in the gastrointestinal tract promotes drug-carrying vesicles to infiltrate
the “diffusion layer” [30] and provide more adjacent contact with cell membranes, leading
to improvement of drug absorption. In addition, the unique cubosomal structure could
minimize degradation of the encapsulated drug in the GIT [33,34].
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Figure 5. Mean (n = 6 ± SD) gliclazide plasma concentration–time profiles after the administration
of a single oral dose (10 mg/kg) of gliclazide-loaded cubosomal nanoparticles and drug suspension
to rats.

Table 2. Mean values of bioavailability parameters of gliclazide in rats (n = 6 ± SD) after adminis-
tration of a single oral dose (10 mg/kg) of gliclazide aqueous suspension and equivalent dose of
cubosomal nanoparticles (F3).

Bioavailability Parameters Gliclazide Aqueous
Suspension

Gliclazide-Loaded
Cubosomal Dispersion (F3)

Cmax (ng/mL) 67.10 ± 11.73 153.50 ± 19.35 *
Tmax (h) 4.00 2.00 *

AUC0-24 (ng.h/mL) 754.51 ± 67.83 1513.99 ± 196.39 *
Relative bioavailability - 200.5% ± 10.55

* p < 0.05.
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2.7. Evaluation of the Hypoglycemic Activity

The influence of cubosomal formulation on the antidiabetic activity of gliclazide was
evaluated compared to gliclazide suspension by monitoring the hypoglycemic effect in
terms of percentage reduction in blood glucose level versus time profile in experimentally
induced diabetic rats after being given a single oral dose of 10 mg/kg of both preparations.
The percentage reduction in glucose level–time profiles of the two treatments are presented
in Figure 6. It is obvious that the two profiles are different, and a higher percentage
reduction in glucose levels in blood was detected after 2, 4, 6, and 12 h post administration
of gliclazide cubosomal nanoparticles, with evidence of significantly higher values (p < 0.05)
of both the mean maximum percentage reduction in blood glucose level and the mean
area under the percentage reduction of blood glucose level–time curve in comparison with
gliclazide suspension. The obtained results are well correlated with the higher plasma
concentration in the cubosomal group as reflected by the higher AUC0-24. These results are
in good agreement with previous studies that formulated gliclazide in different delivery
systems such as solid lipid nanoparticles [13] and mucoadhesive microcapsules [35].
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to diabetic rats.

3. Materials and Methods
3.1. Materials

Gliclazide was granted from Rameda®, Cairo, Egypt. Acetonitrile (HPLC grade)
was obtained from BDH, Poole, England. Glyceryl monooleate (GMO) was generously
provided by Gattefosse, France. Poloxamer 407 (P407) was purchased from Sigma-Aldrich
Chemical Company (Milwaukee, WI, USA). Potassium dihydrogen phosphate, disodium
hydrogen phosphate (pharmaceutical grade), sodium hydroxide, sodium lauryl sulfate,
methanol, phosphoric acid, and hydrochloric acid (analytical grade) were purchased from
El Nasr Chemical Company, Cairo, Egypt.

3.2. Preparation of Gliclazide-Loaded Cubosomes

Gliclazide-loaded cubosomal nanoparticles were formulated according to Nasr [36].
GMO and poloxamer 407 were heated in a water bath at 60 ◦C until homogeneity was
achieved. Gliclazide was dissolved in methylene chloride, heated to 60 ◦C, and added to
the homogenous mixture of GMO and P407 with continuous stirring. Then, methylene
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chloride was removed by evaporation in a 40 ◦C water bath. Deionized water (2 mL) was
added drop by drop with continuous stirring to get a gel form. The mixture was left for
two days at room temperature, and the remaining amount of the deionized water was
added to the resulted gel using vortex mixing. Finally, probe sonication (5 s on and 5 s off)
was implemented for 5 min to get the final cubosomal nanoparticles. Four formulations
(F1–F4) of gliclazide-loaded cubosomal nanoparticles were prepared using four GMO
concentrations of 1.25, 2.5, 5, and 7.5% w/w of the total dispersion and a fixed 10%
P407 relative to GMO content. The final gliclazide concentration was 10 mg/g in all
formulations [37].

3.3. Characterization of Gliclazide-Loaded Cubosomes
3.3.1. Particle Size, Polydispersity Index, and Zeta Potential

The particle analysis (mean hydrodynamic diameter and polydispersity index, PDI)
and zeta potential of the different formulated nanoparticles were determined using the
Zetasizer Nano series (Nano ZS, Malvern, UK). A 1 mL sample of each formulation was
diluted to 20 mL with deionized water and measured at 25 ± 0.5 ◦C in triplicate.

3.3.2. Entrapment Efficiency Percentage (EE %)

Entrapment efficiency percentage (EE %) was determined by the ultrafiltration cen-
trifugation technique [38] using ultracentrifuge tubes (Amicon, 3000 molecular weight
cut-of (MWCO), Millipore, Burlington, MA, USA). Briefly, an aliquot (1 mL) of gliclazide
cubosomal nanoparticles was properly diluted and centrifuged at 6000 rpm for 10 min
(Sigma 2–16P, Sigma Laborzentrifugen GmbH, Osterode am Harz, Germany). The obtained
filtrate was measured spectrophotometrically at 226 nm [39] for free gliclazide (QFree) using
a double beam visible spectrophotometer (Jenway, Stafford, UK). The calibration curve
was constructed in methanol, 0.1 N HCl and 2 M phosphate buffer (pH 6.8) ranging from
2 to 24 µg/mL. The total gliclazide content presented in 1 mL dispersion (QTotal) was
determined spectrophotometrically at the same wavelength after dilution with methanol
to ensure complete lysis of cubosomes. EE % was calculated using the following equation:

EE % = [(QTotal − QFree)/QTotal] × 100.

3.3.3. Morphology of Cubosomal Nanoparticles

The morphology of gliclazide-loaded cubosomes (F3) was observed using a Wet-SPM
Scanning Probe atomic force microscope (Shimadzu, Kyoto, Japan). A drop of cubosomal
dispersion was adsorbed on freshly cleaved muscovite mica squares, removing excess
water by air drying. The sample was mounted in a microscope scanner for viewing and
imaging in the non-contact mode at a frequency of 312 kHz and a scan speed of 2 Hz.

3.3.4. Differential Scanning Calorimetry (DSC)

DSC thermograms of gliclazide-loaded cubosomal particles, blank cubosomal parti-
cles, plain gliclazide, GMO, and P407 were examined using a DSC-60 differential scanning
calorimeter (Shimadzu, Kyoto, Japan). Each sample (5 mg) was heated in an aluminum pan
from 30 to 320 ◦C at a constant rate of 10 ◦C/min under a nitrogen purge of 30 mL/min. A
similar empty pan was used as the reference.

3.3.5. In Vitro Drug Release Study

In vitro gliclazide release from cubosomal nanoparticles was monitored by the dy-
namic dialysis method [40]. A volume of each cubosomal nanoparticles and drug dis-
persion in water (equivalent to 10 mg gliclazide) was tightly sealed in a dialysis bag
(11,325 MWCO, DO655, Sigma-Aldrich, St. Louis, MO, USA). The study was carried out in
a release medium of 125 mL of 0.1 N hydrochloric acid containing 0.25% sodium lauryl
sulfate (SLS) for the first two hours, and then the pH is shifted to 6.8 by adding 125 mL
of 2 M phosphate buffer. The concentration of SLS in release medium was kept at 0.25%
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during the entire period of the study to maintain sink conditions. The release medium was
stirred at 100 rpm and maintained at 37 ± 0.5 ◦C. Fresh media was added after aliquots
were removed from release medium at predetermined time intervals (0, 0.25, 0.5, 1, 2,
3, 4, 5, 6, 8, 10, and 12 h). The amount of gliclazide released was measured using a UV
spectrophotometer at 226 nm [39]. The experiments were conducted in triplicate.

3.3.6. Bioavailability Study

The study protocol was performed after the approval of the Animal Ethics Committee
of Faculty of Pharmacy, Delta University for science and technology (Approval number
FPDU2121/3). Twelve adult male Wistar rats weighing from 230 to 250 g were used in
the experiment. The rats received the same diet regime and were separated into 2 groups.
The day before the experiment, all rats were allowed to fast overnight and had only access
to water. On the day of experiment, a single oral dose of 10 mg/kg gliclazide aqueous
suspension was received by each rat in the first (control) group, while each rat in the second
group was given an equivalent dose of cubosomal nanoparticles using an oral feeding
tube. Blood samples (0.5 mL) were withdrawn from the lateral tail vein in heparinized
tubes at different intervals (0, 1, 2, 3, 4, 6, 8, 12 and 24 h) post-dose administration using
a 22 G butterfly needle. Before analysis, blood samples were centrifuged for 10 min at
5000 rpm, and plasma was separated. The drug plasma concentrations were quantified
using a reported HPLC method with slight modifications [41]. Briefly, 0.25 mL of plasma
was spiked with naftopidil as an internal standard (2 µg in 50 µL), which was followed
by the addition of 0.70 mL acetonitrile. The organic layer was evaporated after being
separated by centrifugation at 5000 rpm for 10 min. A volume (100 µL) of the mobile
phase was added to the residue; then, the resulted solution was filtered, and a volume
of 20 µL filtrate was injected at a flow rate of 1.2 mL/min into the HPLC system using
Hypersil gold C18, 4.6 × 50 mm, 5.0 µm column (SHIMADZU Corporation, CTO-20A,
Kyoto, Japan) with a variable wavelength UV detector (VWD 1260). The mobile phase
consisted of (60:40 v/v) acetonitrile and 20 mm phosphate buffer at pH 4. The method was
validated as the calibration showed reasonable linearity in the range of 1–8 µg/mL with
correlation coefficient equals 0.992, and the mean percentage recovery was 99.50 ± 1.48,
indicating high accuracy of the assay. The RSD % of intra and inter-quality control samples
were less than 2%, reflecting a high degree precision of the method. In addition, values of
LOD and LOQ were 0.7 and 1 µg/mL, respectively.

The bioavailability of gliclazide-loaded cubosomal nanoparticles (F3) was compared
relative to gliclazide suspension in terms of the rate and extent of drug absorption that
presented as Cmax, Tmax, and AUC0-24. The values of maximum gliclazide concentration
in plasma (Cmax, ng/mL) and the time to achieve maximum concentration (Tmax, h) were
attained directly from the plasma data of the individual plasma concentration versus time
curves. For each rat, the linear trapezoidal rule was used to calculate the values of area
under the plasma concentration versus time curve from 0 to 24 h (AUC0-24). The calculated
values of AUC0-24 were used to estimate the relative bioavailability of gliclazide-loaded
cubosomal nanoparticles compared to gliclazide aqueous suspension.

3.3.7. Antidiabetic Activity Study

The hypoglycemic activity of gliclazide-loaded cubosomal nanoparticles was evalu-
ated based on the percentage reduction of glucose level in experimentally induced diabetic
rats compared to plain gliclazide suspension. The study design and animal manipulation
were accepted by the Animal Ethics Committee of Faculty of Pharmacy, Delta University
for science and technology (approval number FPDU2121/3). Two groups of albino rats
(each of 6) with an average weight of 205.50 ± 5.50 grams were utilized in the study. The
induction of experimental diabetes mellitus in rats was achieved by injecting a freshly
prepared single intraperitoneal dose of streptozotocin (40 mg/kg body weight). After 48 h,
blood samples were drawn to ensure the induction of diabetes. Fasting blood glucose
level was determined using a fast take glucometer (Accu-check®). The blood glucose level
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of more than 250 mg/dL was used as an indication of diabetic induction. On the day of
the study, the diabetic rats in both groups were allowed to ingest food pellet for half an
hour only with free access to water. After two hours, the blood glucose was measured
and was an indication for the zero-time glucose level. The gliclazide-loaded cubosomal
nanoparticles and gliclazide suspension (10 mg/kg) [13] were administered by oral feeding
syringe. Blood samples were withdrawn at certain time intervals (0, 1, 2, 4, 6, and 12 h),
and blood glucose level was measured as mentioned before. The percentage reduction
of glucose level was calculated based on the measured glucose level at zero-time. The
maximum percentage reduction in blood glucose level and time for maximum reduction
were determined from the blood glucose time profile of each rat. The area under maximum
percentage reduction in blood glucose level–time curve from time 0 to 12 h was calculated
by the linear trapezoidal method.

3.4. Statistical Analysis

Data were reported as means ± standard deviation (SD). Student’s t test (SPSS pro-
gram; version 12.0) was used to compare the obtained results. A statistically significant
difference was considered at p value < 0.05.

4. Conclusions

Cubosomal nanoparticles containing gliclazide were prepared by the emulsification of
GMO in water in the presence of P407 as a stabilizer. The prepared gliclazide-loaded cubo-
somal nanoparticles exhibited nano-sized particles and entrapped about 80% of gliclazide
along with a higher percentage of drug release compared to gliclazide suspension. The
gliclazide-loaded nanoparticles successfully enhanced the rate and extent of drug absorp-
tion in rats, as evidenced by a two-fold increase in relative bioavailability and a higher area
under percentage reduction of glucose level–time curve compared to gliclazide suspension.
These results revealed that cubosomal nanoparticles could be a potential carrier for en-
hancing the oral bioavailability and hypoglycemic activity of gliclazide. However, further
stability study is required to ensure the stability of gliclazide in the cubosomal formulation.
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