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A B S T R A C T   

Purpose: Image-based data mining (IBDM) is a novel voxel-based method for analyzing radiation dose responses 
that has been successfully applied in adult data. Because anatomic variability and side effects of interest differ for 
children compared to adults, we investigated the feasibility of IBDM for pediatric analyses. 
Methods: We tested IBDM with CT images and dose distributions collected from 167 children (aged 10 months to 
20 years) who received proton radiotherapy for primary brain tumors. We used data from four reference patients 
to assess IBDM sensitivity to reference selection. We quantified spatial-normalization accuracy via contour 
distances and deviations of the centers-of-mass of brain substructures. We performed dose comparisons with 
simplified and modified clinical dose distributions with a simulated effect, assessing their accuracy via sensi-
tivity, positive predictive value (PPV) and Dice similarity coefficient (DSC). 
Results: Spatial normalizations and dose comparisons were insensitive to reference selection. Normalization 
discrepancies were small (average contour distance < 2.5 mm, average center-of-mass deviation < 6 mm). Dose 
comparisons identified differences (p < 0.01) in 81% of simplified and all modified clinical dose distributions. 
The DSCs for simplified doses were high (peak frequency magnitudes of 0.9–1.0). However, the PPVs and DSCs 
were low (maximum 0.3 and 0.4, respectively) in the modified clinical tests. 
Conclusions: IBDM is feasible for childhood late-effects research. Our findings may inform cohort selection in 
future studies of pediatric radiotherapy dose responses and facilitate treatment planning to reduce treatment- 
related toxicities and improve quality of life among childhood cancer survivors.   

1. Introduction 

Thanks to major advancements in cancer care, 85% of pediatric 
oncology patients now survive 5 years or more, and many of them 
become long-term survivors [1]. Among the cancer treatment options 
available today, radiotherapy remains one of the most commonly used 
tools, involved in the treatment of approximately half of all childhood 
cancer cases [2]. Radiation, however, is associated with toxicities that 
increase the risk of severe chronic health conditions, including cardiac, 
endocrine, and neurologic conditions, in long-term survivors of child-
hood cancer [3]. Therefore, radiotherapy research increasingly focuses 
on mitigating or avoiding its long-term sequalae. Such research either 
directly [4–6] or indirectly [7] relies on our understanding of the rela-
tion between the physical dose of radiation delivered to a specific organ 
or structure and its biologic effects, known as the dose–response rela-
tionship. Unfortunately, the mathematical form and precise anatomic 

location relevant to this relation is often uncertain or unknown [8]. 
Conventional methods of elucidating dose–response relationships 

involve dose-volume analyses. These methods summarize heteroge-
neous 3D dose distributions into descriptive metrics for whole tissues 
and organs. This limits analysis, however, to an a priori selection of a 
critical organ, sub-organ, or tissue. Recent developments in radiation 
biology have revealed that this selection is not as straight forward as 
previously thought. For example, some biologic effects are associated 
with radiation doses deposited at distant anatomic locations [9], 
whereas others appear to be associated with the radiation doses in only a 
portion or sub-volume of an organ [10,11]. Furthermore, the relevance 
of such summary statistics is unclear in the age of highly conformal 
radiation treatments with complex dose distributions [12]. The wide-
spread availability of such highly conformal radiation treatments also 
increases the importance of precisely understanding radiation sensi-
tivity at a sub-organ level because it is now often possible to optimize 
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treatments to avoid specific sensitive volumes, if they are known. 
Voxel-based analysis methods, also known as image-based data 

mining (IBDM), have gained popularity in recent years for their ability 
to maintain the spatial complexity of entire 3D dose distributions, their 
freedom from a priori anatomic assumptions, and their independence 
from structure delineations [13]. These methods comprise two primary 
steps: spatial normalization to a reference anatomy and voxelized dose 
comparison. Several studies have demonstrated the potential of IBDM to 
reveal details of the dose–response relation that had eluded traditional 
dose-volume methods [14–18]. For example, one study revealed that 
radiation dose in a small region across the base of the heart strongly 
correlates with the overall survival of patients with lung cancer [16]. 
Another study of radiation-induced trismus (difficulty in mouth open-
ing) revealed a significant correlation between the severity and the dose 
in and near the ipsilateral masseter [19]. Correlations with the IBDM- 
identified volume were stronger than that in a priori-identified struc-
tures. All of these studies, however, focused on data acquired from and 
health effects relevant to adults. 

Dose-response relationships for childhood cancer treatments repre-
sent a niche field with unique challenges. Childhood cancers are histo-
logically distinct from adult cancers and are exceedingly rare, 
accounting for only 1% of all cancer cases [20]. Therefore, pediatric- 
specific study cohorts accumulate slowly. Furthermore, not only are 
children’s young bodies inherently more vulnerable to radiation damage 
than adults’, but they also face several decades of survivorship longer 
than is expected of most adult survivors. As a result, the specific side 
effects of interest among childhood cancer survivors often differ from 
those for survivors of adult cancer. For example, heart disease [21] and 
subsequent malignant neoplasms [22] are of particular concern to 
childhood cancer survivors due to their long latency of a decade or more. 
Both of these effects are also associated with low doses of radiation 
[23–25]. This differs from adult dose–response studies, which tend to 
focus on high-dose volumes [8]. 

Many of these unique challenges also complicate the applicability of 
IBDM to data from children. Although Palma et al. [26] recently 
demonstrated the utility of IBDM for adult multi-center studies, the 
relatively larger and age-related anatomic variability characteristic of 
childhood, which may result in larger uncertainties associated with the 
spatial normalization needed for IBDM, remained an outstanding 
question. A recent study investigated this spatial normalization in CT 
images from a small cohort of children and suggested that satisfactory 
normalization is feasible [27]. 

Many childhood cancers occur in the brain, where MRI is often used 
because of its superior soft-tissue contrast. However, CT-based analyses 
remain useful thanks to their direct relevance to radiotherapy treatment 
planning data. In addition, because large pediatric cohorts are rare and 
require accrual over many years, the heterogeneity of MR protocols and 
image quality across time or between centers in multi-institution 
studies, as are needed to increase small pediatric cohort sizes, present 
other challenges to the IBDM workflow. Hence, a logical next step will 
be to develop IBDM using MRI to improve soft-tissue spatial normali-
zation in the brain [28,29] but the feasibility of the full IBDM pipeline in 
data from children must first be established, and CT offers valuable in-
formation to this effect. For example, we must first determine whether 
residual uncertainties (due to large anatomic variations) from the 
normalization process affect the ability of IBDM to identify a small 
“sensitive” sub-volume in a large population of children. The specific 
consequences of the characteristics of the dose distribution (e.g., dose 
gradient) are also unknown. Quantifying those uncertainties is impor-
tant because they will inform sample-size and power calculations in 
future studies of the late effects of radiotherapy in children. 

Here, we present a comprehensive end-to-end test of IBDM in CT data 
obtained from a large population of children for a simulated effect. We 
tested the performance of a published binary IBDM approach and 
quantified the role of three key steps in IBDM: selection of reference 
anatomy, sensitivity to the dose-distribution characteristics (using both 

simplified and modified clinical dose distributions), and robustness to 
the incidence rate (i.e., relative frequency) of the effect of interest in the 
population by using incidence rates representative of side effects asso-
ciated with cranial irradiation in children. 

2. Methods 

We begin this section by defining our patient population and hy-
potheses (Section 2.1) before, for the reader’s convenience, providing a 
brief description of the published IBDM method that we implemented in 
this study (Section 2.2). The sections that follow (2.3 to 2.6) describe our 
comprehensive end-to-end test in detail. 

2.1. Population 

We tested the applicability of IBDM to pediatric studies by using data 
from a cohort of 167 children. These children previously received proton 
radiotherapy for primary craniopharyngioma brain tumors at St. Jude 
Children’s Research Hospital. Craniopharyngioma is a centrally located 
tumor arising in the suprasellar region of the intracranial compartment. 
We selected this cohort for its wide age range (10 months to 20 years), 
even sex distribution, and well-defined treatment protocol (Table 1). 
The patient data used in this study included their treatment-planning CT 
images, structure sets approved by a board-certified radiation oncolo-
gist, and clinically delivered radiotherapy dose distributions exported 
from a commercial treatment-planning system (Eclipse v13.7, Varian 
Medical Systems, Palo Alto, CA). All patients received focal proton 
therapy comprising two (lateral opposed) or three (lateral opposed plus 
apex) beams. All treatment-planning CT images were acquired in the 
head-first supine orientation with pixels ranging in size from 0.78 to 
1.17 mm. All but one image (1.5 mm thickness) had a slice thickness of 
1 mm. Structure sets for all patients included delineations of the target 
volumes and five organs at risk: brainstem, left cochlea, right cochlea, 
left optic nerve and right optic nerve. All structures were contoured 
according to the RT2CR (NCT01419067) or RT3CR (NCT02792582) 
clinical trial protocols. This study was approved by the St. Jude Insti-
tutional Review Board. 

We used these data to test the hypothesis that it is feasible to use 
IBDM with data obtained from children to identify a sensitive sub- 
volume in which a systematic difference in dose deposition is associ-
ated with a binary effect of interest. 

2.2. IBDM methodology 

We performed the two primary steps of IBDM analyses by using the 
framework and software developed at the University of Manchester 
[14,16,19,30,31]. 

2.2.1. Spatial normalization 
Spatial normalization in IBDM aims to map individual patient 

anatomy and the related treatment information (e.g., dose distributions) 
to a common reference anatomy. IBDM generally performs this 
normalization through a two-step process: rigid, or affine image regis-
tration to grossly align each patient to the reference anatomy, followed 

Table 1 
Demographic and treatment details of children included in this study.  

Characteristic Value 

No. patients 167 
No. males (%) 83 (49.7) 
Mean age ± 1σ [y] 9.6 ± 4.6 
Mean target volume ± 1σ [mm3] 26.3 ± 19.1 
Prescribed dose [GyRBE] 54 
Prescribed no. fractions 30 
No. who received chemotherapy (%) 0 (0) 
No. who received surgery (%) 167 (100)  
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by deformable image registration (DIR) to fine-tune the normalization. 
We implemented three iterations of the rigid registration, allowing 
scaling only, then translation only, and then translation and rotation. 
This preliminary alignment only considers the anatomy within a region 
of interest that is automatically generated according to clinically 
delineated structures. We defined our region of interest as the bounding 
box encompassing the clinically delineated brain contour expanded by a 
5 mm margin. Next, the IBDM DIR uses a B-spline DIR algorithm in the 
Nifty Registration package (NiftyReg, KCL, UK) [32] with the default 
registration parameters and regularization via a bending-energy penalty 
term. This step considers the entire patient image (i.e., anatomy both 
within and outside the region of interest). 

The deformation matrix that results from the anatomic spatial 
normalization is applied to the associated radiotherapy treatment data 
(e.g., dose distributions and structure delineations) to obtain versions of 
each individual’s radiotherapy treatment data propagated to the refer-
ence anatomy. IBDM aims to take the uncertainties associated with the 
spatial normalization into account during the voxelized dose compari-
son by applying a 3D Gaussian blurring kernel to each deformed dose 
distribution prior to performing the dose comparison. IBDM defines this 
blurring kernel by using the standard deviation (SD) in the center-of- 
mass locations of structures that are routinely delineated and within 
the registration region of interest. Specifically, it averages the SD in each 
of the superior-inferior, anteroposterior, and left–right directions across 
all delineated structures. This SD is calculated relative to the center of 
mass of each corresponding structure in the reference anatomy. In our 
study, the clinically delineated structures within the registration region 
of interest that contributed to this 3D Gaussian blurring kernel were the 
brainstem, left and right cochlea, and left and right optic nerves. 

2.2.2. Voxelized dose comparison 
In binary voxel-wise dose comparison, patients are grouped ac-

cording to a binary effect measure, namely those whose data report an 
effect of interest in one group (E for “effect”) and those without the effect 
in the other group (NE for “no effect”). The Manchester Tool Kit (MTK) 
for binary analysis [16,19] calculates a Student t-test statistic in each 
voxel of the reference anatomy, resulting in a 3D distribution of t-test 
statistic magnitudes, also referred to as a t-map. The MTK then performs 
a permutation test to identify the t-values associated with random dis-
crepancies between the radiation dose distributions of the two groups of 
patients. The permutation test is a nonparametric test [33] that 
conservatively corrects for multiple comparisons to protect against 
erroneously significant results, which are likely given the large sample 
size [30,34–36]. Permutation testing randomizes the binary effect labels 
among the patients in the cohort several times (1,000 times in our 
study). For each permutation, MTK calculates a new t-map and records 
the most extreme positive and negative t-test statistics [14,16], consid-
ering all voxels within the reference anatomy skin contour (i.e., 
including anatomy within and outside the registration region of inter-
est). This procedure tests the null hypothesis that there is no difference 
between the average dose distributions of the two groups (H0 : DE =

DNE;H1 : DE ∕= DNE). Ranking the recorded extreme t-statistics for all 
permutations enables one to assess the significance of the observed t- 
statistic (i.e., that obtained from the true effect labels, before random 
permutation). We determined statistical significance at the α = 0.01 
significance level, which is common in permutation tests to control for 
the family-wise error rate [36]. Practically, this entails comparing the 
99th percentile in the ranked extreme t-statistics with the observed t- 
statistic. Additionally, the MTK indicates volumes in which the dose 
relates to the investigated effect by using the ranked extreme t-statistics 
for various p-values. The volumes are found by segmenting iso-t levels in 
the observed t-map. The MTK functionality is described in detail else-
where [30]. 

2.3. Assessing the impact of the reference anatomy 

We selected the reference anatomy from among the treatment 
planning CTs of the children in the cohort. To assess the sensitivity of the 
IBDM analysis to the selection of the reference anatomy, we considered 
three selection methods: the most representative among the ages, brain 
volumes, and target volumes. We determined representativeness as the 
median value because it is less susceptible to outliers than is the mean. 
Specifically, we selected images from the female and male patients 
closest to the median age, the patient with the median brain volume, and 
the patient with the median target volume. 

2.4. Evaluation of spatial normalization 

We visually assessed the performance of the DIR by calculating the 
mean CT of all registered images for each reference image. Additionally, 
we evaluated the performance of the DIR via surface-distance and 
center-of-mass analyses for all delineated structures. For surface- 
distance analysis, we calculated two distance metrics: the 95% Haus-
dorff (DTH,95) [37] and average (DTavg) distances as, 

DTH,95 = max
{

DTH,95: t, s→t,DTH,95: s→t, t
}

(1)  

DTavg = avg
{

DTavg: t, s→t,DTavg: s→t, t
}

(2)  

respectively, where t represents the reference-anatomy contour and s→t 
represents the individual subject’s contour propagated to the reference 
anatomy [27]. For center-of-mass analysis, we calculated the Euclidian 
norm of the center-of-mass displacement (ΔCOM), or. 

ΔCOM = ‖COMs→t − COMt‖ (3)  

where t and s→t are defined as above. We calculated the ΔCOM value for 
each patient and then averaged it for all patients (ΔCOMavg). 

2.5. Simplified dose distributions 

To assess the strengths and limitations of IBDM analyses of the pe-
diatric data, we used simple simulated 3D radiation dose distributions 
inspired by the methods of Chen et al. [14]. By using simulated dose 
distributions, we could choose the location and size of the sensitive 
volume of interest and maintained full control of the dosimetric char-
acteristics within and outside the volume of interest. This enabled us to 
systematically test and quantify the sensitivity of IBDM to the various 
dose distribution characteristics it may encounter in clinical 
assessments. 

We generated the simplified simulated dose distributions for each 
individual patient’s anatomy prior to spatial normalization with an in- 
house code written in MATLAB (vR2019a, MathWorks, Natick, MA) 
and tools included in the Computational Environment for Radiotherapy 
Research (version 5.2) [38]. We defined these dose distributions in 
relative dose units and designed them to simulate analyses of out-of-field 
dose, as is highly relevant to pediatric late effects, such as second can-
cers. The test and control dose distributions comprised a homogeneous 
background dose of 100% assigned everywhere within each patient’s 
skin contour. The test dose distributions additionally contained a cubic 
test volume of side length S centered in each patient’s brain contour. The 
dose in this test volume was higher than the background dose level by an 
amount ΔD. This test volume mimics a sensitive sub-volume in which 
the dose is associated with an effect of interest. Out-of-field dose is not 
explicitly calculated by commercial treatment planning systems and so it 
is often estimated for research purposes using Monte Carlo methods 
[39]. However, these simulations suffer from statistical noise, especially 
outside of the therapeutically irradiated volume. Therefore, each test 
and control dose distribution included a unique additive random noise 
component (Fig. 1). We determined the random noise on a voxel-by- 
voxel basis by randomly sampling from a Gaussian distribution (μ = 0; 
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σ = σnoise). 
To assess the limits of IBDM functionality for pediatric analyses, we 

varied these simple simulated dose distributions based on three distinct 
parameters. Specifically, we generated test dose distributions for all 
combinations of three noise levels (σnoise), three test-volume side lengths 
(S), and three dose deviations between the test volume and background 
dose level (ΔD). This produced 27 test conditions. We additionally 
generated control dose distributions for each of the three σnoise levels, 
resulting in a total of 30 simulated dose distributions for each patient. 

The three noise levels were defined by 1.96 σnoise = 2%, 5%, and 7% 

(Fig. 2). We selected these levels to span the noise and uncertainty levels 
representative of out-of-field dose calculations from Monte Carlo simu-
lations [40] to analytical algorithms [41,42]. The three test-volume side 
lengths were S = 0.5 cm, 2.0 cm, and 6.0 cm (Fig. 2). These side lengths 
were selected to span potential critical-structure volumes on the order of 
the cochlea to the individual lobes of the brain. The three dose de-
viations were ΔD = 0.1%, 1%, and 5% (Fig. 2). We selected these 
relative magnitudes to span from stray-dose magnitudes [41] to clini-
cally acceptable therapeutic dose deviations [43]. 

Fig. 1. Simple Simulated Dose Distributions. Representative examples of the control (top row) and test (bottom row) simple simulated dose distributions before (left 
column) and after (right column) random noise addition. Examples are shown for the 5% random noise level. Test examples are for a test volume with a side length of 
6 cm and a dose discrepancy of 5% above the background dose level. 

Fig. 2. Simple Simulated Dose Distribution Parameters. Representative examples of the parameters that we varied in generating the simple simulated dose distri-
butions. Examples for the various side lengths (S) are shown with a dose discrepancy (ΔD) of 5% and noise level of 1.96 σnoise = 2%. Examples for varying ΔD are 
shown for S = 6 cm and 1.96 σnoise = 2%. Examples for varying σnoise are shown for S = 6 cm and ΔD = 5%. 
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2.5.1. Simulated effects 
Binary IBDM analysis requires that patient data be associated with a 

binary effect label. For this computational test, we assigned each pa-
tient’s data a label of Effect (E) or No Effect (NE). Patient data assigned 
the E label included a test dose distribution (with a higher-dose cube of a 
certain size, S), whereas data assigned the NE label included the control 
dose distribution (without cube). We only considered E–NE groupings 
sharing the same level of noise, i.e., both E and NE dose distributions 
were generated with the same σnoise such that the only systematic dif-
ference between dose distributions in the E and NE groups was the 
presence (or absence) of the test volume. 

We assessed the sensitivity of the pediatric IBDM analyses to two 
characteristics of the binary patient labeling: the relative frequency of 
the simulated effect (i.e., the relative proportion of E labels among the 
cohort) and the individual patients who experienced the simulated effect 
(i.e., the specific patient data assigned the E label). We considered three 
relative frequencies of E, representing three different incidence rates of 
the simulated effect of interest: 50%, 20%, and 10%. We considered the 
relative frequency of 50% because this provides the highest level of 
statistical power. We selected the 20% and 10% frequencies to 
approximate the rates of subsequent neoplasms [44] and vasculopathies 
[45,46], respectively, which are two effects of interest among survivors 
of childhood brain cancer who received proton therapy. 

We randomly assigned the E or NE labels to the patient data by using 
the random number generator in MATLAB vR2019a. To generate the 
50% frequency labeling, we randomly assigned the E or NE label to the 
patient data with equal probability, resulting in 84/167 assigned the NE 
label and 83/167 assigned the E label. Similarly, to generate the 10% 
grouping, we assigned the E label to 10% of the cohort at random, and 
the remainder received the NE label. To define the labels for the 20% 
relative frequency and enable a test for sensitivity to individual patient 
status (i.e., E or NE labeling), we followed methods similar to those of k- 
fold cross validation [47]. First, we randomly partitioned the patient 
data into five subsections. We then generated five unique binary label 
combinations by assigning patient data in one subsection the E label and 
assigning the remaining patients the NE label. In this way, the patient 
data in each of the five subsections received the E label in one label 
combination. For each grouping strategy, we ensured that age and sex 
did not significantly differ by performing a Student t-test for age and a 
Pearson χ2 test for sex. 

2.5.2. Evaluation of dose comparison 
The goal of the IBDM dose comparison was to identify the presence 

and location of the dose discrepancy between test and control dose 
distributions that is related to a simulated effect (i.e., identify and locate 
the test volume representing a sensitive sub-volume). To assess the 
sensitivity to the reference anatomy selection, we performed IBDM an-
alyses for all four reference anatomies with the effect labels character-
ized by a 50% relative frequency of E and NE labels. To test the 
sensitivity to the relative frequency of simulated effects, we performed 
additional IBDM analyses with the best-performing reference anatomy 
for the 10% and 20% relative frequency label configurations. To test the 
sensitivity to the individual patient status (i.e., E or NE labeling), we 
performed IBDM analyses with the best-performing reference anatomy 
for all five folds of the 20% relative frequency label configuration. 
Finally, to test the sensitivity to dosimetric characteristics, we repeated 
all above-described tests for all 27 test configurations (Fig. 3). This 
resulted in a total of 270 IBDM analyses. 

We quantified the performance of the IBDM dose comparison in each 
of these 270 analyses by calculating the Dice similarity coefficient (DSC) 
[48] of the reference patient’s test volume (VT) compared to the 99th 
percentile iso–t-map volume (V99th ), calculated as. 

DSC =
2 × (VT ∩ V99th )

VT + V99th
(4)  

2.5.3. Statistical sensitivity tests 
We tested whether the results of the IBDM dose comparisons are 

associated with several components of the analysis method via multi-
factor ANOVA models with post-hoc Bonferroni (Dunn) t-tests. We fitted 
three separate multifactor ANOVA models (Fig. 3). The first model 
included all analyses performed with the 50% relative frequency and 
assessed whether the results differed based on the reference-anatomy 
selection and the three defining features of the test dose distributions 
(i.e., S, ΔD, and σnoise). The second model included all IBDM analyses 
performed with the 20% relative frequency and assessed whether the 
results differed based on adjustments in the individual patient effect 
status (i.e., the folds). The final ANOVA model included the IBDM an-
alyses performed for all three relative frequencies with the best- 
performing reference anatomy and assessed differences in the results 
based on adjustments to the relative frequency (i.e., incidence rate of the 
simulated effect). All statistical tests were performed with SAS version 

Fig. 3. Image Based Data Mining Analyses and Statistical Tests. Visual representation of the 270 analyses (each gray/white box) and three robust multifactor ANOVA 
tests performed. Each box represents the cohort of patients for a single test configuration (see Section 2.5) with the text referring to the method of reference-patient 
selection whereas the gray-shaded region represents the effect group and white the no-effect group. The width of the shaded region indicates the relative frequency of 
pediatric data assigned to the effect group (i.e., 50%, 20%, or 10%) and its location the k-fold grouping (see Section 2.5.1). 
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9.4 (SAS Institute, Cary, NC). 

2.6. Modified clinical dose distributions 

Although the simple simulated dose distributions enabled us to 
interrogate specific features of the dose distributions and their effects on 
IBDM performance when analyzing pediatric data, they served a pri-
marily computational purpose by mimicking only analyses far from the 
therapeutic treatment field, which are of relevance to late effects like 
second cancer [25] and heart disease [23,24]. Other effects of interest in 
childhood survivorship, like cognitive deficits, appear to be related to 
exposures to tissues near the targeted volume [49]. In these cases, IBDM 
analyses must contend with spatially correlated noise (i.e., entrance 
doses) to identify anatomic volumes in which a threshold dose level 
separates the dose distributions of patients who experienced an effect of 
interest from those who did not. To more accurately mimic this situa-
tion, we performed a test based on the planned dose distributions from 
the radiotherapy treatments of the 167 children in the cohort. 

Quantifying and assessing the performance of IBDM requires dose 
distributions that contain a systematic dose difference in a predefined 
anatomic volume, which correlates with the simulated effect labels (i.e., 
a known dose difference in a known volume from which the ability of 
IBDM to identify that volume can be quantified and judged), as we 
achieved by using the simple simulated dose distributions. To meet these 
requirements while maintaining clinical realism, we modified the clin-
ical dose distributions by replacing the dose inside each patient’s 
brainstem contour with the average magnitude of the dose distribution 
in that patient’s brainstem (Fig. 4). We chose the brainstem as the vol-
ume of interest for this experiment because of its close proximity to the 
target volume, making it a particularly challenging case with which to 
assess the IBDM method’s sensitivity to spatially correlated noise. 
Finally, we smoothed the resulting dose distribution with a Gaussian 
smoothing kernel of σ = 1.0 mm to achieve clinically realistic dose 
gradients (for proton therapy) around the edges of the brainstem. By 
these methods, we obtained dose distributions with clinically realistic 
therapeutic exposures and consistent dose discrepancies in a predefined 
volume (i.e., the brainstem). 

We separated the patient data into new Effect (E) and No Effect (NE) 
groups for this analysis according to a threshold level among the average 
brainstem dose magnitudes. We tested IBDM performance with modified 
clinical dose distributions at the same relative frequencies of E labels as 
we used for the simplified dose distributions: 50%, 20%, and 10%. We 
assigned the effect labels by determining the three corresponding 
threshold dose levels: the median (D̃), 80th percentile (D80th ), and 90th 

percentile (D90th ) doses (Fig. 5). We assigned all patient data whose 
average brainstem doses were equal to or below the threshold to the NE 
group and all whose average brainstem doses were above the threshold 
to the E group. 

This portion of the study aimed to assess the ability of IBDM to 
recognize and locate a dose discrepancy according to a threshold level in 
the presence of clinically realistic, spatially correlated noise (i.e., ther-
apeutic and entrance doses). Therefore, we quantified the performance 
of IBDM by comparing the reference patient’s brainstem contour to the 
99th percentile iso–t-map volume via three metrics: sensitivity, or the 
fraction of the reference brainstem covered by the 99th percentile iso–t- 
map volume; positive predictive value (PPV), or the fraction of the 99th 
percentile iso–t-map located within the reference brainstem, and the 
DSC (see Equation (4)). 

Fig. 4. Method for Modifying Clinical Dose Distributions. The left image shows a representative example of a planned dose distribution (color wash) overlaid on the 
corresponding treatment planning CT image (grayscale) with the brainstem (cyan) and target volume (red) contours. The center image shows the dose-volume 
histogram for the brainstem (cyan), with the mean brainstem dose (D) indicated by the red dashed line. The right image shows the final modified clinical dose 
distribution, with the average dose magnitude assigned everywhere inside the brainstem contour. (color wash scale, green is 54%). (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Distribution of Average Brainstem Doses. Histogram showing the dis-
tribution of average doses within the brainstem contours of patients for the tests 
in modified clinical dose distributions. Dashed vertical lines indicate the me-
dian (D̃), 80th- (D80th ) and 90th-percentile (D90th ) dose levels, which served as 
the threshold levels for dividing the pediatric data into effect and no ef-
fect groups. 
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3. Results 

3.1. Evaluation of spatial normalization 

Fig. 6 shows the original reference CT images and average treatment- 
planning CT images at two distinct points in the IBDM workflow: before 
and after DIR to the best-performing reference anatomy. Qualitatively, 
the improved clarity after DIR, especially in the regions shown with the 
soft-tissue window-level depicting the finer brain structure, indicated 
lower intensity variability among the mapped images and an overall 
high accuracy of the DIR, despite large age-related variations in anat-
omy. The corresponding images for all four reference patients (see 
Section 2.3) are supplied in Appendix A. Quantitatively, Table 2 shows 
the metrics computed in surface-distance and center-of-mass analyses. 
These metrics revealed that the discrepancies between the individual 
subject anatomy propagated to the reference coordinate system and the 
reference anatomy were small (i.e., DTH,95 < 9 mm, DTavg < 3 mm, and 
ΔCOM < 6 mm), with a slight improvement for the reference anatomy 
selected on the basis of the median brain volume. Relatedly, Table 3 
shows the dimensions of the Gaussian blurring kernel used to take the 
effects of DIR uncertainties into account in the voxelized dose compar-
ison for all four reference anatomies. These dimensions were also small 
(i.e., SD < 4 mm). 

3.2. Evaluation of dose comparison 

The various strategies of assigning E and NE labels to patient data did 
not change the distribution of age and sex (p > 0.05 for all). IBDM 

analyses among the 270 test cases were largely successful. Of the 270 
tests, 219 (81%) identified a family-wise significant difference between 
the dose distributions of the E and NE groups at the α = 0.01 significance 
level. All comparisons that failed the family-wise test (i.e., 51 of 270) 
involved either the smallest test volume (31 of 51, 60%) (i.e., the volume 
simulating a small sensitive sub-volume of interest; S = 0.5 cm) or the 
smallest introduced dose difference (49 of 51, 96%) (i.e., ΔD = 0.1%), or 
both (29 of 51, 57%). DSC analyses from voxel-wise comparisons 
revealed a peak in frequency at DSC magnitudes between 0.9 and 1. 
Fig. 7 shows representative examples of the iso–t-maps for IBDM com-
parisons in simple dose distributions, along with the corresponding DSC 
magnitudes. These simple dose distributions were characterized by a 
dichotomous dose distribution with a constant average dose difference 
in the test volume and no average dose difference elsewhere. Therefore, 
the iso–t-maps are dichotomized and lack a smooth transition through 
significance levels. Appendix B contains the corresponding images for all 
270 tests. 

3.3. Statistical sensitivity tests 

Fig. 8 shows violin plots of DSC magnitudes from all IBDM analyses 
(i.e., including those in which the family-wise comparison failed to 
recognize a difference) that were partitioned by the various parameters 
considered in the sensitivity tests. Fig. 8a-d show the results of the 
sensitivity tests included in ANOVA 1 (shown in Fig. 3). The IBDM re-
sults, as quantified by DSC, were insensitive to the method of reference- 
anatomy selection (Fig. 8a). This suggests that these methods are robust 
to the method of reference-anatomy selection despite large variations in 

Fig. 6. Average CT Images. Treatment planning CT 
images shown for the reference anatomy (Reference) 
and those averaged over all 167 children before (Pre) 
and after (Post) the deformable image registration to 
the reference. The anatomy outside the white squares 
is shown in a bone window-level while the squares 
show a soft tissue window-level. Note that some brain 
structures are visible in the soft-tissue level, even with 
the known limitations of soft-tissue visualization of 
CT in the brain. This example is shown for the best- 
performing reference anatomy.   
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age-related anatomy within the cohort. The DSC magnitudes were also 
sensitive to the test-volume side length (S) (Fig. 8b), insensitive to the 
magnitude of the dose discrepancy for ΔD greater than or equal to 1% 
(Fig. 8c) and significantly improved for the lowest noise level of 2% 
(Fig. 8d). Fig. 8e shows the results for ANOVA 2 (shown in Fig. 3). This 
plot reveals that the IBDM results were insensitive to the individual 
patient labels. This suggests that the IBDM method reliably assesses 
dosimetric discrepancies and is robust to inter-individual anatomic 
variations in children. Finally, Fig. 8f shows the results for ANOVA 3 
(shown in Fig. 3). This plot indicates that the IBDM results were 
significantly worse with the 10% relative frequency of the E labels but 
were there was no difference between 20% and 50% relative fre-
quencies. This suggests that a lower bound exists for the incidence rate 
of effects of interest that are suitable for this type of analysis, i.e., 36 

events for 20%. 

3.4. Modified clinical dose distributions 

Table 4 lists the calculated metrics comparing the 99th percentile 
iso–t-volume to the reference brainstem from all three tests in modified 
clinical dose distributions. These values show that IBDM successfully 
identified systematic differences between the dose distributions of the E 
and NE groups with a family-wise p ≤ 0.001 in all cases. The calculated 
sensitivities reveal that IBDM consistently recognized the dose differ-
ences present in the brainstem, even in the test with the lowest power (i. 
e., relative frequency of 10%). The PPV and DSC, however, were rela-
tively lower, only reaching a maximum of 0.25 and 0.40, respectively. 
Fig. 9 shows the iso–t-maps for the three tests in modified clinical dose 
distributions. These images show that the 99% iso–t-volume covered the 
brainstem (i.e., the volume in which we introduced a systematic dose 
difference between the E and NE groups) despite the presence of clini-
cally realistic, spatially correlated noise from the therapeutic dose dis-
tribution. This significant volume, however, also encompassed 
additional voxels outside of the brainstem due to correlations of the 
brainstem dose with systematic differences in the target coverage and 
beam arrangement for the two treatment protocols included in this 
study. Nevertheless, the most critical point is that the IBDM method 
must identify the entire sensitive sub-volume and not miss part of the 
volume of interest because of unavoidable noise. Interestingly, the DSC 
goes up with lower event rate, showing the potential of IBDM to over-
estimate sensitive regions because of correlations in the data. 

4. Discussion 

We tested the applicability of IBDM to pediatric data by using the 
imaging and treatment data from a cohort of 167 children who previ-
ously received proton therapy for primary brain tumors at St. Jude 
Children’s Research Hospital. We assessed the strengths and limitations 
of IBDM with simulated effects and simple and modified clinical dose 
distributions. Our findings revealed that IBDM, for a structure that is 
central in the brain, is applicable to pediatric data despite large age- 
related anatomic variation and the small patient numbers and inci-
dence rates characteristic of childhood late-effects research. Our find-
ings also show that IBDM reliably identifies systematic dose differences 
as small as 1%, regardless of the selection of reference anatomy. The 
performance, however, depends on the magnitude of random noise, the 
relative frequency of the effect of interest in the cohort, and the size of 
the sensitive sub-volume (i.e., the side length, S, of the test volume in 
this study). It should be noted, however, that the DSC itself is sensitive to 
the volume being compared with lower DSC magnitudes more likely for 
smaller volumes. Therefore, although our IBDM results were sensitive to 
S, the extent to which the apparent sensitivity is attributable to the IBDM 
method rather than the inherent nature of DSC is unclear. 

Although our study is the first to evaluate the feasibility of the 
complete IBDM workflow in pediatric CT data, the spatial normalization 
step can be compared to previous CT-based studies implementing IBDM 
in adult cohorts of lung cancer patients [16,30,31], head and neck 
cancer patients [19] and a recent study evaluating spatial normalization 
in data from children [27]. Beasley et al. found a DIR uncertainty (SD of 
center of mass) of 4.0, 0.34 and 0.30 mm in the left–right, ante-
roposterior and superior-inferior directions for the muscles of mastica-
tion [19]. We found similar DIR uncertainty values for our selected brain 
structures, with slightly less deviation, most likely because of the ri-
gidity of structures contained within the skull. Veiga et al. found DTavg 

and ΔCOMavg values of 0.7 ± 1.0 mm and 2.9 ± 5.7 mm, respectively, 
for DIR of the central nervous system in children [27]. Although our 
ΔCOMavg was consistent with that of Veiga et al., we found a slightly 
higher DTavg (Table 1). It should be noted, however, that we calculated 
DTavg as an unsigned average and it is unknown whether the metric 

Table 2 
Quantitative Evaluation of Deformable Image Registration. Measures of the 
deformable-image-registration accuracy include the 95% Hausdorff (DTH,95) 
and average (DTavg) distances between surfaces (see Eqs. (1) and (2)) and the 
Euclidian norm of the center of mass displacement (ΔCOMavg) (see Equation 
(3)). All metrics are reported as the value ± one standard deviation. Bold 
numbers show the lowest metric (i.e., best performance) for each row.    

Reference Anatomy Selection Method 

Volume of 
Interest 

Metric Age 
(Male) 

Age 
(Female) 

Brain 
Volume 

Target 
Volume 

Brainstem DTH,95 

mm 
5.44 ±
2.51 

6.95 ±
1.52 

4.78 ± 
1.68 

6.99 ±
2.74 

DTavg 

mm 
2.15 ±
1.06 

2.79 ±
0.60 

1.90 ± 
0.61 

2.44 ±
0.95 

ΔCOM 
mm 

2.60 ±
2.39 

4.42 ±
1.04 

2.51 ± 
1.54 

3.19 ±
1.66 

Left Cochlea DTH,95 

mm 
2.10 ±
3.16 

2.57 ±
2.18 

1.59 ±
0.69 

1.54 ± 
1.02 

DTavg 

mm 
1.05 ±
2.83 

0.99 ±
1.90 

0.68 ± 
0.46 

0.71 ±
0.66 

ΔCOM 
mm 

1.44 ±
3.16 

1.58 ±
2.23 

0.96 ± 
0.80 

1.00 ±
1.16 

Right Cochlea DTH,95 

mm 
1.99 ±
3.12 

1.89 ±
1.23 

1.80 ± 
1.05 

1.98 ±
2.69 

DTavg 

mm 
1.02 ±
2.90 

0.72 ± 
0.89 

0.76 ±
0.65 

1.05 ±
2.34 

ΔCOM 
mm 

1.26 ±
3.22 

1.09 ±
1.21 

0.89 ± 
0.96 

1.30 ±
2.80 

Left Optic 
Nerve 

DTH,95 

mm 
8.06 ±
4.84 

6.50 ±
3.07 

5.03 ±
3.14 

4.80 ± 
2.30 

DTavg 

mm 
2.19 ±
2.86 

2.17 ±
2.28 

1.57 ± 
1.36 

1.72 ±
1.50 

ΔCOM 
mm 

3.58 ±
3.57 

5.52 ±
3.31 

2.97 ± 
2.06 

2.70 ±
1.89 

Right Optic 
Nerve 

DTH,95 

mm 
8.12 ±
4.84 

5.63 ±
2.61 

5.22 ±
3.58 

4.86 ± 
2.35 

DTavg 

mm 
2.30 ±
2.53 

1.83 ±
1.76 

1.55 ± 
1.30 

1.80 ±
1.51 

ΔCOM 
mm 

3.53 ±
3.29 

4.60 ±
3.00 

2.99 ±
2.22 

2.87 ± 
2.07  

Table 3 
Dimensions of the Gaussian Blurring Kernel. Dimensions used to take the effects 
of uncertainties associated with mapping individual patient anatomies to a 
reference anatomy into account for each of the four reference anatomies 
considered. Bold values represent the smallest among the four reference 
patients.  

Reference 
Anatomies 

Anteroposterior 
(mm) 

Left-Right 
(mm) 

Superior-Inferior 
(mm) 

Median Age (F)  2.67  2.63  2.11 
Median Age (M)  3.25  1.68  2.02 
Median Brain 

Volume  
1.85  1.47  1.34 

Median CTV  1.66  1.93  1.90 
Abbreviations: F – female; M – male; CTV – clinical target volume  
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reported by Veiga et al. is signed or unsigned. Furthermore, we assessed 
DIR accuracy by using contours, which are widely known to depend on 
inter-observer variation [50]. The effect of this inter-observer variability 
is somewhat less severe in ΔCOMavg assessment but has a strong effect 
on DTavg and may also contribute to the differing results from Veiga et al. 
and our study. 

Our study has several notable strengths. First, it represents the first 
end-to-end test of voxel-based analysis methods in a pediatric cohort. 
Our study also used well-characterized data from a large cohort of 
children with cancer. The data were collected under two successive 
clinical trials, thereby minimizing potential confounding factors related 
to imaging protocols, structure contours, and treatment variations. We 
also minimized confounding factors by using simulated dose distribu-
tions. This yielded complete control of the location, volume, and 
magnitude of dose deviations analyzed, which is a necessary step to 
objectively quantify the performance of the IBDM method and assess its 
sensitivity to various dosimetric characteristics. 

Our study also had some limitations. First, our use of default DIR 
algorithm parameters may have limited the achievable DIR accuracy. 
Our metrics assessing DIR accuracy, however, were comparable to those 
in other IBDM studies. Future studies are needed to identify the optimal 
DIR parameters for pediatric IBDM analyses. Additionally, the ability of 
the registration algorithm to accurately match structures within the 
brain may be further limited by the lack of soft tissue contrast in CT 
imaging. This lack of contrast may also account for the small number of 
outliers (4/167 patients) that we observed with large registration dis-
crepancies in which no obvious reason for registration failure was 
apparent. We precisely assessed the DIR accuracy, however, by propa-
gating the spatial normalization to structure contours that spanned the 
brain volume, thereby minimizing the likelihood of overlooking gross 
deformation errors and still found a reasonable registration accuracy (<
6 mm in the best-performing reference), despite the low soft-tissue 
contrast of CT. Furthermore, if a few cases within a large cohort lead 
to registration failures, those cases can be discarded without affecting 
the statistical power of the analysis. Incorporating MR or other multi- 
modal imaging techniques would increase the information available to 
the registration algorithm and would enable a more comprehensive 
assessment of the registered brain structures, and likely a higher regis-
tration accuracy, as has been suggested by two methodological studies 
[28,29] using smaller cohorts (i.e., 50 adults and 6 children, respec-
tively). However, the additional required image registration step (i.e., 

MR to CT) would also add additional uncertainty. Despite this limitation 
of CT-based IBDM, our results confirm the feasibility of applying IBDM 
in data from children, for the first time, and provide a reference point for 
future studies evaluating IBDM using MR images. We are currently 
generalizing the methods reported here for MR-based spatial normali-
zation to perform further IBDM studies in children with brain tumors. 
Another limitation of this study is its computational nature, which only 
addresses the feasibility of IBDM in pediatric cohorts without providing 
new clinical results. Thorough benchmarking, however, is required to 
understand future clinical results and allow them to guide clinical 
practice. Having achieved this proof of principle, future studies will be 
able to apply these IBDM methods to analyze the dose response for some 
of the most common side effects of radiotherapy treatments among 
childhood cancer survivors with various central nervous system 
disorders. 

Because childhood cancer is rare, large cohorts such as those used in 
previous adult IBDM studies may not be achievable. Our study shows 
that the smaller cohort size typical of pediatric cancers (i.e., often at best 
only a few hundred patients) provides a large enough sample size to 
successfully implement the IBDM methods for incidence rates repre-
sentative of common effects of interest among childhood cancer survi-
vors (i.e., 20% and 10%). Our findings suggest that cohorts of similar 
size and power are feasible for successful implementation of IBDM and 
pave the way for future studies to establish this. The specific sample size 
required will depend on several factors, such as the relative incidence 
rate of the effect of interest among the cohort, the success of the spatial 
normalization and the dynamic range represented in the dose 
distributions. 

Our findings in modified clinical dose distributions highlight a 
challenge common to all data-mining endeavors in that the results rarely 
reveal the desired information cleanly. Instead, data mining results 
require expert interpretation to realize the valuable information. Our 
data were derived from children who were treated in one of two clinical 
protocols, with approximately half of the children in each protocol. The 
children treated in one protocol tended to have slightly higher target 
doses delivered by three treatment beams – two lateral beams and one 
apex beam. In contrast, the children treated in the other protocol tended 
to have relatively lower target doses delivered by two lateral treatment 
beams alone. The higher target doses and apex beam were also associ-
ated with higher brainstem doses; therefore, the grouping for a 50% 
relative frequency of E labels generally divided the cohort of children 

Fig. 7. Representative Iso–t-maps. Representa-
tive examples of the iso–t-maps from image-based 
data mining tests in the simple dose distributions, 
along with the corresponding Dice similarity co-
efficients (DSC, see Eq. (4)). Grayscale images 
show the reference anatomy CT with the test 
volume burned into the image (i.e. white 
squares). The color wash shows the voxels that 
were significant at various significance levels. (A) 
The iso–t-map for the test with the DSC closest to 
average among all tests. (B) The test with the 
median DSC magnitude. (C) An example with the 
most abundant DSC magnitude when binned in 
steps of 0.1. (D) An example with the maximum 
DSC among all tests. All images are shown for the 
slice at the center of the corresponding test vol-
ume and the white text indicates the DSC 
magnitude and the corresponding characteristics 
of the test dose distribution: side length of the test 
volume (S), dose discrepancy (ΔD), and noise 
level (σnoise).   
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Fig. 8. Sensitivity Test Results. Violin plots of the calculated Dice similarity coefficients comparing the t-map volume significant at the 99% confidence level to the 
test volume. Data include all analyses performed with simple dose distributions. A-D) Data for comparisons with the 50% relative frequency grouping partitioned by 
(A) method of reference-anatomy selection, (B) test-volume side length, (C) dose discrepancy between test volume and background dose level, and (D) random noise 
level. E) Data for comparisons with the 20% relative frequency separated by the patient labeling combination. F) Data for the test for sensitivity to the relative 
frequency of the patients assigned to the Effect group. * Post-hoc Dunn tests significant at the α = 0.05 significance level. The width of each violin plot represents the 
probability density of each Dice similarity coefficient magnitude. White circles indicate the median of each Dice distribution; thick vertical bars show the inter-
quartile range; and thin bars represent 1.5 × the interquartile range. 
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according to their treatment protocol. This understanding helps explain 
the lower PPV we observed in the 50% relative frequency test (Table 4). 
Although we expected significant results outside of the brainstem in the 
modified clinical dose distribution experiment, which involved the 
spatially correlated therapeutic doses, the spatial distribution of these 
significant results for the 50% relative frequency test (Fig. 9) clearly 
demonstrated that the additional significant voxels outside of the 
brainstem were largely located in the target volume and along the beam 

paths (i.e., where the protocol-related systematic dose differences exis-
ted). The 20% and 10% relative-frequency groupings, however, more 
evenly mixed the data obtained from the children in the two protocols in 
the NE group. Therefore, these analyses were less susceptible to the 
protocol-related covariates. This highlights the critical importance of 
having a deep understanding of the dataset under consideration. 
Relatedly, Fig. 9 also reveals a trend of improving DSC with increasing 
significance level. Therefore, another potential avenue of excluding 
erroneously identified volumes is by assessing significance at higher 
levels. A practical limitation, however, is that evaluating higher signif-
icance requires a large number of permutations, and therefore prohibi-
tively larger computation time and data-storage requirements. Future 
work could explore leveraging methods to extrapolate to smaller p- 
values without the need for additional permutations [51]. 

A further consideration is that the target volume for all children in 
this cohort was located in the same, well-defined region of the brain. 
Hence, the high-dose volume occurred in the same location for all pa-
tients after spatial normalization. This contrasts with other tumor sites 
in which IBDM has been previously applied, where tumor location can 
be highly varied within the anatomy of interest (e.g., lung) and spatial 
correlations between the dose distribution and heterogeneous anatomic 
locations may impact IBDM analyses [26,52]. Further work to assess the 

Table 4 
Quantitative Evaluation in Modified Clinical Dose Distributions. Table of metrics 
quantifying the performance of the image-based data mining analysis in modi-
fied clinical dose distributions. Metrics include the family-wise p-value, sensi-
tivity, positive predictive value (PPV), and dice similarity coefficient (DSC, see 
Eq. (4)) comparing the 99th percentile iso-t-volume to the brainstem of the 
reference anatomy. Higher magnitudes of sensitivity, PPV, and DSC indicate 
improved performance with 1.00 being the maximum attainable magnitude for 
all three metrics.  

Relative Frequency (%) p Sensitivity PPV DSC 

50  <0.001  1.00  0.04  0.07 
20  <0.001  1.00  0.10  0.18 
10  <0.001  0.98  0.25  0.40  

Fig. 9. Iso–t-maps from Modified Clinical 
Dose Distributions. Iso–t-maps resulting from 
image-based data mining comparisons in 
modified clinical dose distributions at three 
relative frequencies of the simulated effect of 
interest: 50%, 20%, 10%. The grayscale 
image shows the reference anatomy with the 
brainstem (i.e. the volume to which we 
introduced a systematic dose difference) 
burned into the image (shown in white). The 
color wash indicates the significance level of 
the iso–t-map. All images show the slice in 
the geometric center of the reference 
brainstem.   
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effect of tumor location consistency on IBDM success is required. 
This raises an important consideration in choosing a dataset that is 

well suited to IBDM analyses: possible covariates and confounders. This 
consideration will guide the decision of whether the effects of con-
founders on the results can be interpreted and taken into account 
manually (as was done here) or explicitly considered with methods like 
per-voxel cox regression [30] or whether a different dataset containing 
confounders that are only weakly associated with the effect of interest 
should be sought. Other potential considerations in determining the 
suitability of a cohort include the presence and effects of healthy tissue 
deformations (e.g., from tumor growth or surgery) on DIR accuracy. 

Finally, it should also be noted that IBDM results indicate correlation 
and should not be confused with causation. The resulting iso–t-maps 
provide an assessment of differences between dose distributions that are 
correlated with differences in effect status. Whether the indicated cor-
relation occurs as a direct association between the dose and the effect of 
interest or is due to a confounding factor must be interpreted carefully. 
Even if the results suggest that the correlation is a direct association 
between the dose and the effect of interest, further studies other than 
IBDM are required to establish a causal relation between the absorbed 
dose and the biologic effect. 

5. Conclusion 

This study is the first to comprehensively test the applicability, 
strengths, and limitations of voxel-based analysis methods, i.e., IBDM, 
with pediatric data. Our findings demonstrated that such voxel-based 
analysis methods apply to data from pediatric cohorts, despite large 
age-related anatomic variations. The results of this study can guide 
future studies leveraging IBDM to improve understanding of radiation 
dose–response relationships in children by guiding their selection of an 
ideal cohort. Looking forward, such studies have the potential to 
improve radiotherapy by informing treatment planning to reduce 
treatment-related toxicities and improve quality of life among the sur-
vivors of childhood cancer. 
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