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Abstract: In recent years, multitarget drugs for neurological diseases such as Alzheimer’s disease
have been developed and well researched. Many studies have revealed that multitarget drugs are also
useful for lung cancer and respiratory diseases. Pemetrexed is a multitargeted antifolate with strong
antitumor activity against mesothelioma and lung adenocarcinoma. Crizotinib is an ATP-competitive
tyrosine kinase inhibitor that targets c-MET, ROS1, and ALK. Alectinib is known as an ALK inhibitor
but also targets LTK, CHEK2, FLT3, PHKG2, and RET. Sorafenib is a tyrosine kinase inhibitor that
targets RAF kinase, KIT, VEGFR, PDGFR1β, FLT3, and RET. Nintedanib is a multiple tyrosine kinase
inhibitor that targets FGFR, PDGFR, and VEGFR. In this review, we summarize the mechanisms of
action of multitarget therapies and report the results of the latest clinical trials.
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1. Introduction

Important discoveries of new drugs have been made based on the strategy of targeting one gene
with one drug in one disease [1]. This strategy is considered important to prevent the disadvantages
of accidental targeting of other substances. Accordingly, drugs that interact with multiple targets
have long been considered undesirable, partly because they have been associated with adverse side
effects. However, owing to recent discoveries indicating the complexity of intractable diseases such
as cancer and neurological diseases, single-target drugs are thought to not be sufficiently effective,
and since early 2000, multitarget drugs have been rapidly developed [2]. Multitarget drugs have
synergistic effects as they exhibit different modes of action, which lead to improved adherence, because
the number of drugs administered to patients can be reduced. For example, because the combination
of venlafaxine and fluoxetine to treat depression increases the side effects of anticholinergic activity,
a multitarget drug may lead to reduced side effects [3–5].

Recently, multitargeted ligands have been studied in various diseases such as Alzheimer’s
disease, depression, poisoning, glaucoma, and nonalcoholic steatohepatitis (NASH) [6]. In this review,
we summarize the mechanisms of action of multitarget therapies and the results of the latest clinical
trials and introduce novel compounds and discuss the limitations of multitarget drugs.

2. Pemetrexed

Pemetrexed is a folate antimetabolite that exhibits strong and broad antitumor activity by
inhibiting multiple folate-metabolizing enzyme pathways. Pemetrexed is mainly taken up into cells
by the reduced folate carrier (RFC) and undergoes polyglutamine oxidation by folyl polyglutamate
synthase (FPGS). When pemetrexed is subjected to polyglutamine oxidation, its intracellular retention
is increased, and its affinity for certain folate-metabolizing enzymes is also increased. Pemetrexed
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and its polyglutamates inhibit multiple folate-metabolizing enzymes involved in thymine and purine
nucleotide biosynthetic pathways, such as thymidylate synthase (TS), dihydrofolate reductase (DHFR),
and glycinamide ribonucleotide formyltransferase (GARFT), and thus cause imbalance in the cellular
nucleotide pool, inhibit DNA and RNA synthesis, and induce growth inhibition and cell death [7]
(Figure 1 [8,9]).

Figure 1. Mechanism of pemetrexed. RFC: reduced folate carrier, FPGS: folypoly-gamma-glutamate
synthetase, GGH: gamma-glutamyl hydrolase, Glun: glutamate, dUMP: deoxyyuridine monophosphate,
dTMP: deoxythymidine monophosphate, 5,10-CH2-THF: 5,10-methenyl-tetrahydrofolate, DHF:
dihydrofolate, THF: tetrahydrofolate, 10-CHO-THF: 10-formyl tetrahydrofolate, PRPP: phosphoribosyl
pyrophosphate, GAR: glycinamide ribonucleotide, fGAR: formylglycinamide ribonucleotide, AMP:
adenosine monophosphate, GMP: guanosine monophosphate.

Pemetrexed is currently used for malignant pleural mesothelioma and unresectable
advanced/recurrent non-small cell lung cancer (NSCLC). Recently, low TS expression was reported to
improve the therapeutic effect of chemotherapies including pemetrexed in NSCLC patients [10,11],
and it is thought that further research will allow pemetrexed to be used for tailored treatment.

Malignant mesothelioma, which arises from the mesothelial cells that line the inner surface of
the chest cavity, is associated with asbestos inhalation. A phase II study of pemetrexed alone showed
a response rate (RR) of 14.1% and a median survival time (MST) of 10.7 months [12]. This result is
better than that obtained with cisplatin [13] or gemcitabine [14]. A subsequent phase III trial comparing
cisplatin alone and combination therapy with cisplatin and pemetrexed (pemetrexed/cisplatin) was
conducted in 20 countries, including the United States and countries in Europe, and revealed that
survival with pemetrexed/cisplatin treatment was superior to that with cisplatin alone (MST of
12.1 months vs. 9.3 months in the pemetrexed/cisplatin arm and cisplatin alone arm, respectively;
p = 0.020). The median time to progression was significantly longer in the pemetrexed/cisplatin arm than
in the cisplatin alone arm (5.7 months vs. 3.9 months, p = 0.001). The RR in the pemetrexed/cisplatin arm
was higher than that in the cisplatin alone arm (41.3% vs. 16.7%, p < 0.0001) [15]. Additionally, in this
trial, a relationship between folic acid and vitamin B12 deficiencies and the occurrence of severe toxicity
graded by the Common Terminology Criteria for Adverse Events (CTCAE, grade 4 myelosuppression,
grade 3/4 diarrhea, mucositis, infection, etc.) was found, and supplementation with folic acid and
vitamin B12 reduced toxicity. Therefore, beginning in the middle of the test, investigators used
supplemental vitamin B12 and folic acid. Pemetrexed/cisplatin was subsequently approved by the
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US Food and Drug Administration (FDA) in February 2004 and is now the standard treatment for
malignant mesothelioma. In addition, the RR was 32%, and the MST was promising at 451 days
in a phase I study of pemetrexed/carboplatin [16]. In a phase II trial of pemetrexed/carboplatin,
the RR ranged from 18.6% to 25%, and the MST was 12.7–14.1 months, showing favorable results.
Thus, pemetrexed/carboplatin is a treatment option against malignant mesothelioma [17,18].

A phase III study comparing pemetrexed and docetaxel in lung cancer conducted in patients who
were previously treated with platinum-based chemotherapy for NSCLC revealed that pemetrexed
has an efficacy equivalent to that of docetaxel but is less toxic than docetaxel [19]. Pemetrexed
was then approved as a second-line treatment for NSCLC in the US in August 2004 and in Europe,
in September 2004. Another phase III trial comparing pemetrexed/cisplatin with gemcitabine/cisplatin
in chemo-naïve NSCLC patients (JMDB trial) showed a prolonged MST in the pemetrexed/cisplatin
group with a significant difference in MST between patients with non-squamous cell carcinoma and
squamous cell carcinoma [20]. Based on this result, pemetrexed/cisplatin was approved in Europe
in April 2008 and in the US, in September 2008 as a first-line treatment for NSCLC. Furthermore,
a double-blind, randomized phase III trial (PARAMOUNT trial) was conducted to evaluate the
efficacy of maintenance therapy with pemetrexed after induction therapy with pemetrexed/cisplatin.
This trial was conducted in patients who were untreated for stage IIIB/IV NSCLC and responded
to four courses of induction therapy with pemetrexed/cisplatin. The results showed a significantly
prolonged progression-free survival (PFS) after maintenance therapy compared with placebo therapy
(4.4 months vs. 2.8 months, respectively; hazard ratio (HR): 0.62, 95% confidence interval (CI): 0.50–0.73,
p < 0.0001) and significantly better overall survival (OS) in the maintenance group than the placebo
group (13.9 months vs. 11.0 months, respectively; HR: 0.78, 95%CI: 0.64–0.96, p = 0.0195). The patient’s
quality of life (QOL) was not reduced despite grade 3/4 anemia (pemetrexed group: 6.4% vs. placebo
group: 0.6%); neutropenia (5.8% vs. 0%); fatigue (4.7% vs. 1.1%); leukopenia (2.2% vs. 0%); nausea
(0.6% vs. 0%); or vomiting (0.3% vs. 0%). Based on this study, after four courses of combination
pemetrexed/cisplatin therapy, continuing maintenance therapy with pemetrexed is recommended
for patients with no disease progression and acceptable toxicity [21]. Recently, a phase III trial was
conducted to evaluate the efficacy of addition of pembrolizumab, an immune checkpoint inhibitor, to
pemetrexed/platinum-based drugs in patients with PS 0-1 stage IV NSCLC without epidermal growth
factor receptor (EGFR) mutation or anaplastic lymphoma kinase (ALK) translocation (KEYNOTE-189) [22].
In the interim analysis, PFS and OS, the primary endpoints, showed an HR of 0.52 (8.8 months vs. 4.9
months, 95%CI: 0.43–0.64, p < 0.0001) and an HR of 0.49 (median not reached vs. 11.3 months, 95%CI:
0.38–0.64, p < 0.0001), respectively. Table 1 summarizes the results of clinical trials of pemetrexed
(Table 1).
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Table 1. Results of clinical trials of pemetrexed.

Trial Phase Line Type n RR(CR/PR) DCR(CR/PR/SD) Time to Progression PFS MST or OS

Scagliotti G.V. 2003
PEM alone II 1st line MPM 64 14.1% 65.6% 4.7 m 10.7 m

Vogelzang N.J. 2003
PEM/CDDP vs. CDDP III 1st line MPM 456 41.3% vs. 16.7% 5.7 m vs. 3.9 m 12.1 m vs. 9.3 m

Hughes A. 2002
PEM/CBDCA I 1st line MPM 27 32% 88% 305 d 451 d

Ceresoli G.L. 2006
PEM/CBDCA II 1st line MPM 102 18.6% 65.7% 6.5 m 12.7 m

Castagneto B. 2008
PEM/CBDCA II 1st line MPM 76 25% 63% 8 m 14.1 m

Hanna N. 2004
PEM vs. DTX III 2nd

line NSCLC 571 9.1% vs. 8.8% 3.4 m vs. 3.5 m 2.9 m vs. 2.9 m 8.3 m vs. 7.9 m

Scagliotti G.V. 2008
CDDP/PEM vs.

CDDP/GEM
(JMDB trial)

III 1st line NSCLC 1725 30.6% vs. 28.2% 4.8 m vs. 5.1 m 10.3 m vs. 10.3 m

Non
Sq 1000 5.3 m vs. 4.7 m 11.8 m vs. 10.4 m

Sq 473 4.4 m vs. 5.5 m 9.4 m vs. 10.8 m

Paz-Ares L.G. 2013
PEM maintenance vs.

placebo
(PARAMOUNT trial)

III Induction NSCLC 939 4.4 m vs. 2.8 m 13.9 m vs. 11.0 m

Gandhi L. 2018
Platinum/PEM/

Pembrolizumab vs.
Platinum/PEM/

placebo

III 1st line NSCLC 616 47.6% vs. 18.9% 84.6% vs. 70.4% 8.8 m vs. 4.9 m Not reachedvs
11.3 m

MPM: malignant pleural mesothelioma, NSCLC: non-small cell lung cancer, NonSq: nonsquamous cell carcinoma, RR: response rate, CR: complete response, PR: partial response, DCR:
disease control rate, SD: stable disease, PFS: progression free survival, MST: medial survival time, OS: overall survival, PEM: pemetrexed, CDDP: cisplatin, CBDCA: carboplatin, DTX:
docetaxel, GEM: gemcitabine.



Molecules 2020, 25, 3987 5 of 16

3. Crizotinib

ALK is a cell membrane protein with a transmembrane domain, and human ALK consists of
1620 amino acids. Since ALK contains a tyrosine kinase domain in its intracellular region, it is thought
to belong to the receptor tyrosine kinase family, the members of which are activated in response to
extracellular stimulation. ALK is an orphan member of the insulin superfamily of receptor tyrosine
kinases (RTKs), which are normally expressed in only the central nervous system, small intestine,
and testis [23,24]. In 1994, it was reported that the nucleophosmin ALK (NPM1-ALK) fusion gene was
present on the t (2; 5) reciprocal translocation in anaplastic large cell malignant lymphoma, and in
2007, a fusion protein consisting of echinoderm microtubule-associated protein like-4 (EML4) and ALK was
found in 6.7% of NSCLC patients [25]. ALK-positive NSCLC patients were mostly non-smokers or
light smokers and relatively young, had adenocarcinoma, and generally did not exhibit gene mutations
such as the EGFR and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations [26].

Crizotinib is an ATP-competitive tyrosine kinase inhibitor (TKI) that selectively inhibits the
activities of anaplastic lymphoma kinase (ALK); c-MET/hepatocyte growth factor receptor (HGFR);
and c-ROS oncogene 1 (ROS1) and their oncogenic variants (ALK fusion protein, c-MET/HGFR
variant, and ROS1 fusion protein), leading to inhibition of phosphoinositide 3 kinase (PI3K)/v-act
murine thymoma viral oncogene homolog (AKT)/mammalian target of rapamycin (mTOR) or rat
sarcoma protein (RAS)/v-raf murine viral oncogene homolog (RAF)/mitogen-activated protein kinase
(MAPK)/extracellular signal regulated kinase (ERK) kinase MAPK (MEK)/MAPK signaling (Figure 2).
The ALK fusion protein and some ROS1 fusion proteins are constitutively activated by dimerization and
activate many downstream signaling factors to promote the cell cycle, proliferation, and survival [27].
Crizotinib is believed to exhibit antitumor effects by inhibiting the kinases ALK, ROS1, and c-MET and
suppressing the activation of these factors, tumor cell proliferation, and tumor angiogenesis.

Figure 2. Mechanism of crizotinib, alectinib and sorafenib. ROS1: c-ROS oncogene1, MET: mesenchymal
epithelial transition factor, RET: proto-oncogene ret, FLT-3: Fms-like tyrosine protein kinase, VEGFR:
vascular endothelial growth factor receptor, PDGFR: platelet-derived growth factor receptors, PI3K:
phosphoinositide 3 kinase, AKT: v-act murine thymoma viral oncogene homolog, mTOR: mammalian
target of rapamycin, EML4-ALK: echinoderm microtubule associated protein like 4, RAS: rat sarcoma
protein, RAF: v-raf murine viral oncogene homolog, MAPK: mitogen activated protein kinase,
MEK:,MAPK/extracellular signal regulated kinase(ERK) kinase.

An overseas phase I study (PROFILE 1001) [28] and an international joint phase II study (PROFILE
1005) were conducted in patients with ALK-positive NSCLC and showed favorable results by the
fluorescence in situ hybridization (FISH) method. Then, an international phase III study (PROFILE 1007)
conducted in previously treated ALK-positive NSCLC patients to compare crizotinib with conventional
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standard treatments using docetaxel or pemetrexed showed a significantly prolonged PFS [29]. Further,
even for patients with untreated ALK-positive NSCLC, a strong antitumor effect with an RR of 74%
and a median PFS of 10.9 months was observed (PROFILE 1014) [30]. Based on these results, crizotinib
became a first-line ALK inhibitor for use in ALK-positive NSCLC. Although most of the adverse events
such as digestive symptoms and visual impairment were grade 1, other serious adverse events such as
interstitial pneumonia, liver injury, and QT prolongation were also reported. Notably crizotinib acts
as a TKI of ALK as well as ROS1 [31]. In the expanded cohort of the PROFILE 1001 trial, three out
of 50 patients with ROS1-positive NSCLC had a complete response, as determined by the Response
Evaluation Criteria in Solid Tumors, and 33 patients had a partial response with an RR of 72% (95%CI:
58–84%), median response time of 17.6 months (95%CI: 14.5 months to not reached), and a median PFS
of 19.2 months (95%CI: 14.4 months to not reached) [32]. Based on these results, the expanded use of
crizotinib for ROS1-positive NSCLC was approved by the US FDA in March 2016 and the European
EMA, in August of the same year. A clinical phase II trial of crizotinib for ROS1-positive NSCLC
was conducted in four East Asian countries—Japan, China, South Korea, and Taiwan. A total of 127
patients were enrolled, and among these patients, 17 showed complete response and 74 showed partial
response, with an RR of 71.7% (95%CI: 63–79.3%). The median duration of response was 19.7 months
(95%CI: 14.1 months to not reached), and the median PFS was 15.9 months (95%CI: 12.9–24 months),
demonstrating the high efficacy of crizotinib [33]. Based on these results, an application to extend
the use of crizotinib to ROS1 fusion gene-positive unresectable advanced recurrent NSCLC was filed
in Japan.

4. Alectinib

Alectinib, an ALK inhibitor developed in Japan, is a low-molecular-weight compound that is also
effective for cell lines with the L1196M (gatekeeper) and C1156Y mutations, which have been implicated
in resistance to crizotinib [34]. From the results of crystal structure analysis, it was confirmed that
alectinib binds the AFG-binding site DFG-in of ALK. Alectinib was originally regarded as an ALK-TKI
with a high selectivity for ALK, but Kodama et al. investigated 451 biochemical kinases and found
that in addition to ALK and leukocyte receptor tyrosine kinase (LTK), checkpoint kinase (CHEK2), Fms-like
tyrosine protein kinase (FLT3) (D835Y), phosphorylase kinase gamma submit 2 (PHKG2), proto-oncogene ret
(RET), and RET (M918T) were also inhibited. In particular, RET kinase activity was strongly inhibited,
leading to blocking PI3K or RAS signaling [35]. Notably, since alectinib does not block vascular
endothelial growth factor receptors (VEGFR2), unlike multikinase inhibitors, alectinib has fewer side
effects associated with its antiangiogenetic properties [36].

Phase I/II clinical trials of alectinib include the AF-001JP trial, targeting crizotinib in untreated
cases, and the AF-002JG trial, targeting crizotinib in treated cases. Both of these were single-group
trials, and these trials showed high RRs of 93.5% in untreated cases and 55% in previously treated
cases [37,38]. In the J-ALEX trial, a phase III trial conducted in Japan, crizotinib was compared with
alectinib as a first-line treatment, which showed an RR of 92% in the alectinib group vs. 79% in
the crizotinib group [39]. The final report showed a median PFS of 10.2 months with crizotinib vs.
34.1 months with alectinib (HR: 0.37, 95%CI: 0.26–0.52) in 2019. Furthermore, PFS was significantly
improved in the alectinib group compared to the crizotinib group [40]. Subsequently, in an international
phase III clinical trial (ALEX trial), crizotinib and alectinib were compared as first-line treatments for
ALK-positive NSCLC. The median PFS was 11.1 months in the crizotinib group, and the median PFS
was not reached in the alectinib group (HR: 0.47, 95%CI: 0.34–0.65) [41]. The results of the J-ALEX study
showed that the main adverse events that occurred with alectinib were constipation, nasopharyngitis,
and dysgeusia, and fewer adverse events of grade 3 or higher were reported in the alectinib group
(36.9%) than in the crizotinib group (60.6%). Table 2 summarizes the results of clinical trials of crizotinib
and alectinib (Table 2).
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Table 2. Results of clinical trials of crizotinib and alectinib.

Trial Phase Line Type n RR(CR/PR) DCR(CR/PR/SD) PFS MST or OS

Crizotinib Kwak E.L. 2010
(PROFILE 1001) I 1st line ALK-positive NSCLC 82 57% 90% 6.4 m

Shaw A.T. 2013
Crizotinib vs.

PEM or DTX (PROFILE
1007)

III 2nd line ALK-positive LC 347 65% vs. 20% 84% vs. 56% 7.7 m vs. 3.0 m 20.3 m vs. 22.8
m

Solomon B.J. 2014
Crizotinib vs.

PEM/platinum
(PROFILE 1014)

III 1st line ALK-positive
NSCLC(NonSq) 343 74% vs. 45% 91% vs. 82% 10.9 m vs. 7.0 m Not reached

Shaw A.T. 2014
Crizotinib alone I 1st line ROS-1-positive NSCLC 50 72% 90% 19.2 m Not reached

Wu Y-L. 2018
Crizotinib alone II 4th line

or later ROS-1-positive NSCLC 127 71.7% 80.3%(16 w) 15.9 m 32.5 m

Alectinib
Seto T. 2013

Alectinib alone
(AF-001JP study)

I 3rd line
or later

ALK-positive NSCLC(ALK
inhibitor-naïve) 24

II 2nd line
or later 46 93.5% 95.7%

Gadgeel S.M. 2014
(AF-002JG trial)
Alectinib alone

I/II any ALK-positive
NSCLC(crizotinib-treated) 47 55% 91%

With CNS metastases 21 52% 90%

Hida T. 2017
Alectinib vs. crizotinib

(J-ALEX trial)
III 1–2nd

line
ALK-positive NSCLC(ALK
inhibitor-naïve Japanese) 207 92% vs. 79% 96% vs. 92% Not reached vs.

10.2 m Not reached

Nakagawa K. 2020
Alectinib vs. crizotinib

(J-ALEX trial)
III 1–2nd

line
ALK-positive NSCLC(ALK
inhibitor-naïve Japanese) 207 34.1 m vs. 10.2 m Not reached vs.

43.7 m

Peters S. 2017
Alectinib vs. crizotinib

(ALEX trial)
III 1st line ALK-positive NSCLC 303 82.9% vs.

75.5% 89% vs. 91% Not reached vs.
11.1 m Not reached

NSCLC: non-small cell lung cancer, NonSq: nonsquamous cell carcinoma, CNS: central nervous system, RR: response rate, CR: complete response, PR: partial response, DCR: disease
control rate, SD: stable disease, PFS: progression free survival, MST: medial survival time, OS: overall survival, PEM: pemetrexed, DTX: docetaxel.
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5. Sorafenib

Angiogenesis consists of multiple processes including sprouting, invasion, migration, proliferation,
lumen formation, and the maturation of endothelial cells from existing vascular endothelial cells and
vascular endothelial progenitor cells, each of which is regulated by single or multiple angiogenic
factors. In addition, the extracellular matrix, adhesion molecules, and various proteases have important
functions in the process of angiogenesis [42]. Tumors measuring up to a few millimeters in size
can acquire the oxygen and nutrients they need by spreading from their environment. However,
when the size of the tumor becomes large, blood vessels (tumor blood vessels) that supply oxygen and
nutrients to the tumor are required [43]. Many tumors secrete angiogenic factors to build tumor blood
vessels; among the many angiogenic factors, the VEGF family is the most studied. The VEGF signaling
pathway consists of three subtypes of receptor tyrosine kinases (VEGFR-1, VEGFR-2, and VEGFR-3);
five subtypes (VEGF-A, VEGF-B, VEGF-C, VEGF-D, and VEGF-E); and two subtypes of placental
growth factor (PlGF-1 and P1GF-2) as ligands [44].

The angiogenic effect of VEGF is thought to be exerted mainly through VEGFR2 on the vascular
endothelium, and VEGF is a target molecule for many drugs. Specifically, it is thought to promote
growth, survival, acquisition of migration ability, and acquisition of invasion ability of vascular
endothelial cells, and a new blood vessel for the tumor is created [45]. Furthermore, VEGF enhances
the permeability of existing blood vessels to create a microenvironment in which vascular endothelial
cells can easily migrate and promote the chemotaxis of vascular endothelial cells and progenitor cells of
pericytes to promote tumor angiogenesis. As in other carcinomas like colon cancer and gastric cancers,
overexpression of VEGF is a poor prognostic factor for lung cancer [46]. Tumor angiogenesis inhibitors
can be broadly classified into two groups: drugs that inhibit the binding of VEGF-A and VEGFR-2 and
multikinase inhibitors, which are small-molecule compounds that inhibit the kinase activity of VEGFR.
The VEGF-A or VEGFR-2 inhibitors that have been approved for the treatment of NSCLC in Japan
include bevacizumab, which binds VEGF-A and inhibits its activity, and ramucirumab, which binds
VEGFR-2 and inhibits its activity. Pazopanib, regorafenib, sorafenib, sunitinib, and nintedanib among
others are known to be multikinase inhibitors [47–49]. Pazopanib is used in soft tissue tumors and
renal cell carcinoma; regorafenib is used in rectal cancer and gastrointestinal stromal tumors (GISTs);
and sunitinib is used in GIST, renal cell carcinoma, and pancreatic neuroendocrine tumors.

Sorafenib is a multitargeted TKI that targets v-raf murine viral oncogene homolog (RAF) kinase,
c-KIT, VEGFR, platelet-derived growth factor receptors (PDGFR)-1β, FLT-3, and RET leading to
inhibition of PI3K or RAS signaling [50,51]. It is currently approved by the FDA for renal cell cancer
(2005), hepatocellular carcinoma (2007), and thyroid cancer (2013). Adverse events of sorafenib include
hypertension, skin disorders (particularly hand-foot syndrome), liver disorders, elevated lipase and
amylase levels, and interstitial pneumonia. In NSCLC, a single-agent phase II clinical trial of sorafenib
was conducted in 54 previously treated patients with a schedule of 400 mg of sorafenib twice daily.
Although neither complete nor partial response was observed in 51 evaluable patients, stable disease
was observed in 30 patients (58.5%), of which 15 (28.8%) also showed tumor shrinkage. The median PFS
was 2.7 months, and the median OS was 6.7 months. The main adverse events of grade 3 or higher were
hand-foot syndrome, hypertension, fatigue, and diarrhea. Death from pulmonary hemorrhage was
observed in one patient with squamous cell carcinoma [52]. Subsequently, Paz-Ares et al. published
the MISSION study confirming the efficacy of sorafenib as a third/fourth-line treatment in patients with
advanced and recurrent NSCLC. Although PFS was clearly prolonged with sorafenib compared to
placebo, the OS did not change. PFS was prolonged in both patients with wild-type KRAS and patients
with KRAS mutations, but OS was unchanged and has not been clinically used [53]. To examine
sorafenib as a combination therapy with an existing standard treatment regimen, a phase III clinical trial
(ESCAPE trial) for untreated NSCLC was conducted to evaluate the effect of the addition of sorafenib
to paclitaxel/carboplatin therapy. However, because the interim analysis did not show extension of the
OS, which was the primary endpoint, and an increase in mortality was observed in squamous cell
carcinoma, the trial was terminated early [54].
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6. Nintedanib

Nintedanib is an antifibrotic drug that inhibits multiple tyrosine kinases, including fibroblast
growth factor receptors (FGFRs), PDGFRs, and VEGFRs, including PDGFRα, PDGFRβ, FGFR1, FGFR12,
VEGFR1, VEGFR2, and VEGFR3, leading to PI3K, RAS, or focal adhesion kinase (FAK)/paxillin signaling
(Figure 3) [55,56]. Nintedanib also inhibits nonreceptor kinases such as FLT-3, RET, lymphocyte-specific
tyrosine kinase (LCK), tyrosine-protein kinase lyn (LYN), and proto-oncogene tyrosine protein kinase
src (SRC) [57].

Figure 3. Mechanism of nintedanib. FGFR: fibroblast growth factor receptors, VEGFR: vascular
endothelial growth factor receptor, PDGFR: platelet-derived growth factor receptors, PI3K:
phosphoinositide 3 kinase, AKT: v-act murine thymoma viral oncogene homolog, mTOR: mammalian
target of rapamycin, FAK: focal adhesion kinase, RAS: rat sarcoma protein, RAF: v-raf murine
viral oncogene homolog, MAPK: mitogen activated protein kinase, MEK:,MAPK/extracellular signal
regulated kinase(ERK) kinase.

Through inhibition of fibrotic growth factor receptor as described above, the progress of fibrosis
is expected to be delayed by nintedanib, and nintedanib is used as a therapeutic drug for idiopathic
pulmonary fibrosis (IPF). In a phase II trial in IPF patients, a decrease in forced vital capacity (FVC),
which was the primary endpoint, was suppressed in the nintedanib group compared with the placebo
group (FVC: −0.06 L per year vs. −0.19 L per year, p = 0.06). The frequency of acute exacerbation,
which was the secondary endpoint, was significantly lower in the nintedanib group than in the placebo
group (2.4% per year vs. 15.7% per year) [58]. Following this trial, two phase III trials (INPULSIS-1
and INPULSIS-2 trial) were conducted [59,60]. The primary endpoint was the annual FVC decline
rate (mL/year), and important secondary endpoints were time taken to the first acute exacerbation
of IPF at 52 weeks (reported by the investigator) and changes in the total St. George’s Respiratory
Questionnaire (SGRQ) score at 52 weeks from baseline. As a result, the adjusted annual change in FVC
was significantly lower in the nintedanib group than in the placebo group (p < 0.001) for both trials. In
the INPULSIS-1 trial, no significant difference in the time to first acute exacerbation (reported by the
attending physician) between the nintedanib group and placebo group was observed (HR: 1.15; 95%CI:
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0.54–2.42; p = 0.67), but in the INPULSIS-2 trial, the nintedanib group showed significantly prolonged
survival compared with the placebo group (HR: 0.38; 95%CI: 0.19–0.77; p = 0.005). In addition,
combined analysis of the INPULSIS-1 and INPULSIS-2 trials showed no significant difference in the
time to the first acute exacerbation (reported by the attending physician) (HR: 0.64, 95%CI: 0.39–1.05,
p = 0.08). However, sensitivity analysis of acute exacerbation/suspicion of acute exacerbation by an
independent committee using integrated data showed that the time until first acute exacerbation (HR:
0.32, 95%CI: 0.16–0.65, p = 0.001) and frequency of acute exacerbation were significantly different
between the groups. In the INPULSIS-1 trial, the most common adverse event in the nintedanib group
was diarrhea, and the incidence of diarrhea was 61.5% in the nintedanib group and 18.6% in the placebo
group. In the INPULSIS-2 trial, the incidence of diarrhea in the nintedanib and placebo groups was
63.2% and 18.3%, respectively, but the severity was low.

Recently, a phase III international joint trial (SENSCIS trial), announced in 2019, targeting patients
with interstitial lung disease associated with systemic scleroderma (SSc-ILD) showed nintedanib to
be effective and safe for SSc-ILD patients [61]. This trial, the largest international, placebo-controlled,
randomized, double-blind study on nintedanib was conducted in 576 patients with SSc-ILD in more
than 32 countries, including the US, Canada, China, Japan, Germany, France, and the United Kingdom.
The 52-week adjusted rate of annual reduction (mL/year) in FVC (mL) (the main endpoint) was
−52.4 mL/year in the nintedanib group and−93.3 mL/year in the placebo group. The difference between
groups was 41.0 mL/year (95%CI: 2.9–79.0; p = 0.04), which was similar to the results of the INPULSIS
trials. The most common adverse event was diarrhea with an incidence of 75.7% in the nintedanib
group and 31.6% in the placebo group; 49.5% of the incidences of diarrhea in the nintedanib group
were mild, while 45% were moderate. As a result, nintedanib was approved by the FDA in the US in
September 2019 and in Japan, in December 2019.

In an in vitro study, nintedanib inhibited angiogenesis and suppressed tumor cell proliferation;
and as nintedanib is expected to be an antitumor drug, it is still under development [55]. A phase
III trial (LUME-Lung 1 trial) to evaluate the efficacy and safety of the combination of docetaxel and
nintedanib [62] showed that the median PFS (the primary endpoint) was significantly longer in the
nintedanib plus docetaxel group than in the placebo plus docetaxel group (3.4 months vs. 2.7 months,
HR: 0.79; 95%CI: 0.68–0.92, p = 0.0019). An analysis of 658 already diagnosed adenocarcinomas showed
that the median OS in the nintedanib group was longer than that in the placebo group (12.6 months
vs. 10.3 months, HR: 0.83, 95%CI: 0.70–0.99, p = 0.0359). The proportion of cases with squamous
cell carcinomas was high in this study (42% of the total). Adverse events included diarrhea, liver
dysfunction, nausea, loss of appetite, and vomiting. Grade 3 or higher adverse events were slightly
higher in the nintedanib group than in the placebo group (71.3% vs. 64.3%), and grade 5 adverse
events were higher in the nintedanib group than in the placebo group (16.4% vs. 11.8%). In the
LUME-Lung 2 trial, which evaluated the effects of nintedanib and pemetrexed in previously treated
NSCLC patients, PFS in the nintedanib group was significantly longer than that in the placebo group
(4.4 months vs. 3.6 months, HR: 0.83, 95%CI: 0.7–0.99, p = 0.04), and the disease control rate in the
nintedanib group was significantly better than that in the placebo group (61% vs. 53%, odds ratio 1.37,
p = 0.039). However, as a result of the interim analysis, the registration was discontinued based on
futility analysis of PFS evaluated by researchers [63]. Table 3 summarizes the results of clinical trials of
sorafenib and nintedanib (Table 3).



Molecules 2020, 25, 3987 11 of 16

Table 3. Results of clinical trials of sorafenib and nintedanib.

Trial Phase Line Type n RR(CR/PR) DCR(CR/PR/SD) Time to
progression PFS MST or OS

Sorafenib
Blumenschein G.R.

2009
Sorafenib alone

II 2nd–3rd
line NSCLC 54 0% 59% 2.7 m 6.7 m

Paz-Ares L. 2015
Sorafenib alone vs.

placebo
(MISSION trial)

III 3rd–4th
line NSCLC 703 4.9% vs. 0.9% 47.1% vs. 24.7% 2.9 m vs. 1.4 m 2.8 m vs. 1.4 m 8.2 m vs. 8.3 m

EGFR mutation+ 89 6.8% vs. 0% 40.9% vs. 2.2% 2.7 m vs. 1.4 m 13.9 m vs. 6.5 m

wild-type EGFR 258 7.4% vs. 1.5% 46.7% vs. 25.8% 2.7 m vs. 1.5 m 8.3 m vs. 8.4 m

KRAS mutation+ 68 2.9% vs. 0% 44.1% vs. 7.6% 2.6 m vs. 1.7 m 6.4 m vs. 5.1 m

wild-type KRAS 279 8.3% vs. 1.4% 45.4% vs. 20.4% 2.7 m vs. 1.4 m 11.0 m vs. 9.1 m

Scagliotti G. 2010
CBDCA/PTX/sorafenib

vs.
CBDCA/PTX/placebo

(ESCAPE trial)

III 1st line NSCLC 926 27% vs. 24% 50% vs. 56% 4.6 m vs. 5.4 m 10.7 m vs. 10.6 m

Sq 223 25% vs. 35% 42% vs. 60% 4.3 m vs. 5.8 m 8.9 m vs. 13.6 m

Other 703 28% vs. 20% 52% vs. 55% 4.8 m vs. 5.3 m 11.5 m vs. 10.2 m

Nintedanib

Reck M. 2014
DTX/nintedanib vs.

DTX/placebo
(LUME-Lung 1 trial)

III 2nd line NSCLC 1314 4.4% vs. 3.3% 54% vs. 41.3% 3.4 m vs. 2.7 m 10.1 m vs. 9.1 m

Adeno 658 4.7% 3.6% 60.2% vs. 44% 12.6 m vs. 10.3 m

Hanna N.H. 2016
Nintedanib/PEM vs.

PEM
(LUME-Lung 2 trial)

III 2nd line NonSq NSCLC 713 9.1% vs. 8.3% 60.9% vs. 53.3% 4.4 m vs. 3.6 m 12.0 m vs. 12.7 m

Adeno 670 9.6% vs. 9.0% 61.8% vs. 54.6% 4.5 m vs. 3.9 m 12.3 m vs. 13.1 m

NSCLC: non-small cell lung cancer, NonSq: nonsquamous cell carcinoma, RR: response rate, CR: complete response, PR: partial response, DCR: disease control rate, SD: stable disease,
PFS: progression free survival, MST: medial survival time, OS: overall survival, EGFR: epidermal growth factor receptor, KRAS: kirsten rat sarcoma viral oncogene homolog, CBDCA:
carboplatin, PTX: paclitaxel, DTX: docetaxel, PEM: pemetrexed.
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7. Novel Compounds

Various studies on multitarget drugs for respiratory diseases are now in progress. Anlotinib,
a relatively novel multitarget TKI for tumor angiogenesis and tumor cell proliferation, is effective as
a third-line or beyond treatment for advanced NSCLC [64]. Entrectinib, another multitarget TKI of
TRKA/B/C, ROS1, and ALK, has been studied in patients with advanced or metastatic solid tumors
harboring NTRK1/2/3, ROS1, or ALK gene fusions [65].

However, some attention should be paid to multitarget therapies. Multitarget TKIs are used
for NSCLC harboring RET rearrangement. Notably, these patients suffered from high-grade toxicity
mainly induced by anti-VEGFR kinase activity. Therefore, selective RET inhibitors such as BLU-667,
LOXO-292, and RXDX-105 have been recently investigated in early phase clinical trials and showed
promising efficacy with a manageable toxicity profile [66].

8. Conclusions

We have summarized the available data regarding multitarget drugs used against respiratory
diseases including lung cancer and IPF. In addition, various studies on multitarget drugs for respiratory
diseases have just begun. Further advances in multitarget drugs will bring additional benefits
to patients.
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