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Abstract: The current pandemic of the new coronavirus, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), or COVID-19, has received wide attention by scholars and researchers.
The vast increase in infected people is a significant challenge for each country and the international
community in general. The prediction and forecasting of the number of infected people (so-called
confirmed cases) is a critical issue that helps in understanding the fast spread of COVID-19. Therefore,
in this article, we present an improved version of the ANFIS (adaptive neuro-fuzzy inference system)
model to forecast the number of infected people in four countries, Italy, Iran, Korea, and the USA.
The improved version of ANFIS is based on a new nature-inspired optimizer, called the marine
predators algorithm (MPA). The MPA is utilized to optimize the ANFIS parameters, enhancing its
forecasting performance. Official datasets of the four countries are used to evaluate the proposed
MPA-ANFIS. Moreover, we compare MPA-ANFIS to several previous methods to evaluate its
forecasting performance. Overall, the outcomes show that MPA-ANFIS outperforms all compared
methods in almost all performance measures, such as Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error
(RMSRE), and Coefficient of Determination(R2). For instance, according to the results of the testing
set, the R2 of the proposed model is 96.48%, 98.59%, 98.74%, and 95.95% for Korea, Italy, Iran, and the
USA, respectively. More so, the MAE is 60.31, 3951.94, 217.27, and 12,979, for Korea, Italy, Iran, and
the USA, respectively.

Keywords: COVID-19; ANFIS; SARS-CoV-2; forecasting; marine predators algorithm (MPA)

1. Introduction

Coronaviruses are a family of viruses that are serious pathogens of people. They result in
gastrointestinal, hepatic, neurological, and severe respiratory diseases. Their main distributions are
among humans, bats, mice, livestock, and wild animals [1–3]. The last two decades witnessed three
outbreaks of coronaviruses, called SARS-CoV, MERS-CoV, and SARS-CoV-2 (COVID-19), in 2003, 2012,
and 2019, respectively. These three outbreaks have confirmed human-to-human and animal-to-animal
transmission [4].
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According to the official numbers of the confirmed cases of the three mentioned outbreaks, the new
coronavirus, COVID-19, is the most dangerous, and its spread is the highest, as recorded in more
than 200 countries and territories. The first reported cases of COVID-19 were recorded in Wuhan City,
Hubei Province, China [5]. The beginning was linked to several people who visited a local seafood
market in Wuhan and suffered from respiratory illness. The number of reported cases increased daily
in Wuhan, Hubei province, and in other Chinese cities and provinces. After a short time, several
countries recorded confirmed cases of COVID-19, such as Japan, Korea, and several other countries.
Thereafter, a huge outbreak of COVID-19 spread in many countries, especially in European countries,
such as Italy, Spain, Germany, France, and others. In Asia, except China, the most affected countries
are Korea and Iran; whereas in the Americas, the most affected country is the USA. The source of the
new coronavirus, COVID-19, is still unconfirmed, and in some studies, such as Lu et al. [6], it was
shown that bat-derived coronavirus strains were similar to COVID-19; therefore, the authors found
that bats were the potential source of COVID-19.

The daily confirmed cases globally have sharply increased, even with the strict policies
implemented by governments and the lockdown of many cities in the world. The main reason for that
is the incubation period of COVID-19, which may be up to 14 days, as described by Chen et al. [7].
During the incubation period, the infection can be transmitted to others even if the infected person
does not have symptoms. Furthermore, for some people, the incubation period may reach 24 days,
as concluded by Guan et al. [8].

The rapid spread of COVI-19 confirms that it is a terrifying pandemic; therefore, it is necessary to
study and analyze the increase of the affected cases or so-called confirmed cases.

Forecasting previous epidemics has received wide attention, and different methods have
been proposed. For example, a forecasting model based on Bayesian inference was proposed
by Shaman et al. [9] to forecast the outbreaks of Ebola in Guinea, Liberia, and Sierra Leone.
An ensemble adjustment Kalman filter based forecasting method was proposed by Shaman et al. [10]
to forecast seasonal outbreaks of influenza in New York City. Another Kalman filter based model
was also proposed by Shaman et al. [11] to forecast weekly influenza cases. Moreover, different
mathematical and statistical methods have been proposed for various epidemics, such as hepatitis A
virus infection proposed by True and Kurt [12], West Nile virus (WNV), proposed by Defelice et al. [13],
SARS proposed by Massad et al. [14], influenza A (H1N1-2009) proposed by Ong et al. [15], and MERS
proposed by Nah et al. [16].

Recently, there have been several studies presented to address different forecasting issues
for COVID-19, for example: forecasting of the human-to-human transmission of COVID-19 by
Thompson [17], forecasting the number of confirmed cases of COVID-19 by Zhao et al. [18] and
Al-qaness et al. [19], forecasting the infection rate of COVID-19 by Nishiura et al. [20], estimating the
transmission risk of COVID-19 by Tang et al. [21], and estimating the risk of death of COVID-19 by
Jung et al. [22].

On 24 March 2020, the number of confirmed COVID-19 cases reached 24,811, 69,176, 9073,
and 53,740 in Iran, Italy, Korea, and the USA, respectively. In this paper, we propose a time-series
forecasting approach to forecast confirmed cases of COVID-19 in four countries, Korea, the USA,
Italy, and Iran, using an improved adaptive neuro-fuzzy inference system (ANFIS). The ANFIS is
a well-known time-series forecasting model, which has received wide attention and been applied
for various prediction and forecasting issues, such as stock prices [23], oil prices [24], energy and
oil consumption [25–27], and others. One of the main limitations of ANFIS is the estimation of its
parameters. Recently, various optimization approaches were employed to solve this challenge, such
as the sine-cosine algorithm (SCA) [26], particle swarm intelligence (PSO) [28–30], and social-spider
optimization [31].

In this paper, we present an improved ANFIS version, by enhancing its performance using a new
nature-inspired optimization approach, called the marine predators algorithm (MPA). The MPA was
proposed by Faramarzi et al. [32]. It is inspired by the foraging strategy of ocean predators, based on
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two types of strategies, called Lévy and Brownian motion, which are selected by the predators for
optimal foraging. Therefore, in this study, we leverage the MPA to optimize the ANFIS parameters.

In our previous study [19], we proposed an enhanced ANFIS forecasting model,
called FPASSA-ANFIS. We forecasted the number of infected people in China. Although the proposed
model showed good performances, using two metaheuristics, salp swarm algorithm (SSA) and
flower pollination algorithm (FPA), was a little complex. However, it was found that it needs more
improvements, especially to deal with large-scale datasets, and also, its exploration ability is less
effective than its exploitation. Therefore, this study applied a new metaheuristic method called the
marine predators algorithm (MPA) [32]. This algorithm simulates the strategy that represents the
relation between the predator and prey in the ocean by using the Brownian and Lévy movements.
Our developed MPA-ANFIS approach begins by setting the initial value for its parameters. Then,
this is followed by splitting the historical data of COVID-19 for the specified country into two sets of
training and testing. Then, we set the initial value for a set of solutions that indicate the configuration
of the parameters of the ANFIS network. Thereafter, we compute the performance of the ANFIS
model using the training set and the current configuration/solution using the root mean squared error
(RMSE) as an objective function. The next step is to determine the best configuration of the parameter.
We then use the operators of MPA to update the other solutions. After reaching the terminal condition,
the best solution is used to build the ANFIS model and the testing set to assess the constructed ANFIS
model. This next step is the forecasting of COVID-19.

The primary contributions and objectives are listed as follows:

1. We propose a robust time-series model for forecasting the number of infected people
(confirmed cases) of SARS-CoV2 in several countries, Iran, Italy, Korea, and the USA.

2. We improve the performance of the ANFIS model using a novel optimization method, MPA,
which has not been applied in previous studies since the MPA is a new algorithm proposed in
recent months.

3. We evaluate the proposed MPA-ANFIS with official datasets and by comparing it with several
previous forecasting methods.

The rest of sections of this study are arranged as follows: Section 2 consists of the preliminaries of
ANFIS and MPA. Section 3 presents the MPA-ANFIS method. Experiments and results are described
in Section 4. Finally, the conclusion is presented in Section 6.

2. Preliminaries

2.1. Adaptive Neuro-Fuzzy Inference System

In general, ANFIS creates a mapping between inputs and outputs by employing “IF-THEN rules”
(also known as the “Takagi–Sugeno inference model”). The basic structure of ANFIS is shown in
Figure 1. As shown in this figure, the inputs of Layer 1 are represented by x and y, where the output of
node i is represented by O1i, as follows:

O1i = µAi (x), i = 1, 2, O1i = µBi−2(y), i = 3, 4 (1)

µ(x) = e−(
x−ρi

αi
)2

; (2)

hence, µ is the generalized Gaussian membership function. The membership values of µ are
represented by Ai and Bi. The premise parameter set is represented by αi and ρi.

Moreover, Equation (3) defines the output of Layer 2:

O2i = µAi (x)× µBi−2(y) (3)
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Equation (4) defines the output of Layer 3:

O3i = wi =
ωi

∑2
(i=1) ωi

, (4)

where wi is the ith nodes output from the previous layer.
The output of Layer 4 is represented by Equation (5):

O4,i = wi fi = wi(pix + qiy + ri) (5)

where where f is a function that combines the inputs and parameters of network. The consequent
parameters of node i are represented by ri, qi, and pi.

Finally, the output of Layer 5 is represented by Equation (6):

O5 = ∑
i

wi fi (6)

Figure 1. The basic structure of the ANFIS model.

2.2. Marine Predators Algorithm

In this section, the formulation of the marine predators algorithm is introduced [32]. Similar to
other metaheuristic (MH) techniques, the MPA starts by assigning random values for a set of solutions
depending on the search space, and this is formulated as:

X = LB + r1 × (UB− LB) (7)

In Equation (7), LB refers to the lower boundary in the search space, while UB is the upper
boundary. r1 ∈ [0, 1] is the random number. The MPA has a strategy that considers the prey and
predator as a search agent since when the predator searches for the prey, the prey itself is searching for
its food. Therefore, the elite (matrix of the top predators) will be updated at the end of each generation.
The formulation of the elite and prey (X) is given as [32]:

Elite =


X1

11 X1
12 . . . X1

1d
X1

21 X1
22 . . . X1

2d
. . . . . . . . . . . .
X1

n1 X1
n2 . . . X1

nd

 , X =


X11 X12 . . . X1d
X21 X22 . . . X2d
. . . . . . . . . . . .
Xn1 Xn2 . . . Xnd

 , (8)
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The next step is to update the position of prey X, which is performed using three stages depending
on the variant ratio of velocity simultaneously emulating the entire relation between prey and predator.
The details of each stage are discussed in the following subsections.

2.2.1. Stage 1: High-Velocity Ratio

In this stage, the predator is moving faster than X in the exploration phase, and this occurs in the
first third of the total number of generations (i.e., 1

3 tmax). Therefore, the prey Si is updated using the
following equations.

Si = RB
⊗

(Elitei − RB
⊗

Xi), i = 1, 2, . . . , n (9)

Xi = Xi + P.R
⊗

Si (10)

where R ∈ [0, 1] and P = 0.5 represent a vector of uniform random numbers and a constant number,
respectively. RB represents a random vector that refers to the Brownian motion.

⊗
indicates the

process of element-wise multiplications.

2.2.2. Stage 2: Unit Velocity Ratio

In this stage, the prey and predator are moving in the same area, and this movement simulates the
process of searching for the prey/food. Furthermore, this refers to the process of changing the status of
the MPA from exploration to exploitation. Actually, both of them have the same chance to occur during
this stage. Following [32], exploration is performed using the predator, while exploitation is performed
by the prey. It is assumed that the Lévy flight and Brownian motion represent the prey movement and
the predator, respectively, and this is defined as in Equations (11) and (12) when 1

3 tmax < t < 2
3 tmax:

Si = RL
⊗

(Elitei − RL
⊗

Xi), i = 1, 2, . . . , n (11)

Xi = Xi + P.R
⊗

Si (12)

where RL represents random numbers following a Lévy distribution. Equations (11) and (12) are
applied to the first half of the population that represents the exploitation. While for the second half of
the population:

Si = RB
⊗

(RB
⊗

Elitei − Xi), i = 1, 2, . . . , n (13)

Xi = Xi + P.CF
⊗

Si, CF = (1− t
tmax

)2 t
tmax ) (14)

where CF is the parameter that controls the step size of movement for the predator and tmax represents
the total number of generations.

2.2.3. Stage 3: Low-Velocity Ratio

This stage is the last process in the optimization process, which occurs when the movement of
the predator is faster than the prey. This refers to the exploitation phase when t > 2

3 tmax, and this is
formulated as:

Si = RL
⊗

(RL
⊗

Elitei − Xi), i = 1, 2, . . . , n (15)

Xi = Xi + P.CF
⊗

Si, CF = (1− t
tmax

)2 t
tmax ) (16)
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2.2.4. Eddy Formation and FADs’ Effect

There are issues of the environment that affect the behavior of marine predators such as fish
aggregating devices (FADs). The effect of FAD is formulated as:

Xi =

{
Xi + CF[Xmin + R

⊗
(Xmax − Xmin)

⊗
U r5 < FAD

Xi + [FAD(1− r) + r](Xr1 − Xr2) r5 > FAD
(17)

In Equation (17), FAD = 0.2, and U is a binary solution, and this is preformed by generating a
random solution, then converting it to a binary solution using the threshold 0.2. r ∈ [0, 1] represents a
random number. r1 and r2 are the indices of the prey.

2.2.5. Marine Memory

Following [32], the marine predator has a memory that remembers the good position that it has
reached. In general, the fitness value of each solution is compared with the previous fitness value, and
the best one is saved in memory. The pseudo-code of MPA is presented below.

3. The Proposed Method

This section introduces the proposed method called PMA-ANFIS. The goal of PMA-ANFIS is to
forecast the number of cases of COVID-19 in four countries, namely Italy, the USA, Iran, and Korea.

The proposed method improves ANFIS by optimizing its parameters. The ANFIS model was selected
because it is widely used in many forecasting tasks. It also can work effectively with uncertainty, fuzziness,
and ambiguity in the problem. MPA is a new optimization algorithm; it shows good performance in
selecting the best ANFIS parameters compared to other methods.

PMA-ANFIS is constructed using the five layers of the ANFIS model, where the Layer 1 receives the
input data, and Layer 5 produces the results. The main goal of FPA is to optimize the ANFIS weights that
lie between Layers 4 and 5. This process works in the training phase.

PMA-ANFIS receives the number of confirmed cases and their dates. Then, the input data are
formed by the proposed method to be in a time-series format. Due to the data diversity in the four
countries, the autocorrelation function (ACF) is applied to perform this step. It searches for patterns in
the data and helps select the best one. It is recommended that a number greater than 0.2 be considered;
therefore, in this study, 6 lags were selected for the USA dataset, 5 lags for both the Korean and Iranian
datasets, and 7 lags for the Italian dataset. With these settings, the input data were formed.

The entire dataset was divided into two groups. The first group (i.e., training set) contained 75%
of the data, while the rest was used as a testing set. ANFIS applies the fuzzy c-means method, and the
cluster number was set to seven.

To evaluate the quality of the candidate parameters, the mean squared error (MSE) was applied
(as in Equation (18)). The MSE computes the error between the target and the produced data.

MSE =
1

Na

Ns

∑
i=1

(gi − di)
2 (18)

where g indicates the target data. d is the output of the produced data. The size of the population is
defined by the variable Na.

As the optimization method, MPA-ANFIS starts by creating a population (X) to represent the
problem population. After that, the objective function is applied to test the solutions individually.
In each iteration, the value of the MSE is checked, and the solution that has the lowest value of MSE is
saved as the best solution. MPA-ANFIS works and loops its steps until meeting the stop criterion, and
the best parameter of ANFIS is passed to the testing stage. The optimized ANFIS model is used to
compute the final results in the testing stage.
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MPA-ANFIS was evaluated using well-known performance measures, namely root mean squared
error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and coefficient of
determination (R2). The MPA-ANFIS stages are illustrated in Figure 2.

Figure 2. The flowchart of the proposed MPA-ANFIS algorithm. FCM, the Fuzzy c-means.

4. Experiment and Results

4.1. Data

We used the datasets of reported cases of COVID-19 in four countries. They were obtained from
the website of the World Health Organization (WHO) [5]. The datasets included the daily confirmed
cases in four countries, the USA, Korea, Iran, and Italy. The total days for each country equaled 77 days,
from 22 January 2020 to 7 April 2020. Seventy-five percent of the dataset was applied to train the
proposed method, and the rest was applied in the testing phase.

4.2. Performance Measures and Parameter Setting

In this study, a set of metrics was used to assess the MPA-ANFIS approach and other models.
These metrics are defined in Table 1.

In Table 1, Ns, Yp, and Y are the number of samples, the original COVID-19 dataset, and its
prediction, respectively. The average of Y is given by Y. The model that had the smallest values for the
metrics (except a high value for R2) was the best one.
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Table 1. Performance measures.

Measure Formula

Root Mean Squared Error (RMSE) RMSE =
√

1
Ns

∑Ns
i=1(YYPi −Yi)2

Mean Absolute Error (MAE) MAE = 1
Ns

∑Ns
i=1 |YYPi −Yi

Mean Absolute Percentage Error (MAPE) MAPE = 1
Ns

∑Ns
i=1 |

YPi−Yi
YPi

Root Mean Squared Relative Error (RMSRE) RMSRE =
√

1
Ns

∑Ns
i=1(

YPi−Yi
YPi

)2

Coefficient of Determination (R2) R2 = 1− ∑n
i=1(Yi−YPi)

2

∑n
i=1(Yi−Yi)2

In addition, Table 2 shows the value for all compared algorithm, including original adaptive
neuro-fuzzy inference system (ANFIS), and enhanced ANFIS with genetic algorithm (GA), particle
swarm optimizer(PSO), Artificial bee colony (ABC), the hybridized of flower pollination algorithm and
salp swarm algorithm (SSAFPA), sine-cosine algorithm (SCA) that were used in our comparison. There
were general parameters that would be used over all the tested algorithms, such as the number of
solutions was set to 25. The total number of generations was 100; also, each algorithm was performed
30 times in independent runs [26,27,33,34]

Table 2. Parameter settings. FADs, fish aggregating devices. cp, crossover probability. mp mutation
probability.

Algorithm Parameter Setting

ANFIS Max. epochs = 100, error goal = 0,
Initial step = 0.01, decrease rate = 0.9,
Increase rate = 1.1

GA Crossover type = 1,
PSO wMax = 0.9, wMin = 0.2, C1 = 2, C2 = 2

cp = 1, mp = 0.01
ABC a = 1, employed bees = N/2, onlooker bees = N/2
SCA a = 2
FPASSA Standard gamma = 1.5, Switch probability = 0.8, C2 ∈ [0, 1], C3 ∈ [0, 1]
MPA FADs = 0.2, P = 0.5, β = 1.5

4.3. Results

The comparison results between the forecasting COVID-19 model based on MPA-ANFIS and
other models are given in Tables 3–6 based on the testing set (where the bold results showed the best
results). By analyzing the USA dataset, it can be observed that MPA predicted the number of cases
confirmed for COVID-19 nearly the same as the target number since it had the smallest RMSE, MAE,
MAPE, and RMSRE, as well as it had the highest R2. The performance of other models was different
according to the performance measures.

Table 3. Results of the USA.

Algorithm RMSE MAE MAPE RMSRE R2 Time

ANFIS 80245 58231 744.09 14.0700 0.8371 -
PSO 17656 15545 7.22 0.0801 0.9162 23.24
GA 19302 15846 12.13 0.1624 0.9489 26.23
ABC 345497 335418 1307.52 22.8424 0.7816 44.58
SCA 372321 281297 380.71 5.8893 0.6630 21.86
FPASSA 520963 443400 1225.67 18.3782 0.8949 22.98
MPA 15611 12979 5.74 0.0673 0.9595 45.83
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Table 4. Results of Iran.

RMSE MAE MAPE RMSRE R2 Time

ANFIS 26925.01 21912.08 257.895 5.4871 0.9017 -
PSO 317.99 282.51 0.861 0.0118 0.9861 20.68
GA 301.39 271.35 0.840 0.0113 0.9861 23.20
ABC 12581.97 9665.28 51.682 1.0031 0.9111 39.91
SCA 21891.68 14370.36 72.184 1.0982 0.5843 20.24
FPASSA 6830.25 3007.19 28.136 0.6905 0.9457 20.20
MPA 302.37 217.27 0.736 0.0105 0.9874 39.80

Table 5. Results of Italy.

RMSE MAE MAPE RMSRE R2 Time

ANFIS 99558.76 81394.93 239.668 5.3878 0.7720 -
PSO 5988.44 4383.08 2.830 0.0368 0.9636 21.59
GA 5772.62 4307.22 2.728 0.0348 0.9649 23.75
ABC 99655.58 55053.80 49.518 0.8160 0.7941 40.36
SCA 20644.06 15098.11 138.84 2.6193 0.8622 20.02
FPASSA 57704.18 38335.82 101.190 1.7320 0.9278 33.64
MPA 5465.66 3951.94 2.634 0.0372 0.9859 39.36

Table 6. Results of Korea.

RMSE MAE MAPE RMSRE R2 Time

ANFIS 127.76 112.13 1.250 0.0142 0.8228 -
PSO 117.24 88.79 0.979 0.0129 0.8280 20.81
GA 80.01 60.26 0.690 0.0091 0.9848 24.01
ABC 650.49 399.83 7.886 0.1277 0.7588 35.34
SCA 1145.10 642.06 24.455 0.4701 0.6638 20.26
FPASSA 91.68 78.28 0.792 0.0094 0.9038 20.38
MPA 70.93 60.31 0.696 0.0082 0.9648 40.73

By analyzing the performance of the MPA-ANFIS model using the Iranian dataset, it could be
noticed that it provided better results than others among all measures except the RMSE, which was
allocated to the second rank after GA. In addition, it can be seen that PSO, GA, and MPA nearly had
the same performances, but MPA was allocated the first rank. Furthermore, the other three models
(i.e., ABC, SCA, and FPASSA) nearly had the same behavior for Iran, except SCA was the lowest in
terms of R2, which provided nearly 20%.

In the case of the performance of the proposed model to predict COVID-19 for Italy, it could be
observed that MPA had better results in terms of RMSE, MAE, MAPE, and R2. However, in terms of
RMSRE, GA provided the smallest value, followed by PSO and MPA, which were the second and third
rank, respectively.

Finally, when Korea’s COVID-19 dataset was used, it could be noticed that in terms of MAE,
MAPE, and R2, GA based on ANFIS was the best algorithm. However, in other terms (i.e., RMSE and
RMSRE), the developed MPA-ANFIS was better than the others.

Figures 3–6 depict the original COVID-19 dataset and the forecasting for each country. It can
be seen from Figure 3 that the overall common forecasting by the prediction methods for COVID-19
for the USA would be growth; therefore, the USA government needs to implement stricter policies
to reduce the infection. For Iran (as in Figure 4), the forecasting of COVID-19 among all methods
indicated that the situation would still be growth, except SCA, which predicted that it would go
down and become nearly stable after several days; however, we ignored the SCA results because
its R2 was not good and the RMSE was very high. Therefore, our recommendation for Iran was to
put more restrictions on people’s movement and maintain social distancing since this is one of the
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greatest problems facing Middle-Eastern countries. From Figure 6, which represents the forecasting
of COVID-19 for Italy, it could be noticed from the best algorithm MPA, PSO, GA, and FPSSA that
COVID-19 will have an exponential growth. For Korea, as in Figure 5, it could be observed that the
situation already became stable.

Figure 3. The results for the USA using ABC, ANFIS, FPASSA, GA, MPA, SCA, and PSO against real
data (target).

Figure 4. The results for Iran using ABC, ANFIS, FPASSA, GA, MPA, SCA, and PSO against real
data (target).

Figure 5. The results for Korea using ABC, ANFIS, FPASSA, GA, MPA, SCA, and PSO against real
data (target).
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Figure 6. The results for Italy using ABC, ANFIS, FPASSA, GA, MPA, SCA, and PSO against real
data (target).

5. Discussion

In this paper, we proposed a modified ANFIS model using a new optimization algorithm, called
MPA, to forecast the number of confirmed cases of COVID-19 in four different countries, Italy, Iran,
Korea, and the USA.

By analyzing the relation of confirmed cases (RCC) between the confirmed cases and the four
countries’ areas, we could note that there was a positive relation in all countries. The area of Italy was
the smallest one among the four countries (301,339 km2), and the RCC was the highest one, equaling
10.29%, whereas, the USA had the largest area (952,5067 km2), and the RCC was the smallest one,
equaling 0.44%. The RCC of Korea (100,210 km2) was 4.25%, and the RCC of Iran (164,8195 km2) was
1.13%.

From the analysis of forecasting confirmed COVID-19 cases for the four countries, it could be
observed that the confirmed cases rate increased between 2% and 42% in Italy and between 8% and
40% in the USA, whereas, in Iran and Korea, it increased between 3% and 13% and 0.5% and 3%,
respectively.

In this study, we proposed an alternative forecasting COVID-19 model that depended on
improving the quality of the ANFIS model using MPA. The proposed MPA used the COVID-19 datasets
from four countries. The main aim of using those datasets was to test the ability of ANFIS-MPA to
work with data collected from different countries, and each one of these countries had its dynamics
and different internal conditions.

The results of the improved ANFIS using MPA seemed to propose that the COVID-19 curve for
the USA, Iran, and Italy had an exponential form, and for Korea after 13 March, it increased with small
numbers. From the previous analysis, it could be concluded that the performance of the developed
MPA-ANFIS model provided better results than the other models over all the tested datasets. However,
the proposed ANFIS-MPA suffered from some limitations, such as its computational time seemed to be
higher than other models in some cases. In addition, ANFIS needed some improvement in its structure
to avoid the over-fitting problem that occurred when the algorithm was trained using the training set,
but it could not provide the optimal response when the testing set was applied to its learned model.
Furthermore, the traditional MPA still needed more improvement since it was found that, by analyzing
its behavior, the exploitation ability was weaker than the exploration ability.

For more improvement and investigation, the mobility and transportation data between countries
and within a country need to be addressed in future work, which may reveal the real reason for this
terrifying spread of COVID-19. However, access to these records requires more time.
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6. Conclusions

With the rapid worldwide spread of SARS-CoV-2 (COVID-19), it is very important to forecast the
number of infected people (confirmed cases) to help governments and organizations do the necessary
planning to face this severe pandemic. To this end, this study proposed an efficient forecasting
model using an enhanced ANFIS model. The MPA was used to optimize the ANFIS parameters.
The proposed MPA-ANFIS was used to forecast the number of infected people in four different
countries, namely Italy, Iran, Korea, and the USA, using the historical records of these countries that
have been updated daily since the beginning of 2020. The evaluation of the proposed MPA-ANFIS
was implemented by comparing it to some exiting forecasting models. The outcomes showed that
MPA-ANFIS could forecast the number of cases based on the time-series data. Over all the experiments,
MPA-ANFIS outperformed all compared models on several measures, such as MAPE, RMSRE, MAE,
R2, and RMSE.

In future work, the forecasting of the number of confirmed cases of COVID-19 can be improved
using the mobility and transportation data of each country, which may explain the rapid rise and
spread of the COVID-19.
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