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Because pulmonary vascular lesions are harmful to the human body and difficult to detect, computer-assisted diagnosis of
pulmonary blood vessels has become the focus and difficulty of the current research. An algorithm of pulmonary vascular
segment and centerline extraction which is consistent with the physician’s diagnosis process is proposed for the first time. We
construct the projection of maximum density, restore the vascular space information, and correct random walk algorithm to
satisfy automatic and accurate segmentation of blood vessels. Construct a local 3D model to restrain Hessian matrix when
extracting centerline. In order to assist the physician to make a correct diagnosis and verify the effectiveness of the algorithm,
we proposed a visual expansion model. According to the 420 high-resolution CT data of lung blood vessels labeled by
physicians, the accuracy of segmentation algorithm AOM reached 93%, and the processing speed was 0.05s/frame, which

achieved the clinical application standards.

1. Introduction

In recent years, the air is in poor quality, which seriously
affects people’s life and health, resulting in an increasing inci-
dence of lung cancer. Because the early symptoms of lung
cancer are relatively minor, it is not easy to be discovered,
and 80% of lung cancer patients are already in the middle
and late clinical stage when they are confirmed, missing the
best period of radical operation. If the lung cancer can be
detected earlier and get differential diagnosis by category, it
can receive standard treatment before the lesion spread, the
patient’s five-year survival rate can reach more than 60%
[1, 2]. If the lung CT data which intuitively reflect the lung
condition can be accurately analyzed, lung disease can also
be prevented and diagnosed, and more human life can be
saved. Pulmonary vascular lesions are one of the early signs
of lung cancer, so accurate division and observation of pul-

monary vascular areas are very important for diagnosis and
treatment [3].

Due to the small morphological structure of pulmonary
blood vessels and complex distribution environment, the
process of imaging is easily affected by noise and surround-
ing tissues. This has brought great difficulty to the complete
extraction of lung blood vessels, which is also the focus of
the current research. According to the characteristics of the
vascular  section  obeying  Gaussian  distribution,
Foncubierta-Rodriguez et al. [4] constructed an enhance-
ment model of vascular segmentation to determine the
direction of vascular growth and extract blood vessels.
According to the vascular anatomy, Orkisz et al. [5] calcu-
lated the global threshold to divide the lung image, and then,
the blood vessels are extracted by discriminating the connec-
tivity. Based on the two-dimensional CT image, Ibrahim
et al. [6] selected the initial point manually, calculated the
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blood vessel position step by step, and then segmented the
blood vessel. Lai et al. [7] enhanced the vascular response
by filtering the image from a 3D angle. Gong et al. [8]
extracted the blood vessels by constructing the self-
adaptive threshold according to the difference between the
gray level of the blood vessel and the surrounding area.
Charbonnier et al. [9] constructed a matching model in
accordance with blood vessels extending throughout the
lungs to segment the blood vessels. Based on the local feature
model, Gupta et al. [10] predicted the blood vessel direction.
According to the samples of axial position, coronal position,
and sagittal position, Phellan et al. [11] constructed a CNN
model to segment the vascular area. Lidayova et al. [12]
established the model of normal blood vessel and abnormal
blood vessel to realize the segmentation of blood vessel.
Jawaid et al. [13] improved level set to extract the vascular
boundary information. Xiao et al. [14] used the grayscale
and shape characteristics to constrain and segment blood
vessels. Florez and Orkisz [15] established the cylindrical
model to simulate the distribution of blood vessels. Hu
et al. [16] improved the crossaccess law function to extract
blood vessels.

Because it is difficult for doctors to observe small
changes of blood vessels through the naked eye to make
accurate diagnosis, computer-assisted diagnosis is required.
Based on the above extraction of the vascular centerline,
the mainstream diagnostic method is as follows: adjust the
window width and window position [17] when blood vessels
are observed, the 3D model [18] shows the overall external
morphology of blood vessels, a virtual endoscope [19] shows
the inside of the blood vessels. The above algorithms cannot
give the internal and external characteristics of blood vessels
at the same time, which limited the ability of helping physi-
cian to diagnose.

The main problems of vascular division, centerline
extraction, and auxiliary diagnosis can be summarized as fol-
lows: (1) the 3D model of extracting vascular segment is com-
plex, and it needs a large amount calculation, so it cannot be
calculated and displayed in real time; (2) it is difficult to
divide the vascular area accurately just by gray scale; and
(3) there is no accurate and intuitive way to show the internal
and external conditions of blood vessels.

For those reasons, we study the process of doctors’ diag-
nosis of vascular lesions and construct a diagnostic model
for doctors’ vision diagnosis according to the theory of med-
icine, anatomy, and image graphics: (1) establish a maxi-
mum density projection model based on vascular anatomy
and imaging principles and significantly reduce the amount
of data while retaining the area where the blood vessels are
located; (2) adaptive random walk algorithm is constructed
by combining gray level with local information; and (3) con-
struct the mechanism of vascular centerline extraction and
vascular expansion and display and diagnose vascular from
multiangle.

2. Details of Algorithm

When physicians detect pulmonary vascular lesions, remov-
ing the interference of the examination bed, muscles, and
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soft tissues is the first task. They focus on the lung paren-
chyma and then determine the starting and ending points
of the blood vessels to be observed based on the local images
of limited frames, achieving the extraction of blood vessels.
Finally, they extract the vascular centerline and give diagno-
sis based on the anatomical knowledge.

The computer simulates how doctors diagnose lesions as
follows: the lung image sequence was firstly pretreated to
remove noise and check a bed, and the image was simplified
by extracting the lung parenchyma area. Then, it determined
the starting and ending points of blood vessels to be
observed using global and local models to constrain them
and took the characteristics of anatomy and image graphics
into consideration to realize the extraction of blood vessels’
central line. Figure 1 shows the flow of pulmonary vascular
CAD segmentation.

2.1. Pretreatment. CT images can intuitively show the mor-
phological structure of human tissues (blood vessels, muscu-
loskeletal, etc.). According to the physician’s diagnosis
process, the blood vessels that physician concerned only
exist in the lung parenchyma. The ends of the blood vessels
are tiny; they are only displayed as a limited number of
pixels in the image and are vulnerable to noise. Therefore,
the image needs to be preprocessed.

2.1.1. Noise Reduction. CT image always includes pepper and
salt noise [20] which presented as a bright discrete pixel; it
interferes with the extraction of pulmonary blood vessels’
tip and needs to be removed. According to the characteris-
tics that noises are distributed as discrete points, a two-
dimensional median filtering algorithm can be used to
remove them. The formula is as follows:

g(xy) =med {f(x=k,y —m),(kme W)}, (1)

where f(x,y) and g(x,y) are the gray values of the pixels
with coordinates (x, y) in the original image and the proc-
essed image, respectively; W is a two-dimensional filter tem-
plate; and med is a median filter function.

2.1.2. Lung Parenchyma Extraction. The area of blood vessels
that doctors care about is inside the lung parenchyma.
Whether the extraction of the blood vessels is good or bad
directly affects the subsequent diagnosis. Therefore, the
computer needs to focus on the area where the pulmonary
nodules are located. By analyzing the statistical distribution
of lung image pixels, Qiu et al. [21] constructed an opti-
mized Gaussian dual-mixing model to calculate the global
segmentation threshold quickly, and the complete lung
parenchyma region can be extracted. In order to meet the
clinical application standards of accuracy and processing
speed, the algorithm in literature [21] is applied to extract
the lung parenchyma region and confirm the left and right
lung regions.

2.1.3. Set the Starting and Ending Points of Blood Vessels.
When the doctor identifies the focal point, he will determine
the observed vascular area through clinical needs. When the
computer simulates this process, according to the
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F1GURE 1: Algorithm flow chart.

morphological structure of blood vessels, it sets the blood
vessel’s starting point P, and the end point P, whose corre-
sponding coordinates are (x, y,,z;,) and (x,,y,,z,) on the
computer image through human-computer interaction, and
z, <2,

2.2. Rough Extraction by a Local 3D Model. The physician
only cares about the blood vessel between point P, and point
P,, so the blood vessel area needs to be extracted.

Since blood vessels are of connectivity, as shown in
Figure 2, only handle [z, z;, + 1, ---z,] is not rigorous, where
m is the point on the blood vessel.

Anatomically, blood vessels are spatially continuous.
From the perspective of image imaging, blood vessels appear
as bright and isolated circular areas in two-dimensional CT
images.

In order to restore the anatomical characteristics of
blood vessels, we introduce the maximum density projection
which is integrated with the local 3D information to greatly
reduce the amount of data while ensuring the information of
blood vessels.

The maximum intensity projection is a method for 3D
data that projects in the visualization plane the voxels with
maximum intensity that fall in the way of parallel rays traced
from the viewpoint to the plane of projection. The equation
is as follows:

MIP,, (x, y) = max (T, (%, 7) - Tysn, (%:7))

1<x<H,
I<y<sWw, 2)
k=(n-1)xSN,,
n=1,2-- N_m)
SN

r

where MIPn(x, y) is the grayscale value at the midpoint (x, y
) of the nth frame of the MIP image; H and W are the hor-
izontal and vertical resolutions, respectively; SN, is the num-
ber of projected layers; and Nm is the sum of original CT
layers. I, (x,y) is the grayscale value at the point (x,y) in
the kth layer of the original CT sequence images. Figure 3
is a schematic diagram of the MIP projection of the two-
dimensional CT data.

The blood vessels in the MIP image are locally
highlighted and continuous areas, as shown in Figure 4(a).

A global search Centerline |
Local segmentation centerline extraction )
(xb’ Yy Zb) (xm’ Vo Zm)
ue’ z,) (X ¥} Zp)
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FIGURE 2: Vascular route diagram.
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F1GURE 3: MIP schematic.

Subsequent extraction of vascular areas is needed to con-
strain the vascular centerline method and reduce the amount
of data. In the MIP image, P, and P, are chosen as seed
points, The area of the blood vessel is obtained by using C
-means clustering [22, 23], and then, the image of the sus-
pected area I; as Figure 4(b) is obtained through the 8 con-
nected areas. Follow-up study is based on I;.

2.3. Segment by Automatic Random Walk Algorithm. Ran-
dom walk (RW) algorithm [24] regarded the two-
dimensional image as a connected undirected weighted
graph containing fixed vertices and edges. The unlabeled
pixels begin to walk along the edge from the vertices.
According to the maximum probability of each pixel arriv-
ing at each labeled pixel, the class of each vertex is judged.
The main steps are (1) manually mark the seed point; (2)
establish a random walk model G=(V,E), where V is the
set of vertices of the image and E is the set of undirected
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FIGURE 4: MIP image processing: (a) MIP image; (b) I;.

edges at any two vertices of the image; (3) calculate weights;
and (4) compute the distribution of probability and get the
segmentation.

In recent years, Dong et.al [25] introduced subMarkov to
realize image segmentation. Zheng et al. [26] constrain RW
according to target characteristics. Bui et al. [27] established a
3D model to realize the heart division. All of the above methods
get good results. As blood vessels run through multiple layers of
images, it is inefficient to manually mark seed points on each
layer of images. In a 2D image, blood vessels are shown as lim-
ited sections of pixels, and the number of pixels is small, so the
accuracy of seed selection will directly affect the segmentation
effect. For this reason, we study the selection of seed and weight
calculation and then propose an algorithm.

2.3.1. Adaptive 3D Seed Selection. The traditional RW algo-
rithm segments the image semiautomatically. The user needs
to manually mark the target seed and background seed on
the 2D image, and then, the probability of each vertex to
these two kinds of seed is used to judge which one they
belong to, thus dividing the image into the target area and
the background area.

The blood vessel exists on the CT image as a circular or
cylindrical section. When using the traditional RW algo-
rithm, the physician needs to spend a lot of time on accu-
rately marking the seed on each 2D image. Besides, the
number of blood vessel pixels is limited; the physician may
mark the wrong seed because of a slight deviation, which
cannot guarantee the completeness of the segmentation.

According to the characteristics of angiology, anatomy,
and CT imaging, we optimize the process of selecting seeds
as Figure 5. From the medical point of view, the components
contained in the blood vessels are uniform, so the pixel
values are similar in CT image. Anatomically, it is a contin-
uous region in a 3D space. From the aspect of imaging,
blood vessels are locally bright area.

The approximate area of the blood vessel in the 3D space is
marked as I, with the point P; (P, = P,) as the target seed and
the nonvascular region in I; as the background seed, and the
divided blood vessels of the current layer was recorded as C;.
According to the continuity of vascular, C; N C,,, # &, accord-
ing to the uniformity of blood composition, the pixel value of
the blood vessel should change a little; then, the coordinate of
the central point of C; N C,,, is assigned as P,, .

—/

y —4

FIGURE 5: Seed selection process.

F1GURE 6: Directional diagram of feature vector.

2.3.2. Calculate Weights. The weights determine that the
probability of each vertex belongs to different classes. The
traditional RW algorithm only considers the grayscale infor-
mation between pixels and does not consider the geometric
information between pixels. For more accurate segmenta-
tion, the improved weight function is

),

w;; = exp (—tx{g(v,) - g(vj) ‘ +(1-a) }h(vi) - h(vj)
4, i=j

i

Lij=q -w,;; v;isadjacenttov),

0, others,
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FiGURE 7: Vascular division: (a) Case 1, (b) Case 2, (c) Case 3, and (d) Case 4.

where g(.) represents the grayscale, h(.) represents the coor-
dinate value, « is the weight of grayscale, (1 —«) is the
weight of distance, and L;; is the matrix of distance. RW
algorithm is rebuilt to realize the automatic segmentation
of blood vessels. The selected seeds are few, the calculation
area is small, and the speed is fast. It reduces the workload
of doctors and improves the diagnostic efficiency.

2.4. Centerline Extraction and Expansion. After the doctor
confirms the vascular area, he reconstructed the 3D charac-
teristics of the blood vessels and set up the center point to
observe the pathological conditions of the blood vessels.

Because the spacing of CT data layers and the image res-
olution are not uniform, in order to restore the true situation
of the lungs, the computer needs to interpolate the data to
develop the isotropic data; that is, the lung data observed
from any direction are uniform. According to MIP image
processing, it can be seen that the space of blood vessels is
limited, so it needs to be interpolated. The gray scale of the
point P; is used as the seed to cluster on the corresponding
layer of the original image sequence to obtain the blood ves-
sel area, whose center and the inscribed circle’s radius R are
calculated. Then, the point P; in the image is seen as the cen-
ter of the ball with a radius of 2R; the data sequence is inter-
polated vertically according to the resolution of the axis to
form isotropic data.

Calculate the three eigenvalues A, A,, and A, and the
eigenvectors v,,Vv,, and v,;, which represent the trend of
movement in different directions, as shown in Figure 6. Take
v, as the blood vessel direction and 2R as the search radius;
make some adjustment R to find the position of next blood
vessel to obtain a complete blood vessel area.

In the process of the calculation, the following four situ-
ations occur, as shown in Figure 7, in which the red strip is a
blood vessel and the balls show the adjustment process of
centerline.

Case 1. Start off from Pj; calculate v,. In the direction of v,,
jump with the step 2R,,. Calculate the coordinates of the cen-
ter of ball’s gravity P, and radius R; and save it.

FIGURE 8: Vascular centerline expansion diagram.

Case 2. Start off from P,; calculate v,. In the direction of v,,
jump to P] with the step 2R,. Constantly adjust the center of
gravity and radius until they do not change; save the center
of gravity P, and radius R,.

Case 3. Start off from P,; calculate v,. In the direction of v,
jump to P} with the step 2R,, and the circle centered on P,
with the radius R, which is not in the MIP image, indicating
that the step length is too large, which needs to be adjusted.
When the cross section of circles reaches 10%, the step length
is set to R, The coordinates at this point are P). Adjust the
center of gravity and radius continuously until they do not
change; save the center of gravity P, and radius R,.

Case 4. Start off from Ps; calculate v,. In the direction of v,,
jump to P with the step 2R;. If P, is exceeded, take P, as the
center of the circle and adjust the length of the step, and the
center of gravity of the ball is calculated and saved.

When the physician determines the vascular centerline,
he needs to observe the internal and external conditions of
the blood vessel; this process is simulated by the computer
as follows: first, the blood vessels are straightened according
to the centerline, and then, according to the anatomical
principles, the blood vessels are expanded according to
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FIGURE 9: The effect of reconstructing MIP diagram: (a) original image, (b) 3 mm, (c) 9 mm, and (d) entire sequence.

different profiles (0°, 45°, 90, and 135°). The internal and TaBLE 1: Quantitative evaluation of vascular segmentation.

external conditions of different profiles are observed to give Algorithm AOM% Average time (s/frame)
a comprehensive judgment. Its schematic diagram is shown CE 73 0.03
in Figure 8.
3D 79 0.40
MD 83 0.07
3. Experiments and Result Analysis LS 86 0.10
RW 85 —

The experiment used 50 sets of CT data with different reso-

lutions and thickness collected in 2020; 420 blood vessel Ours %3 0.05
areas were extracted. The programs were compiled in
VS2015 with the WIN7 operating system. TasBLE 2: Qualitative evaluation of vascular segmentation.

. . Algorithm Accurate General Poor
3.1. Verify the Effect of MIP Algorithm. The same group c.)f CE 223 139 =8
CT sequences was reconstructed as the layer thickness is

. . 3D 258 125 37

3mm, 9mm, and the entire sequence, respectively, by the
MIP algorithm and compared with the original sequence. MD 265 136 19
The effect is shown in Figure 9. The MIP algorithm can LS 280 119 21
restore the strip shape of vascular and reduce the risk of RW 225 159 36
wrong detection. With the increase of layer thickness, it Ours 312 93 15

can display the distribution of peripheral blood vessels more
clearly and ensure that the follow-up extraction of vascular
centerlines is more complete.
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FIGURE 11: Performance of the algorithm.

3.2. The Effect of Vascular Segmentation. To verify the effect
of blood vessel extraction, three experts who have been
engaged in medical imaging for many years were asked to
mark blood vessels to verify the effect of the algorithm from
the quantitative and qualitative levels.

The quantitative aspects are as follows: take area overlap
measure (AOM) [28] as an evaluation indicator of the seg-

mentation effect; it is defined as

S(ANB)

AOM(A, B) = SAUD)

% 100%, (4)

where AOM is the area overlap measure, A is the image
marked by the doctor, B is the image segmented by



computer, and S(-) represents the number of pixels in the
corresponding area. The larger the AOM value is, the better
effect the segmentation gets. The results are shown in
Table 1.

The qualitative aspects are as follows: using medical
diagnostic marks: “accurate” means that the vascular divi-
sion is complete and almost identical with the area marked
by experts; “general” indicates that there is a some deviation
between the results of the two, but it does not affect the diag-
nosis; and “poor” indicates that there is a large deviation
between the results of the two, which affects the diagnosis.
The results are shown in Table 2.

This paper uses the Contrast-Enhanced (CE) algorithm
[4] from both qualitative and quantitative aspects to con-
struct a vascular enhancement model and achieve vascular
segmentation. 3D algorithm [7] established a 3D model
from the inside of the blood vessels. Multidirectional (MD)
algorithm [11] observed the blood vessels from the axial,
coronal, and sagittal direction, determined the direction of
blood vessels, and then segmented them. Level set (LS) algo-
rithm [13] transformed the segmentation problem into the
problem of internal and external forces’ balance. RW [24]
selected the seed points manually on each layer of images
to achieve vascular segmentation, not considering the time
spent. Our algorithm takes full account of vascular anatomy
and imaging principles, proposes an automatic selection
algorithm for seed points, and optimizes the weight func-
tion; although a little more time was spent than CE [4] algo-
rithm, the segmentation effect AOM reached 93%, and the
effect that achieves the “general” was the best, thus confirm-
ing the effectiveness of the proposed algorithm.

To demonstrate the effect of our algorithm, we extract
the whole pulmonary blood vessels. It is very difficult. The
algorithm proposed in this paper can extract most of the
blood vessels, but there are still some incomplete blood ves-
sels extracted. As shown in Figure 10(b), the blood vessels
are not completely extracted in the area where they enter
the lungs. The main reason is that the left and right lungs
of this sequence are relatively close. During the CT imaging
process, the left and right lungs are not effectively divided.
Further research is needed on this issue.

3.3. The Extraction of Vascular Centerline. In order to verify
the effect of the extraction of vascular centerline and show
the observation effect of the current major assisted diagnosis
method, our algorithm, 3D display, and virtual insight are
compared. The 3D display is shown in Figure 11(a); only
the external condition of the blood vessel can be observed;
the virtual insight is shown in Figure 11(b); only the internal
condition of the blood vessel can be observed; and our algo-
rithm is shown in Figure 11(c), which shows the inside and
outside of the blood vessel at the same time and intuitively
shows the effect of extraction of vascular centerline.

In order to intuitively demonstrate the effect of vascular
expansion, we chose unbranched blood vessels, branching
blood vessels, and blocked blood vessels, which were dis-
played at 0°, 45°, 90°, and 135°. Unbranched blood vessels,
as shown in Figure 12, are spread in different directions;
the centerline is in the center of the blood vessel. For branch-
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FIGURE 14: Effect of spreading blocked blood vessels.

ing blood vessels, as shown in Figure 13, the longest blood
vessel (red) and the shortest blood vessel (blue) are selected
for straightening. It can be seen that this algorithm is not
affected by the blood vessels next to the branch when
extracting the central line. The central line can be extracted
accurately. Figures 12 and 13 show the effects of normal vas-
cular centerline’s extraction and spread, and the interior of
blood vessel is relatively smooth. Figure 14 shows the
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spreading effect of blocked blood vessel. It can be seen that
the algorithm can accurately extract the centerline, and a
lot of blocked spots can be observed inside the blood vessels.
From the above demonstration, the algorithm presented in
this paper can accurately extract the vascular centerline
and directly display the internal and external conditions of
blood vessels, so it can assist the physician to make an accu-
rate diagnosis.

4. Conclusion

Computer-aided detection of pulmonary blood vessels has
become a hot topic and difficulty in research. In this paper,
the segmentation algorithm of pulmonary vascular CT
image is proposed, which combines local 3D information
and enhances vascular area. Optimize the random walk algo-
rithm to meet the requirements of separating blood vessel
accurately. We applied the knowledge of pathology, anat-
omy, and image graphics to the vascular centerline extrac-
tion and proposed the method of spreading blood vessels
which can show the internal and external characteristics of
blood vessels more clearly, thus assisting physicians in mak-
ing accurate diagnoses. It is of great value on clinical appli-
cation and lays a good foundation for the follow-up
detection of vascular lesions. However, the vascular division
is incomplete when the left and right lungs are near, and fur-
ther research is needed.
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