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Abstract: There is a need for selective and sensitive methods to detect the presence  

of food allergens at trace levels in highly processed food products. In this work, a 

combination of non-targeted and targeted proteomics approaches are used to illustrate the 

difficulties encountered in the detection of the major peanut allergens Ara h 1, Ara h 2 and 

Ara h 3 from a representative processed food matrix. Shotgun proteomics was employed 

for selection of the proteotypic peptides for targeted approaches via selective reaction 

monitoring. Peanut presence through detection of the proteotypic Ara h 3/4 peptides 

AHVQVVDSNGNR (m/z 432.5, 3+) and SPDIYNPQAGSLK (m/z 695.4, 2+) was 

confirmed and the developed method was able to detect peanut presence at trace levels 

(≥10 μg peanut g−1 matrix) in baked cookies. 

Keywords: data dependent acquisition; peanut; food allergens; proteomics; shotgun; 

selective reaction monitoring; targeted 
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peptide; Q-TOF MS, quadrupole time of flight mass spectrometer; SDS-PAGE, sodium dodecyl 

sulfate polyacrylamide gel electrophoresis; SRM, selective reaction monitoring; TBS, Tris buffered 

saline; UPLC, ultra performance liquid chromatography. 

1. Introduction 

An increasing incidence of food allergies in Europe and USA [1,2] is being reflected in clinical 

studies. European legislation recognizes so far 14 major allergenic foods [3] and requires a mandatory 

declaration when they are part of the ingredients; in cases where the manufacturer cannot exclude their 

presence as a result of accidental contamination in foodstuffs the label often contains the phrase “may 

contain”. But so far, there are no established threshold limits below which an allergen poses only a 

small risk of causing harm to an allergic consumer. Even though commonly accepted trigger levels 

have not been established yet, there is consensus among the scientific community, that allergen 

detection methods should be capable of covering the low ppm range (1–10 mg allergenic ingredient kg−1 

food product). 

Currently, to detect allergens in food products, enzyme-linked immunosorbent assays (ELISA) and 

PCR analyses were adopted as methods of choice by the food industry and official food control 

agencies [2,4]. However, food matrix and processing effects can result in large numbers of false 

positives and negatives using these methods [5], which lack the precision and rigor needed in cases of 

liability issues [6]. Mass spectrometry driven approaches on the other hand can be successfully used as 

a confirmatory platform given the specificity and sensitivity that can be achieved. In addition,  

multi-allergen detection and quantification is feasible after some stringent considerations are fulfilled [6]. 

The bottom up mass spectrometry approach (reconstruction of the protein based on peptides) either 

for characterization of the allergenic protein or by a targeted approach for sensitive detection/quantification 

are being used as platforms for allergen detection with promising outcomes [7,8]. 

The lack of established guidelines addressing different issues during sample preparation for analysis 

of food allergens makes it difficult to have a generic platform for multi-allergen detection and 

quantification. Published investigations in many cases lack experimental details and pose question marks 

relating to critical points of the food allergen detection workflows. It is of urgent necessity that certain 

aspects of the protocol used are stated: target analyte, source of allergenic food used (e.g., raw, roasted, 

defatted, etc.), incurred or spiked allergenic food (before or after processing); clear statement of reporting 

units (mass ratio of allergenic food, total proteins, allergenic protein target), digestion conditions 

(possible peptide modifications), etc., just to cite a few aspects of the sample preparation phase. 

In this manuscript, we would like to illustrate with peanut serving as an example: (i) the challenges 

to be faced to detect food allergens at trace levels in complex food matrices (1–10 mg peanuts kg−1 

cookie); (ii) the need for improvements in sample preparation and mass spectrometry analytical tools 

to achieve low levels of detection; and (iii) the awareness on key issues related to the development of a 

robust multi-allergen and quantitative method for trace analysis of food allergens. 
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2. Materials and Methods 

2.1. Materials 

Peanut included in the IRMM-481f peanut test material (mixture of five varieties, five different 

processing conditions) were utilized (Table 1). Wheat flour based cookie containing different amounts 

of IRMM peanut mixture (0, 10, 100, 1000 and 10,000 μg·g−1 matrix) were prepared in house. Incurred 

cookies were baked at 180 °C for 16 min. The wheat flour based cookie recipe used consisted of: 

wheat flour 49.0%, butter 19.6%, dust sugar 18.4%, skimmed milk powder 5.9%, water 6.6%, sodium 

chloride 0.3%, sodium hydrogen carbonate 0.1%, ammonium bisulfate 0.1%. Baked cookies were 

grinded to a particle size <250 μm in liquid nitrogen and stored at −20 °C until use. Cookie dough was 

incurred with different amounts of peanuts before baking. Homogeneity of the cookie material was 

tested using ELISA kits. 

Table 1. Detailed information of the IRMM-481 peanut test material used to prepare the 

incurred cookies. 

Peanut variety, origin Peanut treatment 
Runners Argentina 
Common Natal, South-Africa 
Virginia, USA 
Virginia, China 
Jumbo Runners, USA 

Blanched air-roasted at 140 °C for 20 min 
Raw, air-roasted at 160 °C for 13 min 
Blanched, oil roasted at 145 °C for 25 min 
Blanched, oil roasted at 140 °C for 9 min 
Blanched only 

2.2. Chemicals 

All chemicals used for sample preparation were purchased from VWR International (West Chester, 

PA, USA) and were at least analytical reagent grade. PlusOne chemicals for gel electrophoresis  

(Tris, glycine, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), urea, 

thiourea, dithiothreitol (DTT), dimethylformamide), 2D clean up and 2D quantification kits were 

purchased from GE Healthcare (Uppsala, Sweden). Mini gels NUPAGE® 12% Bis-Tris (1.0 mm) were 

obtained from Invitrogen (Carlsbad, CA, USA). Water from a Milli-Q water system (Millipore, 

Bedford, MA, USA) was used. Trypsin mass spectrometry grade (Cat. # 786-578) was obtained from 

G Biosciences (St. Louis, MO, USA). 

2.3. Protein Extraction and Quantification 

Tris buffered saline (TBS) extraction as previously described [5] was used. One to five g of cookie 

sample were extracted in 10 to 20 mL of TBS buffer (20 mM Tris, 150 mM NaCl, pH 7.4) at 4 °C in 

an ultrasonic bath for 20 min. After centrifugation at 3500 g for 30 min, proteins in the supernatant 

were quantified with the 2D Quant kit and further purified and precipitated with the 2D clean up kit 

following the instruction manuals of GE Healthcare (Uppsala, Sweden). 
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2.4. Protein Enrichment 

A large and highly diverse bead-based library of combinatorial peptide ligands known as 

ProteoMiner™ (Biorad, MO, USA) was used for protein enrichment. The large sample loading 

capacity ProteoMiner™ protein enrichment kit was employed. One to five g of cookie samples 

incurred with peanuts (0, 10, 100, 1000 and 10,000 μg·g−1 matrix) were extracted with TBS buffer. 

After equilibration of the columns as described in the kit, proteins were bound to the ligands for 3 h at 

room temperature under agitation. Samples were washed with phosphate buffered saline solution (PBS) 

composed of 150 mM NaCl, 10 mM NaH2PO4 at pH 7.4 following the instructions of the 

manufacturer. The unbound fraction was collected in a separate tube. The enriched sample was eluted 

with 8 M urea and 2% CHAPS according to the manufacturer’s instructions. For all cookie samples 

incurred with peanuts, SDS-PAGE was used to analyze the protein profiles of the initial extract, 

enriched and unbound fractions. Protein content was normalized to 5 μg per lane to allow comparisons 

among the different fractions. For mass spectrometry analysis, samples (initial extract, enriched and 

unbound fractions) were cleaned up and precipitated with the GE Healthcare kit described in the 

material and method section and further trypsin digested. 

2.5. SDS-PAGE 

Fifteen well mini gels NUPAGE® 12% Bis-Tris (1.0 mm) from Invitrogen were loaded with  

5 μg protein sample and run in a NUPAGE® electrophoresis system (Invitrogen). Two gels were run at 

200 V for approximately 50 min. Silver stained gels [9] were scanned and evaluated with Labscan 

software (GE Healthcare). Molecular weight standards of 3.5–260 kDa from Invitrogen and of  

8–220 kDa from Sigma-Aldrich (USA) were run in parallel. 

2.6. Gel Free and Gel Based Trypsin Digestion 

Gel free trypsin digestion was performed as follows: Fifty micrograms of protein were dissolved in 

50 μL of Rapigest™ (Waters, Manchester, UK) in a 50 mM ammonium bicarbonate solution. Two and 

a half microlitres of a 50 mM DTT solution in 50 mM ammonium bicarbonate was added and let to 

stand for 30 min at 60 °C under agitation. Samples were cooled down and 5 μL of a 100 mM 

iodoacetamide in 50 mM ammonium bicarbonate was added and let to stand for 30 min in darkness. 

One microlitre of a sequencing grade 1 μg·μL−1 trypsin solution (1:50, enzyme:protein ratio) was 

added and let to incubate for 5 h at 37 °C. After incubation, 5 μL of 500 mM HCl solution was added 

and transferred to a molecular mass cut-off filtration device (3000 MWCO) and centrifuged at 14,000 g 

for 10 min. The filtrate was recovered for nano UPLC-Q-TOF-MS/MS analysis. 

Gel bands were destained with 15 mM potassium ferrocyanide per 50 mM sodium thiosulfate 

solution and then reduced with 10 mM DTT in 50 mM ammonium bicarbonate for 30 min. Alkylation 

was done with 55 mM iodoacetamide in 50 mM ammonium bicarbonate for 30 min. Following, gel 

plugs were dehydrated with ACN in a vacuum concentrator until dryness and then trypsin (20 ng·μL−1) 

was added and let to stand overnight at 37 °C. Peptides were extracted once with 1% formic acid and  

2% ACN and twice with 50% ACN. After evaporation until dryness in a vacuum concentrator, 

peptides were re-suspended in 0.1% formic acid. 
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2.7. Nano LC Separation of Peptides 

Separation of peptides was performed on a nano LC reversed phase chromatography system. A  

180 μm × 20 mm Symmmetry C18 (5 μm) nano Acquity™ was used as trap column. Separation of 

peptides was carried out on a 75 μm × 100 mm (1.7 μm) BEH 130 C18 nano Acquity™ column. Eluent 

A was composed of 0.1% formic acid in water and eluent B was 0.1% formic acid in ACN. A flow rate 

of 0.4 μL·min−1 was used. The linear gradient used to achieve separation of peptides was as follows: 

(initial) 97% A, 3% B; (0.5–80 min) 60% A, 40% B; (80–85 min) 15% A, 85% B; (85–90 min)  

15% A, 85% B; (90–95 min) 97% A and 3% B and (95–100 min) 97% A and 3% B. One microlitre of 

a sample mixture of ~0.8 μg·μL−1 prepared in Rapigest™ was injected for in liquid digested samples 

and 5 μL of the same sample mixture for gel digested samples. 

2.8. Nano Electrospray Q-TOF Tandem Mass Spectrometry (Nano-ESI Q-TOF MS/MS) 

MS/MS experiments were carried out in a quadrupole time of flight mass spectrometer (Q-TOF 

Ultima Global, Waters, Manchester, U.K) equipped with a nano-electrospray Z spray source. The 

operating conditions of the Q-TOF-MS were: Capillary voltage 3.0 kV, sample cone voltage, 100 V; 

source temperature, 80 °C. The instrument was operated in positive ion mode. Time of flight was 

operated in a continuous extraction mode. In the positive linear mode (V mode) an accelerating voltage 

of 9.10 kV was used for the TOF and the MCP value of the detector was set to 2200 V. A mass 

calibrant of Glu-Fibrinopeptide B (Sigma Aldrich) at 500 fmol·μL−1 was utilized in MS/MS mode. 

Lock spray was utilized during the whole acquisition. Full scans (MS mode) were performed over the 

350–1900 m/z range with scan time of 0.9 s and interscan time of 0.1 s. For peptide fragmentation, the 

instrument was used in a data dependent acquisition MS survey mode (MS/MS). Thus, the fragmentation 

of an ion is achieved when a minimum intensity (specified value) is detected (simultaneous fragmentation 

of the three most abundant ions). The collision energy was varied between 5 and 55 V according to the 

mass and charge state of the respective peptides. 

2.9. Database Searching 

The fragmentation ion spectra obtained from the MS survey mode were processed using Mass Lynx 

version 4.0 (Waters), a software that converts MS/MS raw data to peak lists. After centroiding and 

background subtraction, the generated PKL files obtained were used for Mascot (Matrix of science, 

London, UK) database searching against a customized peanut allergen and Swiss-Prot database. This 

customized allergen database consisted of Swiss-Prot sequences of: allergen Ara h 1 (P43237, clone 

P17 precursor), allergen Ara h 1 (P43238, clone P41B precursor), allergen Ara h 2 isoform (Fragment, 

Q7Y1C0), allergen Ara h 2.02 (Q8GV20), allergen II (Fragment, Q941R0), allergen Ara h 3/Ara h 4 

(Q8LKN1), Ara h 3 Glycinin (Fragment, O82580), Ara h 4 Glycinin (Q9SQH7), allergen Ara h 5 

Profilin (Q9SQI9), allergen Ara h 6 (Fragment, Q9SQG5), allergen Ara h 7 (Q9SQH1), allergen  

Ara h 8 (Q6VT83). A maximum of one missed cleavages were allowed. Peptide tolerance and MS/MS 

tolerance were set to 100 ppm and 0.1 Da respectively. Modifications on cysteine residues by 

carboxyamidation were set as fixed and a possible modification of methionine by oxidation was set as 

variable modification. 
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2.10. Selective Reaction Monitoring (SRM)  

SRM data were acquired on a Waters Quattro Premier triple quadrupole coupled to a Waters 

nanoAcquity Ultra Performance system fitted with a Waters Symmetry 5 μm particle diameter C18  

180 μm × 20 mm trap column and a 75 μm × 150 mm (1.7 μm) BEH 130 C18 column. Peptides were 

eluted using a linear gradient of 1–35% B over 50 min at a flow rate of 0.3 μL·min−1. Solvent A 

corresponded to 0.1% formic acid in milli-Q water and solvent B to 0.1% formic acid in ACN. 

The mass spectrometer was operated in SRM mode. For ionization, 2.75 kV of capillary voltage, 35 V 

of cone voltage and 100 °C capillary temperature were used. The collision energy was calculated using 

the following formulas: CE = 0.044 * (m/z) + 5.5 for doubly charged ions and CE = 0.051 * (m/z) + 0.5 

for triply charged ions. Selection of transitions (precursor/fragment combinations) was based on the 

DDA experimental data generated on an Ultima Global Q-TOF instrument (Waters). The SRM 

transitions monitored for Ara h 1, Ara h 2 and Ara h 3 are presented in Table 2. A Blast similarity 

search using the tool [10] was performed confirming the specificity of these peptides. The dwell time 

(DT) for each transition was 0.05 s. 

Table 2. Selective Reaction Monitoring (SRM) transitions monitored for detection of  

Ara h 1, Ara h 2 and Ara h 3. 

Peptides 
Parent ion 

(m/z) (+) 

Fragment ion(s) 

(m/z) 
CE a 

Ara h 1 

VLLEENAGGEQEER 

DLAFPGSGEQVEK 

Ara h 2 

CCNELNEFENNQR 

NLPQQCGLR 

CDLEVESGGR 

CMCELQQIMENQSDR 

 

Ara h 3 

LNAQRPDNR 

SPDIYNPQAGSLK 

 

AHVQVVDSNGNR 

 

786.9 (+2) 

688.8 (+2) 

 

863.8 (+2) 

543.3 (+2) 

561.2 (+2) 

1006.9 (+2) 

 

 

361.9 (+3) 

695.4 (+2) 

 

432.5 (+3) 

 

989.5 (y9)/875.4 (y8)/804.4 (y7)/747.3 (y6)/561.3 (y4)/304.2 (y2) 

1077.5 (y10)/930.5 (y9)/833.4 (y8)/447.2 (b4)/300.2 (b3)/229.1 (b2) 

 

1050.5 (y8)/807.4 (y6)/660.3 (y5)/531.3 (y4) 

858.4 (y7)/761.4 (y6)/633.3 (y5)/200.1 (a2) 

846.4 (y8)/604.3 (y6)/505.2 (y5)/376.2 (y4) 

1721.8 (y14)/1361.7 (y11)/1248.6 (y10)/992.5 (y8)/879.4 (y7)/748.3 

(y6)/ 619.3 (y5)/292.1 (b2) 

 

1083.6 (ymax)/970.5 (y8)/856.4 (y7)/657.4 (y5)/228.1 (b2) 

1389.7 (ymax)/1302.7 (y12)/977.5 (y9)/814.5 (y8)/700.4 (y7)/475.3 

(y5)/300.1 (b3) 

749.5 (b7)/663.3 (y6)/535.4 (b5) 

 

40 

36 

 

43 

29 

30 

49 

 

 

19 

36 

 

23 
a CE: collision energy. Dwell time (DT) for each transition was 0.05 s. 

3. Results and Discussion 

Allergen detection methods must be sensitive and selective enough to detect the target proteins at 

levels as low as 1–10 mg allergenic food kg−1 food matrix. When investigating peanuts as the allergenic 

food source, given that they are largely incorporated in processed foods and thus a potential cross 

contact of intended peanut free products cannot be ruled out representing a constant risk to allergenic 

consumers [11]. In addition, detection of traces of peanut allergens in food products is difficult 

because they are obscured by the food matrix and processing hinders detection. 
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The workflow of Figure 1 is a typical approach followed to detect food allergens. It includes basic 

steps such as protein extraction, enrichment (if necessary), protein digestion and detection of peptides 

from the allergenic proteins through mass spectrometry platforms. To date there are eleven allergenic 

proteins in peanuts identified of which Ara h 1, Ara h 2 and Ara h 3 are recognized as the most 

abundant and major peanut allergens [12–14]. Ara h 1, Ara h 2 and Ara h 3 represent 12–16%,  

5.9–9.3% and 21.8–38.5% of the total protein content determined by SDS-PAGE quantitative 

studies [12]. If the target is to detect 10 ppm of allergenic food kg−1 cookies the question arises, how 

much is the quantity of the major allergens reaching the detector in the mass spectrometer? Since 

Ara h 3 is the most abundant peanut allergen across different varieties, all model calculations were done 

with this target. It can be assumed that the average protein content of peanuts is 20%, and that Ara h 3 

represents 30% of total peanut proteins. Five grams of cookies contaminated with 10 μg peanuts g−1 

matrix are extracted with 20 mL of TBS buffer giving an average content of Ara h 3 of 2.45 fmol μL−1 

solution. For protein digestion, 50 μg of total proteins (from the cookie matrix plus peanuts) are treated 

and approximately 0.8 μg total protein is loaded on the column which results in an ideal and theoretical 

content of 480 amol Ara h 3. This is an optimistic scenario, since 100% recovery during protein 

extraction, complete digestion and 100% ionization efficiency of peptides is assumed. Therefore, 

detection methods should be capable to detect targeted peptides in the amol—low femtomol range. 

Figure 1. Workflow for sample preparation for mass spectrometry analysis. The different 

steps involve: protein extraction from the matrix, protein enrichment (optional), enzymatic 

(e.g., trypsin) digestion and MS analysis of the peptide mix either through shotgun (DDA) 

or targeted (SRM) proteomic approaches. 

food matrix

protein 
extraction

Enrichment
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peptides

MS analysis
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extraction

Enrichment

digestion

peptides

MS analysis  



Nutrients 2012, 4 139 

 

To complicate this scenario, the presence of other highly abundant proteins from the matrix (cookie) 

may hamper detection of the low abundant ones (trace amounts of target allergenic foods) by ion 

suppression of the target peptides. In this particular case, wheat flour and skimmed milk powder make up 

50% and 6% of the cookie composition. Assuming total protein contents of 10% and 36% respectively 

for wheat flour and skimmed milk powder, we are talking about differences in protein or peptide  

levels of at least 6 orders of magnitude. A reasonable question would be if current mass spectrometry 

technology is able to cope with such huge differences? This will be discussed in the coming sections. 

Up to now processing effects are not sufficiently being taken into account. Food processing may 

induce some unknown protein modifications in the allergen targets [15]. Figure 2 displays a SDS-PAGE 

protein profile for the IRMM-481f peanut mix used to prepare the incurred cookies and cookies 

incurred with high amounts of peanuts (100,000 μg·g−1 matrix). The allergome of peanut is rather 

complex. Ara h 1 is a 63–68 kDa glycoprotein assembled in di and trimeric complexes. Of the allergen 

Ara h 2 two isoforms with masses of ca. 16 and 17 KDa have been isolated. Ara h 3 and Ara h 4 are 

isoallergens and can be designated as the allergen Ara h 3/4. The allergenic protein Ara h 3/4 consists 

of an acidic and basic subunit which remain covalently linked by an intermolecular disulfide bridge 

and associate into a very stable hexameric structure. The acidic subunit has a molecular mass in  

the range of 40–45 kDa, whereas the basic subunit has a mass of ca. 25 kDa. Ara h 3/4 is mainly 

proteolytically modified (truncation at multiple sites) with possible glycosylation. Proteolytic 

truncation was observed for the acidic subunit but not for the basic resulting in a series of polypeptides 

ranging from 13–45 kDa [16]. Ara h 1 and Ara h 3 were clearly identified through mass spectrometry 

in both samples (bands 1–4; 11 and 14; Table 3). Band 11 identified Ara h 1 but also the presence of 

alpha-casein which was detected and confirmed by mass spectrometry (Table 3). Co-migration of 

major allergens with matrix proteins was observed and thus interference with their detection at trace 

levels is expected. Band 13 was negative for Ara h 3 and identified casein instead, while Ara h 2 

(bands 5 and 7) could not be detected in the processed food product even when the concentration of 

added peanut was very high. Ara h 1 and Ara h 3 are present in higher concentrations than Ara h 2 in 

the different peanut varieties [12]. IRMM-481f peanut mix presents a low amount of Ara h 2 which 

limited its qualitative detection by SDS-PAGE and could not be detected even when the matrix 

contained very high concentrations of peanuts. Is it because of the low abundance of this protein and 

low sensitivity of the gel based approach or are there any interactions with other matrix components 

that resulted in protein modification and thus protein migrate differently and consequently was not 

identified by MS analysis? These are certainly issues that need to be answered. 
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Figure 2. SDS-PAGE protein profiles for IRMM-481f peanut mix and 16 min baked cookie 

incurred with 100,000 μg IRMM-481f peanut mix g−1 matrix. The different band numbers 

were submitted to trypsin digestion and peptides submitted to nano LC-Q-TOF-MS/MS for 

protein identification. The list of peptides and identified proteins are presented in Table 3. 

Five micrograms protein was loaded per lane. A molecular weight standard (MW) of  

3.5–260 kDa was run in parallel. 
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Table 3. Tryptic peptides identified from IRMM peanut mix and 16 min baked cookies 

incurred with 100,000 μg peanuts g−1 matrix of IRMM peanut mix. 

Protein identification Band # a Peptides matched Mascot Score 
IRMM peanut mix    
Ara h 1 clone P41B precursor 1 18, 15, 26 756, 744, 1473 
Ara h 1 clone P17 precursor  16, 15, 29 704, 726, 1619 
Allergen Ara h 3 Ara h 4  1, 3, 9 81, 76, 509 
Allergen Ara h 3 Ara h 4 2 13, 7, 12 637, 369, 728 
Ara h 3 Glycinin 3 1, -, 1 90, -, 70 
Allergen Ara h 3 Ara h 4 4 6, 11, 9 365, 771, 576 
Allergen Ara h 2 5 3, 3 140, 114 
Ara h 3 Glycinin 6 2 98 
Allergen Ara h 3 Ara h 4 7 2 96 
Ara h 1 clone P17 precursor  2 67 
Ara h 1 clone P41B precursor  2 67 
Allergen Ara h 2 isoform  1 51 
Allergen Ara h 6 8 6 209 
Allergen Ara h 3 Ara h 4 9 8 431 
Allergen Ara h 6   10 369 
Allergen Ara h 3 Ara h 4 10 10 558 
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Table 3. Cont. 

Cookie incurred at 100,000 μg·g-1    
Ara h 1 clone P41B precursor    
Ara h 1 clone P17 precursor 11 14, 10, 8 766, 582, 481 
Allergen Ara h 3 Ara h 4  13, 11, 10 686, 569, 552 
  4, 4, 2 264, 190, 134 
Allergen Ara h 3 Ara h 4    
 12 3, 1, 1 103, 20, 50 
Alpha casein S2    
 13 3, 3 102, 117 
Allergen Ara h 3 Ara h 4    
Alpha casein S2 14 6, 7 340, 524 
  (−), 2 (−), 103 

a Band numbers correspond to those reported in Figure 2. When sufficient amount of sample, three 
independent replicates were submitted to DDA MS/MS protein identification (three corresponding 
values for peptides matched, Mascot score and expect value) otherwise one or two samples were 
used. (−) Stands for a negative hit. The expect value is the probability to obtain a random protein 
identification. Expect values were in all cases <0.0001 peanuts g−1 matrix.  

3.1. Shotgun Proteomics Approach: Nano LC-Q-TOF-MS/MS 

Protein extracts from incurred cookies with 0, 10, 100, 1000 and 100,000 μg peanuts g−1 matrix were 

digested with trypsin and the peptide mixture was submitted to data dependent acquisition (DDA) with a 

Q-TOF instrument. Results are presented in Table 4. Ara h 1 was detected in samples containing at least 

10,000 μg peanuts g−1 matrix. Ara h 3 was detected in samples containing ≥1000 μg·g−1. 

Table 4. DDA MS/MS results for 16 min baked cookies incurred with different amounts of 

peanuts (0–100,000 μg g−1 matrix). 

Amount of peanut 
μg·g−1 matrix 

Protein Identification Peptides m/z charge

1 Negative    
10 Negative    
100 Negative    
1000 Ara h 3/Ara h 4 LNAQRPDNR 361.9 3+ 
 Ara h 4 Glycinin AHVQVVDSNGNR 432.5 3+ 
 Ara h 3 Glycinin    
10,000 Ara h 3/Ara h 4 LNAQRPDNR 361.9 3+ 
 Ara h 4 Glycinin AHVQVVDSNGNR 432.5 3+ 
 Ara h 3 Glycinin SPDIYNPQAGSLK 695.4 2+ 
 Ara h 1 clone P17 VLLEENAGGEQEER 786.8 2+ 
 Ara h 1 clone P41B DLAFPGSGEQVEK 688.8 2+ 
  DQSSYLQGFSR 644.3 2+ 
  GTGNLELVAVR 564.8 2+ 
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Table 4. Cont. 

100,000 Ara h 3/Ara h 4 LNAQRPDNR 361.9 3+ 
 Ara h 4 Glycinin AHVQVVDSNGDNR 432.5 3+ 
 Ara h 3 Glycinin SPDIYNPQAGSLK 695.4 2+ 
  FNLAGNHEQEFLR 787.9 2+ 
  GENESDEQGAIVTVR 802.4 2+ 
  FFVPPSEQSLR 653.8 2+ 
  TANDLNLLILR 628.4 2+ 
  RPFYSNAPQEIFIQQGR 684.4 3+ 
 Ara h 1 clone P17 VLLEENAGGEQEER 786.8 2+ 
 Ara h 1 clone P41B DLAFPGSGEQVEK 688.8 2+ 
  DQSSYLQGFSR 644.3 2+ 
  GTGNLELVAVR 564.8 2+ 
  WGPAEPR 406.7 2+ 
  QFQNLQNHR 592.8 2+ 
  SSDNEGVIVK 524.3 2+ 
  GSEEEDITNPINLR 793.9 2+ 
  DGEPDLSNNFGR 660.8 2+ 
  IFLAGDKDNVIDQIEK 606.7 3+ 
  EGEQEWGTPGSHVR 523.6 2+ 
  SSENNEGVIVK 588.3 2+ 
  LFEVKPDK 488.3 2+ 
  EGALMLPHFNSK 672.3 2+ 
Peptides were selected based on E-values lower than 0.05. E-value is the probability of a random 
peptide identification. Results are based on three independent replicates. 

Ara h 2 could not be detected even in samples containing 100,000 μg peanuts g−1 matrix.  

The differences in detectability of the three major allergens in the matrix seem to be related to their 

initial content in the peanut source. Ara h 3 is the most abundant protein followed by Ara h 1 and  

Ara h 2 [12]. Baked cookies incurred with trace amount of peanuts are an excellent representation of a 

processed complex food matrix where huge differences in the content of individual proteins  

(food allergens vs. bulk proteins from other ingredients) can be expected. In addition, not all proteins 

generate a sufficient amount of detectable peptides: poor ionization and/or fragmentation behaviour are 

main issues that prevent peptide detection with the state-of-the-art mass spectrometry technology, 

which is even more accentuated when very complex matrices are used [15]. A way to circumvent the 

huge differences in concentration of proteins/peptides in the sample and ion suppression is to enrich 

the targeted analytes [15,17,18]. There is resilience for the use of enrichment techniques in trace 

analysis not only because of the expense of time and work but because they might complicate 

quantitative analysis. However it was the strategy taken in this work, otherwise it was not feasible to 

attain the required detection limits. 

In the present study, the shotgun approach (data dependent acquisition—DDA) was limited by the 

required rate to carry out a precursor scan and fragmentation event for a single peptide, which was not 

fast enough to analyze all peptides. Consequently, bias towards highly abundant peptides was 

observed. Thus, a simple protein enrichment protocol based on a peptide ligand library known as 
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ProteoMiner™ was evaluated. First, a possible enrichment of the major peanut allergens was 

confirmed in the peanut material used to prepare the incurred cookies (IRMM-481f peanut mix).  

Ara h 1 and Ara h 3 were satisfactorily enriched in the IRMM peanut mix sample (Figure 3A). Ara h 2, 

however, was not satisfactorily enriched and seemed to be washed away (present in the unbound 

fraction). A different situation was observed when the matrix was incorporated (baked cookie), only 

enrichment of Ara h 3 could be evidenced through SDS-PAGE and was dependent on the amount of the 

extracted material (Figure 3B). At least a 10× enrichment for Ara h 3 from cookies was achieved. In 

cookies incurred with 100 μg peanuts g−1 matrix, Ara h 3 could be detected after enrichment through  

LC-Q-TOF MS/MS (Table 5). Previous works in allergen detection have made used of enrichment 

techniques such as ultrafiltration, precipitation, and peptide ligand libraries [12,19,20]. Enrichment can 

increase the identification rate of the low abundant fraction proteins/peptides but the intrinsic 

limitation of a shotgun approach will remain [21]. 

Figure 3. Enrichment of major peanut allergens through peptide ligand libraries 

(ProteoMiner™). (A) IRMM-481f peanut mix sample; (B) 16 min baked cookies incurred 

with 1000 μg IRMM-481f peanut mix g−1 matrix. Different amounts of starting material 

were extracted. Protein loaded was normalized to 5 μg per lane to allow comparisons. 

Initial corresponds to whole protein extract. 
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Figure 3. Cont. 
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Table 5. DDA MS/MS results for 16 min baked cookies incurred with trace amounts  

of peanuts (0–1000 μg·g−1 matrix) after protein enrichment via peptide ligand  

library—ProteoMiner™. 

Amount of peanut 
μg·g−1 matrix 

Protein identification Peptides (m/z, charge) MS/MS 

10 Negative   
100 Ara h 3/Ara h 4 LNAQRPDNR (361.9, 3+) 1, 1, 1 
 Ara h 4 Glycinin   
 Ara h 3 Glycinin   
1000 Ara h 3/Ara h 4 LNAQRPDNR (361.9, 3+) 2, 1, 1 
 Ara h 4 Glycinin AHVQVVDSNGDNR (432.5, 3+) 1, 1, 1 
 Ara h 3 Glycinin SPDIYNPQAGSLK (695.4, 2+) 1, 1, 1 
  QIVQNLR (435.8, 2+) 1, 1, 1 
  GENESDEQGAIVTVR (802.4, 2+) 1, 1, 0 

Peptides were selected based on E-values lower than 0.05. E-value is the probability of a random 
peptide identification. Results are based on three independent extractions. 

It is worth noting the importance of a shotgun approach. Indeed a targeted approach such as 

selective reaction monitoring (SRM) is developed based on experimental data obtained through a 

shotgun approach (e.g., data dependent acquisition) for selection of the proteotypic peptides. In addition, 

a shotgun approach is useful to assess unexpected or known protein/peptide modifications which might 

be frequently encountered when working with processed foods. 

3.2. Targeted Proteomics Approach: SRM 

SRM is a highly sensitive approach to selectively detect and quantify peptides previously selected 

and relying on the monitoring of specific ion transitions [22]. 
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Selection of SRM transitions to be monitored was based on experimentally obtained data with a 

DDA approach in an ESI-Q-TOF instrument (Table 2). Peptides highly observable and detectable for 

Ara h 1, Ara h 2 and Ara h 3 were selected. Fragment ions were selected based on MS/MS spectra of 

these highly observable precursor ions (Table 2). At least three transitions per peptide were monitored to 

facilitate reliable identification of the peptide. Previously enriched incurred cookie samples (1, 10 and 

100 μg peanuts g−1 matrix) were submitted to SRM. Two proteotypic peptides from Ara h 3 were 

detected in enriched cookie samples containing ≥10 μg peanuts g−1 matrix. These peptides corresponded 

to: AHVQVVDSNGNR (m/z 432.5, triply charge ion) from which three out of the three fragment ions 

were detected and SPDIYNPQAGSLK (m/z 695.4, doubly charged ion, Figure 4) from which 4 out of 

7 fragment ions were detected. However, Ara h 1 was only detected in samples containing 100 μg 

peanuts g−1 matrix (DLAFPGSGEQVEK, m/z 688.8 doubly charged ion) and Ara h 2 peptides were 

not detected in the enriched samples tested. In the present study, a gain of a factor of ten in the average 

signal was achieved by fractionation/enrichment techniques previous to SRM analysis as already 

reported by Picotti et al. analysing yeast samples [23]. 

Figure 4. Selective Reaction Monitoring (SRM) of the Ara h 3 peptide SPDIYNPQAGSLK 

(m/z 695.4, 2+) in enriched cookie samples incurred with 10 μg peanuts g−1 matrix. SRM 

analysis was carried out on a Waters Quatro Premier triple quadrupole. 

 

Previous SRM investigations focused on detection of peanut allergens in different food matrices 

have been reported [7,19,20,24]. However, one should be critical with issues concerning sample 

preparation and analysis that pose some reasonable questions on achieved detection limits. In the study 

of Careri et al. [19], for instance, the different food matrices tested (rice crispy and cacao based snacks) 

were fortified with different amounts of raw peanuts and it was not clearly reported if the different 

amount of peanut proteins were added before or after processing. Thus, they were dealing with spiked 
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samples and raw peanuts. The effect of food processing on the extractability of Ara h 2 and Ara h 3/4 

was not considered. The detection limits of 5 μg protein g−1 matrix for Ara h 2 and 1 μg protein g−1 

matrix for Ara h 3/4 might be too optimistic. In addition, limits of detection were expressed as μg 

protein g−1 matrix which is different than μg peanuts g−1 matrix. In our study, we achieved detection  

of Ara h 3/4 in incurred cookies with 10 μg peanuts g−1 matrix targeting the same Ara h 3 peptides  

(i.e., AHVQVVDSNGNR and SPDIYNPQAGSLK) reported by Careri et al. [19]. For Ara h 2, the 

same peptides reported by Careri et al. [19] CCNELNEFENNQR (m/z 863.8, doubly charged ion) and 

CMCELQQIMENQSDR (m/z 1006.9, doubly charged ion) were also targeted but unsuccessfully in 

our study even though an alkylation step was introduced. In our case, to confirm detection of a certain 

peptide in SRM mode at least three fragment ions needed to be detected as to be considered a true hit 

while in the case of Careri et al. [19] it was based on one fragment ion which could render confirmation 

of certain peptide doubtful. At least two fragment ions should be used: one as quantifier and the other as 

qualifier fragment ions. The ratio quantifier/qualifier must remain constant throughout samples and it is 

considered as another quality control step in SRM [7,8]. In the study of Shefcheck et al. [20], detection 

levels of 2 μg protein g−1 matrix (Ara h 1) from dark chocolate with SRM have been reported. The  

Ara h 1 peptides VLLEENAGGEQEER (m/z 786.9, doubly charged ion) and DLAFPGSGEQVEK 

(m/z 688.9, doubly charged ion) were targeted detecting three fragment ions per peptide. With this 

particular matrix, the most important factor affecting the extraction of the target analyte(s) seemed to 

be the interaction protein-tannins. The range in terms of concentration between the target analyte(s) 

and matrix proteins do not seem to be the major problem for detection since the sample was dark 

chocolate (proteins present belong to the cacao matrix). In cookie as food matrix, not only the huge 

range in terms of protein concentrations but the interaction and processing effects seem to be the 

limiting factors for detecting at least Ara h 1 and Ara h 2 at lower levels. 

In a recent study conducted by Heick et al. [7,24] targeting seven different allergens from milk,  

egg, soy, hazelnut, peanut, walnut and almond in flour and bread as food matrices, detection limits of 

11 μg·g−1 matrix have been reported for the allergens from peanuts (Ara h 1 and Ara h 3/4, respectively). 

However, this detection limit is based on spiking different amounts of semi purified peanut proteins in 

blank matrix. Unfortunately, the source of peanut material was not described (e.g., raw or processed 

peanut, one variety or a mix or varieties representative of what is commercially available and used by 

the food industry) which might explain the differences in the selected proteotypic peptides. With the 

exception of DLAFPGSGEQVEK (m/z 688.8, doubly charged ion) from Ara h 1, the other three 

peptides largely differed from the ones selected in the present study. For example, the proteotypic 

peptide RPFYSNAPQEIFIQQGR (m/z 684.5, triply charged ion) from Ara h 3/4 was reported as  

the most intense marker [7]. However, in our study, we could only detect this peptide when the amount 

of peanuts was very high (>10,000 μg g−1 matrix) in the cookie matrix. The reported LOD value of  

11 μg·g−1 matrix might also be very optimistic since the starting material was defatted peanut, and  

peanut contains approximately 50% fat and the calculated LOD was based on matrix spiked with total 

peanut proteins. 

There is consensus in the community that SRM is the approach to take for trace level detection of 

major food allergens, especially as confirmatory method when liability issues are raised. However, still 

aspects remain that need to be common practice and improved before a solid detection method is 

developed. Recommendations of the scientific community [6] working on the subject includes but are 
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not limited to: history and description of the allergen food source, nature of the reporting units, quality 

control of MS data, etc. 

3.3. Perspectives 

Previous evaluations of the reproducibilty of ProteoMiner enrichment opens perspectives for its  

use in food allergen quantitation [25,26]. The quantitative reproducibility of cytokines per trial and  

not only in terms of enrichment factor was confirmed by immunodetection and nano LC-MS/MS [25]. 

A method that incorporated ProteoMiner enrichment has been successfully used for label free 

quantification of series of cerebrospiral fluid samples processed in parallel [26]. The signal intensity of 

peptides coming from growing amounts of exogenous spiked proteins in the matrix was evaluated.  

Data independent acquisition (DIA) known as MSE presents itself as a promising approach to detect 

trace levels of food allergens in complex food matrices due to the higher sensitivity that can be 

achieved compared to the classical DDA approach. An advantage of MSE is the possibility to account 

for certain modifications simultaneously, higher sequence coverage, and label free quantification [27]. 

Wei et al. [28] performed data independent acquisition (DIA) or MSE to analyze Ara h 1 detectable 

peptides in raw and roasted peanuts. The potential of certain Ara h 1 peptides as markers was based on 

their presence in both raw and roasted peanuts at relatively high intensities. We detected the same  

Ara h 1 peptides: DLAFPGSGEQVEK and VLLEENAGGEQEER as the most abundant ones through 

DDA (Table 3). Wei and co-workers also introduced a matrix (E. coli tryptic digest) in a 1:200 v/v  

(Ara h 1 matrix) proportion and were able to perform label free Ara h 1 quantification with the 

introduction of an ADH tryptic digest as internal standard. However, this material does not represent a 

processed food product. In the present work, a much higher dynamic range was encountered in terms of 

concentration of proteins besides that a representative matrix (cookie) was incorporated. This MSE 

approach has been explored by our team, but so far no comparable or better sensitivity has been achieved 

than the ones achieved with SRM. 

Multi allergen detection and quantification are hot topics nowadays. An LC-MS based method 

claiming detection of seven different food allergens at trace levels in bread has been recently 

reported [7]. The LOD values reported need to be considered with caution since the allergen food 

sources are not fully described and might not be representative of real scenarios, being by far too 

optimistic. However, it is a first attempt that brings new insights into this possible multi allergen 

detection. For absolute allergen quantification, the topic is much more sensitive and we should be 

cautious on how to interpret quantification. Ideally, an isotopically labeled target protein that can be 

incorporated during the sample preparation workflow or even before processing simulating real 

processing and extraction conditions should be used. However, so far it is more realistic to use 

isotopically labeled peptides [6]. The digestion step for quantification of proteins/peptides is a key 

aspect and requires being reproducible and complete [29]. Assessment of the stability of target 

peptides (e.g., possible deaminations) during the proteolysis and afterwards is also of key importance 

for absolute protein quantification. Absolute quantification of milk allergens in a variety of food 

matrices has been recently reported [8]. Many of the target peptides present Q and N in their sequence. 

We have experimentally observed with our target peptides that when these amino acids are present 

they can undergo deamination to a certain degrees. Of course, this issue might be circumvented by 
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accounting for the amidated and de-aminated forms in the SRM method. Given the different  

physico-chemical properties of the different allergenic proteins to target, the complexity of the different 

potential food matrices encountered and the diversity of food processing conditions, a generic sample 

preparation platform might not be realistic. However, it might be feasible to rely on a few number of 

sample preparation workflows grouping food products sharing similar characteristics (e.g., high protein 

content, high polyphenol content, etc.). This would certainly help for validation and standardization of 

food allergen detection methods through SRM targeted approaches. 

4. Concluding Remarks 

A well described and representative food allergen source (IRMM-481f), which is a mix of five 

commercially available different peanut varieties and five different processing conditions, was used 

contrary to previous reported investigations in which the food allergen source is vague or not 

representative enough. A representative and highly processed food matrix (cookies) with a high protein 

content of non target proteins (milk and wheat) was employed. This matrix is representative of what  

is to be expected when analyzing food samples contaminated with allergens: a wide range in  

protein concentration and a highly processed sample. This work mainly focused on method 

development through shotgun proteomics and sample preparation for future targeted confirmatory 

approaches such as SRM. The SRM approach followed, allowed us to detect Ara h 3 peptides at levels 

as low as 10 μg peanuts g−1 cookies. The two proteotypic Ara h 3/4 peptides AHVQVVDSNGNR and 

SPDIYNPQAGSLK were confirmed as markers of peanut presence in cookies containing as low as  

10 μg peanuts g−1 cookies. This targeted SRM is being further optimized by our group to allow 

detection, confirmation and potential quantification of Ara h 3 and Ara h 1 peanut allergens in 

different food matrices. 
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